Publication Search Results
Exact matches for:
- Author = Molev AI [web profile page]
1.
Jing N, Liu M, Molev AI
Naihuan Jing, Ming Liu, Alexander Molev:
Quantum Sugawara operators in type A,
Advances in Mathematics,
454
(2024),
109907 (26 pages).
2.
Molev AI, Ragoucy E
A. Molev and E. Ragoucy:
Representations of the super-Yangian of type \(B(n,m)\),
Journal of Algebra,
659
(2024),
1–22.
3.
Molev AI, Ragoucy E
Alexander Molev and Eric Ragoucy:
Gaussian generators for the Yangian associated with the Lie superalgebra osp(1|2m),
Journal of Algebra,
655
(2024),
722–757.
4.
Jing N, Liu M, Molev AI
Naihuan Jing, Ming Liu and Alexander Molev:
Eigenvalues of quantum Gelfand invariants,
Journal of Mathematical Physics,
65
(2024),
Article number 061703 (10 pages).
5.
Molev AI
A. I. Molev:
A Drinfeld-type presentation of the orthosymplectic Yangians,
Algebras and Representation Theory,
27
(2024),
469–494.
6.
Molev AI
A. I. Molev:
Representations of the super Yangians of types A and C,
Algebras and Representation Theory,
26
(2023),
1007–1027.
7.
Molev AI
A. I. Molev:
Representations of the Yangians associated with Lie superalgebras osp(1|2n),
Communications in Mathematical Physics,
398
(2023),
541–571.
8.
Molev AI
A. I. Molev:
\(W\)-algebras associated with centralizers in type \(A\),
International Mathematics Research Notices,
2022
(2022),
no. 8,
6019–6037.
9.
Molev AI
A. I. Molev:
Odd reflections in the Yangian associated with \(\mathfrak{gl}(m|n)\),
Letters in Mathematical Physics,
112
(2022),
no. 1, paper 8,
15 pages.
10.
Molev AI, Yakimova O
Alexander Molev and Oksana Yakimova:
Monomial bases and branching rules,
Transformation Groups,
26
(2021),
no. 3,
995–1024.
11.
Molev AI
A. I. Molev:
On Segal-Sugawara vectors and Casimir elements for classical Lie algebras,
Letters in Mathematical Physics,
111
(2021),
no. no. 1,
Paper No. 8, 23 pp..
12.
Molev AI, Ragoucy E, Suh UR
Alex Molev, Eric Ragoucy and Uhi Rinn Suh:
Supersymmetric \(W\)-algebras,
Letters in Mathematical Physics,
111
(2021),
no. 1,
Paper no. 6 (25 pages).
13.
Molev AI
A. I. Molev:
Casimir elements and Sugawara operators for Takiff algebras,
Journal of Mathematical Physics,
62
(2021),
no. 011701,
13pp.
14.
Molev AI
Alex Molev:
Center at the critical level for centralizers in type A,
Journal of Algebra,
566
(2021),
163–186.
15.
Jing N, Liu M, Molev AI
Naihuan Jing, Ming Liu and Alexander Molev:
Representations of quantum affine algebras in their R-matrix realization,
SIGMA,
16
(2020),
no. 145,
25pp.
16.
Molev AI, Ragoucy E
A. I. Molev and E. Ragoucy:
Classical \(\mathcal{W}\)-algebras for centralizers,
Communications in Mathematical Physics,
378
(2020),
no. 1,
691–703.
17.
Jing N, Liu M, Molev AI
Naihuan Jing, Ming Liu and Alexander Molev:
Isomorphism between the \(R\)-matrix and Drinfeld presentations of quantum affine algebra: types \(B\) and \(D\),
SIGMA,
16
(2020),
043, 49 pages.
18.
Jing N, Liu M, Molev AI
Naihuan Jing, Ming Liu and Alexander Molev:
Isomorphism between the \(R\)-matrix and Drinfeld presentations of quantum affine algebra: Type \(C\),
Journal of Mathematical Physics,
61
(2020),
no. 3,
031701, 41pp..
19.
Molev AI, Yakimova O
Alexander Molev and Oksana Yakimova:
Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras,
Representation Theory,
23
(2019),
350–378.
20.
