menuicon

Research

Follow us_twitter

Publication Search Results

Exact matches for:

  • Author = Kruskal MD

1. Kruskal MD, Joshi N, Halburd RG
M D Kruskal, N Joshi and R Halburd: Analytic and Asymptotic Methods for Nonlinear Singularity Analysis: A Review and Extensions of Tests for the Painlevé Property, Integrability of Nonlinear Systems, Lecture Notes in Physics, Springer/Verlag, Berlin, Heidelberg, (2004), 175–208. ISBN 3-540-20630-2.


2. Kruskal MD, Joshi N, Halburd RG
M Kruskal, N Joshi and R Halburd: Analytic and asymptotic methods for nonlinear singularity analysis: a Review and extensions of tests for the Painlevé property, Integrability and nonlinear systems, Lecture Notes in Physics, Springer-Verlag, Heidelberg, (1997), 171–205. MR1636294


3. Joshi N, Kruskal MD
Joshi N and Kruskal M D: A direct proof that the six Painlevé equations have no movable singularities except poles, Studies in Applied Mathematics, 93 (1994), 187–207. MR1298423


4. Joshi N, Kruskal MD
Joshi N and Kruskal M D: A local asymptotic method of seeing the natural barrier of the Chazy equation, Applications of analytic and geometric methods for nonlinear differential equations, Kluwer, New York, (1993), 331–339. MR1261674


5. Kruskal MD, Joshi N
Kruskal M D and Joshi N: Soliton theory, Painlevé property and integrability, Proceedings of the centre for mathematical analysis, N Joshi and R L Dewar (eds.), Chaos and Order, World Scientific, Singapore, (1991), 82–96. MR1108839


6. Joshi N, Kruskal MD
Joshi N and Kruskal M D: An asymptotic approach to the connection problem for the first and the second Painlevé equations, Physics Letters. A, 130 (1988), no. 3, 129–137. MR0948427


7. Joshi N, Kruskal MD
Joshi N and Kruskal M D: The connection problem for Painlevé transcendents, Physica D, 18D (1986), 215–216. MR0838326


Number of matches: 7