Publication Search Results
Exact matches for:
- Author = Zhang Z:1 [web profile page]
1.
Isenberg J, Wu H, Zhang Z
James Isenberg, Haotian Wu and Zhou Zhang:
On the precise asymptotics of Type-IIb solutions to mean curvature flow,
Transactions of the American Mathematical Society, Series B,
9
(2022),
565–585.
2.
Huang Z, Lin L, Zhang Z
Zheng Huang , Longzhi Lin and Zhou Zhang:
Mean curvature flow in Fuchsian manifolds,
Communications in Contemporary Mathematics,
22
(2020),
no. 7,
Article number 1950058.
3.
Isenberg J, Wu H, Zhang Z
James Isenberg, Haotian Wu, Zhou Zhang:
Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up. II,
Advances in Mathematics,
367
(2020),
Art. 107111 (44 pages).
4.
Huang Z, Zhang Z, Zhou H
Zheng Huang, Zhou Zhang and Hengyu Zhou:
Mean curvature flows of closed hypersurfaces in warped product manifolds,
Mathematical Research Letters,
26
(2019),
no. 5,
1393–1413.
MR4049815
5.
Zhang Z
Zhou Zhang:
General weak limit for Kähler-Ricci flow,
Communications in Contemporary Mathematics,
18
(2016),
no. 5,
Art. 1550079 (21 pages).
6.
Zhang Z
Zhou Zhang:
Globally existing Kähler-Ricci flows,
Revue Roumaine de Mathématiques Pures et Appliquées,
60
(2015),
no. 4,
551–560.
7.
Fong FTH, Zhang Z
Frederick Tsz-Ho Fong and Zhou Zhang:
The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity,
Journal für die reine und angewandte Mathematik,
703
(2015),
95–113.
8.
Zhang Z
Zhou Zhang:
Kähler-Ricci flow with degenerate initial class,
Transactions of the American Mathematical Society,
366
(2014),
no. 7,
3389–3403.
9.
Zhang Z
Zhou Zhang:
Ricci Lower Bound for Kähler--Ricci Flow,
Communications in Contemporary Mathematics,
16
(2014),
no. 2,
1350053-1–1350053-11.
10.
Rochon F, Zhang Z
F Rochon and Z Zhang:
Asymptotics of complete Kähler metrics of finite volume on quasiprojective manifolds,
Advances in Mathematics,
231
(2012),
no. 5,
2892–2952.
MR2970469
11.
Lott J, Zhang Z
John Lott and Zhou Zhang:
Ricci flow on quasi-projective manifolds,
Duke Mathematical Journal,
156
(2011),
no. 1,
87–123.
12.
Cao X, Zhang Z
Xiaodong Cao and Zhou Zhang:
Differential Harnack estimates for parabolic equations,
arxiv.org,
1001.5245
(2011),
1–10.
13.
Cao X, Wang B, Zhang Z
Xiaodong Cao, Biao Wang and Zhou Zhang:
On locally conformatlly flat gradient shrinking Ricci solitons,
Communications in Contemporary Mathematics (CCM),
13
(2011),
no. 2,
269–282.
14.
Chen XX, Tian G, Zhang Z
XX Chen, G Tian and Z Zhang:
On the Weak Kähler-Ricci Flow,
Transactions of the American Mathematical Society,
363
(2011),
no. 6,
2849–2863.
15.
Zhang Z
Zhou Zhang:
Scalar curvature behavior for finite-time singularity of Kähler-Ricci flow,
Michigan Mathematical Journal,
59
(2010),
no. 2,
419–433.
16.
Dinew S, Zhang Z
Slawomir Dinew and Zhou Zhang:
On stability and continuity of bounded solutions of degenerate complex Monge-Ampère equations over compact Kähler manifolds,
Advances in Mathematics,
225
(2010),
no. 1,
367–388.
17.
Zhang Z
Zhou Zhang:
A modified Kähler-Ricci flow,
Mathematische Annalen,
345
(2009),
no. 3,
559–579.
18.
Zhang Z
Zhou Zhang:
Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of general type,
International Mathematical Research Notes, IMRN,
20
(2009),
3901–3912.
19.
Zhang Z
Zhou Zhang:
Degenerate Monge-Ampère equations over projective manifolds,
ProQuest LLC,
PhD thesis, Massachusetts Institute of Technology,
USA,
(2006),
ISBN -.
20.
Zhang Z
Zhou Zhang:
On degenerate Monge-Ampère equations over closed Kähler manifolds,
International Mathematical Research Notes, IMRN,
Art. ID. 63640
(2006),
18 pp.
21.
Tian G, Zhang Z
Gang Tian and Zhou Zhang:
On the Kähler-Ricci flow on projective manifolds of general type,
Chinese Annals of Mathematics Series B,
26
(2006),
no. 2,
179–192.
Number of matches: 21 |