Molev AI, Ragoucy E
Alexander Molev and Eric Ragoucy:
Higher-order Hamiltonians for the trigonometric Gaudin model,
Letters in Mathematical Physics,
109
(2019),
2035–2048.
MR3996001
21.
Jing N, Liu M, Molev AI
Naihuan Jing, Ming Liu, Alexander Molev:
Isomorphism Between the \(R\)-Matrix and Drinfeld Presentations of Yangian in Types \(B\), \(C\) and \(D\),
Communications in Mathematical Physics,
361
(2018),
no. 3,
827–872.
22.
Molev AI
A. I. Molev:
Операторы Сугавары для классических алгебр Ли,
(Sugawara Operators for Classical Lie Algebras, Russian edition). Moscow Center for Continuous Mathematical Education,
Moscow,
(2018),
xiii+340pp.
ISBN 978-5-4439-2093-1.
23.
Molev AI
Alexander Molev:
Sugawara Operators for Classical Lie Algebras,
Mathematical Surveys and Monographs, 229,
American Mathematical Society,
Providence, RI,
(2018),
xiv + 304pp..
ISBN ISBN: 978-1-4704-3659-9.
24.
Jing N, Kožić S, Molev AI, Yang F
Naihuan Jing, Slaven Kožić, Alexander Molev and Fan Yang:
Center of the quantum affine vertex algebra in type \(A\),
Journal of Algebra,
496
(2018),
138–186.
25.
Molev AI, Mukhin EE
A. I. Molev and E. E. Mukhin:
Eigenvalues of Bethe vectors in the Gaudin model,
Theoretical and Mathematical Physics,
192
(2017),
no. 3,
1112–1135.
26.
Kožić S, Molev AI
Slaven Kožić and Alexander Molev:
Center of the quantum affine vertex algebra associated with trigonometric R-matrix,
Journal of Physics. A. Mathematical and General,
50
(2017),
325201 (21pp).
27.
Arakawa T, Molev AI
Tomoyuki Arakawa and Alexander Molev:
Explicit generators in rectangular affine \(W\)-algebras of type \(A\),
Letters in Mathematical Physics,
107
(2017),
no. 1,
47–59.
28.
Frappat L, Jing N, Molev AI, Ragoucy E
L. Frappat, N. Jing, A. Molev and E. Ragoucy:
Higher Sugawara Operators for the Quantum Affine Algebras of Type A,
Communications in Mathematical Physics,
345
(2016),
631–657.
MR3514954
29.
Molev AI, Ragoucy E, Rozhkovskaya N
A.I. Molev, E. Ragoucy and N. Rozhkovskaya:
Segal–Sugawara vectors for the Lie algebra of type \(G_2\),
Journal of Algebra,
455
(2016),
386–401.
30.
Futorny V, Molev AI
Vyacheslav Futorny and Alexander Molev:
Quantization of the shift of argument subalgebras in type A,
Advances in Mathematics,
285
(2015),
1358–1375.
31.
Molev AI, Mukhin EE
A I Molev and E E Mukhin:
Invariants of the vacuum module associated with the Lie superalgebra \(\mathfrak{gl}(1|1)\),
Journal of Physics A: Mathematical and Theoretical,
48
(2015),
no. 31,
20pp.
32.
Molev AI, Ragoucy E
A. I. Molev and E. Ragoucy:
Classical W-algebras in types A, B, C, D and G,
Communications in Mathematical Physics,
336
(2015),
1053–1084.
33.
Molev AI, Mukhin EE
A. I. Molev and E. E. Mukhin:
Yangian characters and classical W-algebras,
Conformal field theory, automorphic forms and related topics,
Contributions in Mathematical and Computational Sciences 8,
Springer-Verlag,
Berlin Heidelberg,
(2014),
287–334.
ISBN 978-3-662-43830-5/2191-303X.
MR3559208
34.
Matsumoto T, Molev AI
Takuya Matsumoto and Alexander Molev:
Representations of centrally extended Lie superalgebra psl(2|2),
Journal of Mathematical Physics,
55
(2014),
Art. 091704.
35.
Isaev AP, Molev AI, Ogievetsky OV
A. P. Isaev, A. I. Molev and O. V. Ogievetsky:
Idempotents for Birman-Murakami-Wenzl algebras and reflection equation,
Advances in Theoretical and Mathematical Physics,
18
(2014),
no. 1,
1–25.
