menuicon

Research

Follow us_twitter

Publication Search Results

Exact matches for:

1. Isenberg J, Wu H, Zhang Z
James Isenberg, Haotian Wu and Zhou Zhang: On the precise asymptotics of Type-IIb solutions to mean curvature flow, Transactions of the American Mathematical Society, Series B, 9 (2022), 565–585.


2. Huang Z, Lin L, Zhang Z
Zheng Huang , Longzhi Lin and Zhou Zhang: Mean curvature flow in Fuchsian manifolds, Communications in Contemporary Mathematics, 22 (2020), no. 7, Article number 1950058.


3. Isenberg J, Wu H, Zhang Z
James Isenberg, Haotian Wu, Zhou Zhang: Mean curvature flow of noncompact hypersurfaces with Type-II curvature blow-up. II, Advances in Mathematics, 367 (2020), Art. 107111 (44 pages).


4. Huang Z, Zhang Z, Zhou H
Zheng Huang, Zhou Zhang and Hengyu Zhou: Mean curvature flows of closed hypersurfaces in warped product manifolds, Mathematical Research Letters, 26 (2019), no. 5, 1393–1413. MR4049815


5. Zhang Z
Zhou Zhang: General weak limit for Kähler-Ricci flow, Communications in Contemporary Mathematics, 18 (2016), no. 5, Art. 1550079 (21 pages).


6. Zhang Z
Zhou Zhang: Globally existing Kähler-Ricci flows, Revue Roumaine de Mathématiques Pures et Appliquées, 60 (2015), no. 4, 551–560.


7. Fong FTH, Zhang Z
Frederick Tsz-Ho Fong and Zhou Zhang: The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity, Journal für die reine und angewandte Mathematik, 703 (2015), 95–113.


8. Zhang Z
Zhou Zhang: Kähler-Ricci flow with degenerate initial class, Transactions of the American Mathematical Society, 366 (2014), no. 7, 3389–3403.


9. Zhang Z
Zhou Zhang: Ricci Lower Bound for Kähler--Ricci Flow, Communications in Contemporary Mathematics, 16 (2014), no. 2, 1350053-1–1350053-11.


10. Rochon F, Zhang Z
F Rochon and Z Zhang: Asymptotics of complete Kähler metrics of finite volume on quasiprojective manifolds, Advances in Mathematics, 231 (2012), no. 5, 2892–2952. MR2970469


11. Lott J, Zhang Z
John Lott and Zhou Zhang: Ricci flow on quasi-projective manifolds, Duke Mathematical Journal, 156 (2011), no. 1, 87–123.


12. Cao X, Zhang Z
Xiaodong Cao and Zhou Zhang: Differential Harnack estimates for parabolic equations, arxiv.org, 1001.5245 (2011), 1–10.


13. Cao X, Wang B, Zhang Z
Xiaodong Cao, Biao Wang and Zhou Zhang: On locally conformatlly flat gradient shrinking Ricci solitons, Communications in Contemporary Mathematics (CCM), 13 (2011), no. 2, 269–282.


14. Chen XX, Tian G, Zhang Z
XX Chen, G Tian and Z Zhang: On the Weak Kähler-Ricci Flow, Transactions of the American Mathematical Society, 363 (2011), no. 6, 2849–2863.


15. Zhang Z
Zhou Zhang: Scalar curvature behavior for finite-time singularity of Kähler-Ricci flow, Michigan Mathematical Journal, 59 (2010), no. 2, 419–433.


16. Dinew S, Zhang Z
Slawomir Dinew and Zhou Zhang: On stability and continuity of bounded solutions of degenerate complex Monge-Ampère equations over compact Kähler manifolds, Advances in Mathematics, 225 (2010), no. 1, 367–388.


17. Zhang Z
Zhou Zhang: A modified Kähler-Ricci flow, Mathematische Annalen, 345 (2009), no. 3, 559–579.


18. Zhang Z
Zhou Zhang: Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of general type, International Mathematical Research Notes, IMRN, 20 (2009), 3901–3912.


19. Zhang Z
Zhou Zhang: Degenerate Monge-Ampère equations over projective manifolds, ProQuest LLC, PhD thesis, Massachusetts Institute of Technology, USA, (2006), ISBN -.


20. Zhang Z
Zhou Zhang: On degenerate Monge-Ampère equations over closed Kähler manifolds, International Mathematical Research Notes, IMRN, Art. ID. 63640 (2006), 18 pp.


21. Tian G, Zhang Z
Gang Tian and Zhou Zhang: On the Kähler-Ricci flow on projective manifolds of general type, Chinese Annals of Mathematics Series B, 26 (2006), no. 2, 179–192.


Number of matches: 21