36.
Molev AI, Ragoucy E
A. I. Molev and E. Ragoucy:
The MacMahon Master Theorem for Right Quantum Superalgebras and Higher Sugawara Operators for gl(m|n),
Moscow Mathematical Journal,
14
(2014),
no. 1,
83–119.
37.
Molev AI, Rozhkovskaya N
A. I. Molev and N. Rozhkovskaya:
Characteristic maps for the Brauer algebra,
Journal of Algebraic Combinatorics,
38
(2013),
no. 1,
15–35.
38.
Iorgov N, Molev AI, Ragoucy E
N. Iorgov, A. I. Molev and E. Ragoucy:
Casimir elements from the Brauer-Schur-Weyl duality,
Journal of Algebra,
387
(2013),
144–159.
39.
Molev AI
A. I. Molev:
Feigin--Frenkel center in types \(B\), \(C\) and \(D\),
Inventiones Mathematicae,
191
(2013),
no. 1,
1–34.
40.
Isaev AP, Molev AI, Ogievetsky OV
A P Isaev, A I Molev and O V Ogievetsky:
A New Fusion Procedure for the Brauer Algebra and Evaluation Homomorphisms,
International Mathematics Research Notices,
2012
(2012),
no. 11,
2571–2606.
MR2926990
41.
Isaev AP, Molev AI, Ogievetsky OV
A. P. Isaev, A. I. Molev and O. V. Ogievetsky:
A new fusion procedure for the Brauer algebra and evaluation homomorphisms,
International Mathematics Research Notices,
2011
(2011),
online, 36 pages.
42.
Molev AI
A. I. Molev:
Combinatorial bases for covariant representations of the Lie superalgebra gl(m|n),
Bulletin of the Institute of Mathematics, Academia Sinica.,
6
(2011),
no. 4,
415–462.
43.
Davydov A, Molev AI
Alexei Davydov and Alexander Molev:
A categorical approach to classical and quantum Schur-Weyl duality,
Contemporary Mathematics,
537
(2011),
143–171.
44.
Isaev AP, Molev AI
A. P. Isaev and A. I. Molev:
Fusion procedure for the Brauer algebra,
Algebra i Analiz,
22
(2010),
no. 3,
142–154.
MR2729943
45.
Gow L, Molev AI
Lucy Gow and Alexander Molev:
Representations of twisted q-Yangians,
Selecta Mathematica,
16
(2010),
no. 3,
439–499.
46.
Futorny V, Molev AI, Ovsienko S
V. Futorny, A. Molev and S. Ovsienko:
The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras,
Advances in Mathematics,
223
(2010),
773–796.
MR2565549
47.
Chervov AV, Molev AI
A. V. Chervov and A. I. Molev:
On higher order Sugawara operators,
International Mathematics Research Notices,
2009
(2009),
no. 9,
1612–1635.
MR2500972
48.
Molev AI
A. I. Molev:
Янгианы и классические алгебры Ли,
(Yangians and Classical Lie Algebras, Russian Edition). Moscow Center for Continuous Mathematical Education,
Moscow,
(2009),
536.
ISBN 978-5-94057-498-9.
49.
Molev AI
A. I. Molev:
Littlewood-Richardson polynomials,
Journal of Algebra,
321
(2009),
3450–3468.
MR2510056
50.
Molev AI
A. I. Molev:
Comultiplication rules for the double Schur functions and Cauchy identities,
Electronic Journal of Combinatorics,
16
(2009),
no. 1,
R13, 44pp.
MR2475536
51.
Billig Y, Molev AI, Zhang RB
Y. Billig, A. Molev and R. Zhang:
Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus,
Advances in Mathematics,
218
(2008),
1972–2004.
MR2431666
52.
Molev AI
A. I. Molev:
On the fusion procedure for the symmetric group,
Reports on Mathematical Physics,
61
(2008),
no. 2,
181–188.
MR2424084
53.
Isaev AP, Molev AI, Os'kin AF
A. P. Isaev, A. I. Molev and A. F. Os'kin:
On the idempotents of Hecke algebras,
Letters in Mathematical Physics,
85
(2008),
79–90.
MR2425663
54.
Futorny V, Molev AI, Ovsienko S
V. Futorny, A. Molev and S. Ovsienko:
Gelfand-Tsetlin Bases for Representations of Finite \(W\)-Algebras and Shifted Yangians,
Lie theory and its applications in physics VII,
VII International Workshop on Lie theory and its applications in physics,
H.-D. Doebner and V.K. Dobrev (eds.),
Heron Press,
Sofia,
(2008),
352–363.
ISBN 978-954-580-240-9.
55.
Molev AI, Ragoucy E
A. I. Molev and E. Ragoucy:
Symmetries and invariants of twisted quantum algebras and associated Poisson algebras,
Reviews in Mathematical Physics,
20
(2008),
no. 2,
173–198.
MR2400009
56.
Molev AI
Alexander Molev:
Yangians and Classical Lie Algebras,
Mathematical Surveys and Monographs, 143,
American Mathematical Society,
Providence, RI,
(2007),
400.
ISBN 978-0-8218-4374-1.
MR2355506
57.
Hopkins MJ, Molev AI
M. J. Hopkins and A. I. Molev:
A \(q\)-analogue of the centralizer construction and skew representations of the quantum affine algebra,
Symmetry, Integrability and Geometry: Methods and Applications,
2
(2006),
paper 092, 29 pp..
MR2282297
58.
Molev AI
A. I. Molev:
Representations of the twisted quantized enveloping algebra of type \(C_n\),
Moscow Mathematical Journal,
6
(2006),
531–551.
MR2274864
59.
Arnaudon D, Molev AI, Ragoucy E
D. Arnaudon, A. Molev and E. Ragoucy:
On the \(R\)-matrix realization of Yangians and their representations,
Annales Henri Poincaré,
7
(2006),
1269–1325.
MR2283732
60.
Hopkins MJ, Molev AI
M. J. Hopkins and A. I. Molev:
On the skew representations of the quantum affine algebra,
Czechoslovak Journal of Physics,
56
(2006),
no. 10/11,
1179–1184.
MR2282297
61.
Billig Y, Futorny V, Molev AI
Y Billig, V Futorny and A Molev:
Verma modules for Yangians,
Letters in Mathematical Physics,
78
(2006),
no. 1,
1–16.
MR2271124
62.
Molev AI
A. I. Molev:
Gelfand-Tsetlin bases for classical Lie algebras,
Handbook of Algebra,
Volume 4,
Elsevier,
Amsterdam,
(2006),
109–170.
ISBN 987-0-444-52213-9.
63.
Molev AI
A I Molev:
Skew representations of twisted Yangians,
Selecta Mathematica (N.S.),
12
(2006),
no. 1,
1–38.
MR2244262
64.
Futorny V, Molev AI, Ovsienko S
Vyacheslav Futorny, Alexander Molev, Serge Ovsienko:
Harish-Chandra modules for Yangians,
Representation Theory,
9
(2005),
426–454.
MR2142818
65.
Molev AI
A. Molev:
Littlewood-Richardson problem for Schubert polynomials,
Australian Mathematical Society Gazette,
31
(2004),
295 – 297.
MR2105758
66.
Bahturin Y, Molev AI
Yu. Bahturin and A. Molev:
Casimir elements for some graded Lie algebras and superalgebras,
Czechoslovak Journal of Physics,
54
(2004),
1159 – 1164.
MR2123586
67.
Molev AI, Tolstoy VN, Zhang RB
A. I. Molev, V. N. Tolstoy and R. B. Zhang:
On irreducibility of tensor products of evaluation modules for the quantum affine algebra,
Journal of Physics. A. Mathematical and General,
37
(2004),
2385 – 2399.
MR2045932
68.
Molev AI, Retakh V
Alexander Molev and Vladimir Retakh:
Quasideterminants and Casimir elements for the general linear Lie superalgebra,
International Mathematics Research Notices,
13
(2004),
611–619.
MR2039788
69.
Molev AI, Ragoucy E, Sorba P
A.I. Molev, E. Ragoucy and P. Sorba:
Coideal subalgebras in quantum affine algebras,
Reviews in Mathematical Physics,
15
(2003),
789–822.
MR2027560
70.
Molev AI
A. I. Molev:
Yangians and their applications,
Handbook of Algebra,
Elsevier,
North Holland,
(2003),
907–959.
ISBN 0-444-51264-0.
MR2035111
71.
Molev AI
A.I. Molev:
A new quantum analog of the Brauer algebra,
Czechoslovak Journal of Physics,
53
(2003),
1073–1078.
MR2074086
72.
Molev AI
A. I. Molev:
Yangians and transvector algebras,
Discrete Mathematics,
246
(2002),
231–253.
2003a:17019
73.
Molev AI
A. I. Molev:
Irreducibility criterion for tensor products of Yangian evaluation modules,
Duke Mathematical Journal,
112
(2002),
307–341.
2003c:17027
74.
Molev AI, Ragoucy E
A. I. Molev and E. Ragoucy:
Representations of reflection algebras,
Reviews in Mathematical Physics,
14
(2002),
317–342.
2003g:16041
75.
Molev AI, Olshanski GI
A. I. Molev and G. I. Olshanski:
Degenerate affine Hecke algebras and centralizer construction for the symmetric groups,
Journal of Algebra,
237
(2001),
302–341.
2002a:20006
76.
Molev AI, Olshanski GI
Alexander Molev and Grigori Olshanski:
Centralizer construction for twisted Yangians,
Selecta Mathematica. New Series,
6
(2000),
269–317.
2002j:17013
77.
Molev AI
A I Molev:
On Gelfand-Tsetlin bases for representations of classical Lie algebras,
Proceedings/FPSAC 00, the 12th international conference,
Formal power series and algebraic combinatorics,
Daniel Krob, Alexander A Mikhalev (eds.),
Formal power series and algebraic combinatorics,
Springer-Verlag,
Berlin, Heidelberg, New York,
(2000),
300–308.
ISBN 3-540-67247-8.
2001k:17014
78.
Molev AI
Alexander I Molev:
A weight basis for representations of even orthogonal Lie algebras,
Combinatorial methods in representation theory,
Kazuhiko Koike (ed.),
Advanced studies in Pure Mathematics,
28
The mathematical society of Japan,
Tokyo, Japan,
(2000),
221–240.
ISBN 4-314-10141-5.
2002i:17011
79.
Molev AI
A I Molev:
Weight bases of Gelfand-Tsetlin type for representations of classical Lie algebras,
Journal of Physics. A. Mathematical and General,
33
(2000),
no. 22,
4143–4158.
2001b:17016
80.
Molev AI
A I Molev:
A quantum Sylvester theorem and representations of Yangians,
FPSAC'99,
XI International Conference on Formal Power Series and Algebraic Combinatorics,
C Martinez, M Noy and O Serra (eds.),
Formal Power Series and Algebraic Combinatorics, FPSAC'99,
CPET (Centre de publicacions del Campus Nord0,
Barcelona,
(1999),
379–393.
81.
Molev AI, Nazarov M
Alexander Molev, Maxim Nazarov:
Capelli identities for classical Lie algebras,
Mathematische Annalen,
313
(1999),
315–357.
2000c:17013
82.
Molev AI, Sagan BE
Alexander I Molev, Bruce E Sagan:
A Littlewood-Richardson rule for factorial Schur functions,
Transactions of the American Mathematical Society,
351
(1999),
4429–4443.
2000a:05212
83.
Molev AI
A I Molev:
A basis for representations of symplectic Lie algebras,
Communications in Mathematical Physics,
201
(1999),
591–618.
2000c:17008
84.
Molev AI
Alexander I Molev:
Stirling partitions of the symmetric group and Laplace operators for the orthogonal Lie algebra,
Discrete Mathematics,
180
(1998),
281–300.
99k:17011
85.
Molev AI
Alexander Molev:
Factorial supersymmetric Schur functions and super Capelli identities,
Kirilov's seminar on representation theory,
American Mathematical Society Translations Series 2,
181
American Mathematical Society,
Providence RI,
(1998),
109–137.
99j:05190
86.
Molev AI
A I Molev:
Finite-dimensional irreducible representations of twisted Yangians,
Journal of Mathematical Physics,
39
(1998),
no. 10,
5559–5600.
99i:81106
Number of matches: 86 |