Publication Search Results
Exact matches for:
- Author = Voight J [web profile page]
1.
Laga J, Shnidman A, Schembri C, Voight J
Jef Laga, Ari Shnidman, Ciaran Schembri and John Voight:
Rational torsion points on abelian surfaces with quaternionic multiplication,
Forum of Mathematics, Sigma,
12
(2024),
e92 (33 pages).
2.
Voight J
John Voight:
Hurwitz's lectures on the number theory of quaternions,
European Mathematical Society Magazine,
132
(2024),
68.
3.
Assaf E, Ladd W, Rama G, Tornaría G, Voight J
Eran Assaf, Watson Ladd, Gustavo Rama, Gonzalo Tornaría and John Voight:
A database of paramodular forms from quinary orthogonal modular forms,
LuCaNT: LMFDB, computation, and number theory,
LuCaNT: LMFDB, computation, and number theory,
John Cremona, John Jones, Jennifer Paulhus, Andrew V. Sutherland and John Voight (eds.),
Contemp. Math., 796,
American Mathematical Society,
Providence, RI, United States,
(2024),
243–259.
ISBN 978-1-4704-7260-3.
MR4732690
4.
Assaf E, Babei A, Breen B, Costa E, Duque-Rosero J, Horawa A, Kieffer J, Kulkarni A, Molnar G, Schiavone S, Voight J
Eran Assaf, Angelica Babei, Ben Breen, Edgar Costa, Juanita Duque-Rosero, Aleksander Horawa, Jean Kieffer, Avinash Kulkarni, Grant Molnar, Sam Schiavone and John Voight:
A database of basic numerical invariants of Hilbert modular surfaces,
LuCaNT: LMFDB, computation, and number theory,
LuCaNT: LMFDB, computation, and number theory,
John Cremona, John Jones, Jennifer Paulhus, Andrew V. Sutherland and John Voight (eds.),
Contemp. Math., 796,
American Mathematical Society,
Providence, RI, United States,
(2024),
285–312.
ISBN 978-1-4704-7260-3.
MR4732692
5.
Marseglia S, Smit H, Voight J
Stefano Marseglia, Harry Smit, John Voight:
Ideal classes of orders in quaternion algebras (Appendix A: Computing invertible ideals),
Journal of Pure and Applied Algebra,
228
(2024),
no. 7,
107649.
6.
Radosevich M, Voight J
Matthew Radosevich and John Voight:
Computing Euclidean Belyi maps,
Journal de Théorie des Nombres de Bordeaux,
35
(2023),
no. 2,
543–565.
MR4655370
7.
Duque-Rosero J, Voight J
Juanita Duque-Rosero and John Voight:
Triangular modular curves of small genus,
Research in Number Theory,
9
(2023),
no. 1,
Paper number 3 (26 pages).
MR4517324
8.
Breen B, Varma I, Voight J, Elkies N
Benjamin Breen, Ila Varma, John Voight, Noam Elkies:
On unit signatures and narrow class groups of odd degree Abelian number fields,
Transactions of the American Mathematical Society B,
10
(2023),
86–128.
MR4544138
9.
Auel A, Biesel O, Voight J
Asher Auel, Owen Biesel and John Voight:
Stickelberger's discriminant theorem for algebras,
American Mathematical Monthly,
130
(2023),
no. 7,
656–670.
MR4623332
10.
Molnar G, Voight J
Grant Molnar and John Voight:
Counting elliptic curves over the rationals with a 7-isogeny,
Research in Number Theory,
9
(2023),
31 pages.
MR4661854
11.
Viray B, Voight J
Bianca Viray and John Voight:
The value of mathematical storytelling: our perspective on giving talks,
Notices of the American Mathematical Society,
70
(2023),
no. 6,
928–931.
12.
Voight J
John Voight:
Kneser's method of neighbors,
Archiv der Mathematik (Basel),
121
(2023),
537–557.
13.
Best AJ, Bober J, Booker AR, Costa E, Cremona J, Derickx M, Lowry-Duda D, Lee M, Roe D, Sutherland AV, Voight J
Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John Cremona, Maarten Derickx, David Lowry-Duda, Min Lee, David Roe, Andrew V. Sutherland and John Voight:
Computing classical modular forms,
Arithmetic geometry, number theory, and computation,
Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland and John Voight (eds.),
Simons Symposia,
Springer,
Cham, Switzerland,
(2022),
131–213.
ISBN 978-3-030-80913-3; 978-3-030-80914-0.
MR4427962
14.
Cremona J, Dembélé L, Pacetti A, Schembri C, Voight J
John Cremona, Lassina Dembélé, Ariel Pacetti, Ciaran Schembri and John Voight:
On rational Bianchi newforms and abelian surfaces with quaternionic multiplication,
Arithmetic geometry, number theory, and computation,
Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland and John Voight (eds.),
Simons Symposia,
Springer,
Cham, Switzerland,
(2022),
343–363.
ISBN 978-3-030-80913-3; 978-3-030-80914-0.
MR4427969
15.
Donnelly S, Voight J
Steve Donnelly and John Voight:
A database of Hilbert modular forms,
Arithmetic geometry, number theory, and computation,
Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland and John Voight (eds.),
Simons Symposia,
Springer,
Cham, Switzerland,
(2022),
365–373.
ISBN 978-3-030-80913-3; 978-3-030-80914-0.
MR4427970
16.
Zureick-Brown D, Voight J
David Zureick-Brown and John Voight:
The canonical ring of a stacky curve,
Memoirs of the American Mathematical Society,
American Mathematical Society,
Providence, RI, United States,
(2022),
v+144 pp.
ISBN 978-1-4704-5228-5; 978-1-4704-7094-4.
MR4403928
17.
Mascot N, Sijsling J, Voight J
Nicolas Mascot, Jeroen Sijsling and John Voight:
A Prym variety with everywhere good reduction over \(\mathbb{Q}\sqrt{61}\),
Arithmetic geometry, number theory, and computation,
Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland and John Voight (eds.),
Simons Symposia,
Springer,
Cham, Switzerland,
(2022),
559–581.
ISBN 978-3-030-80913-3; 978-3-030-80914-0.
MR4427978
18.
Dembélé L, Panchishkin A, Zudilin W, Voight J
Lassina Dembélé, Alexei Panchishkin, Wadim Zudilin and John Voight:
Special hypergeometric motives and their \(L\)-functions: Asai recognition,
Experimental Mathematics,
31
(2022),
no. 4,
1278–1290.
MR4516257
19.
Cullinan J, Kenney M, Voight J
John Cullinan, Meagan Kenney and John Voight:
On a probabilistic local-global principle for torsion on elliptic curves,
Journal de Théorie des Nombres de Bordeaux,
34
(2022),
no. 1,
41–90.
MR4450609
20.
Assaf E, Fretwell D, Ingalls C, Logan A, Secord S, Voight J
Eran Assaf, Dan Fretwell, Colin Ingalls, Adam Logan, Spencer Secord and John Voight:
Definite orthogonal modular forms: computations, excursions, and discoveries,
Research in Number Theory,
8
(2022),
no. 4,
Paper number 70 (32 pages).
MR4483572
21.
Chari S, Smertnig D, Voight J
Sara Chari, Daniel Smertnig and John Voight:
On basic and Bass quaternion orders,
Proceedings of the American Mathematical Society B,
8
(2021),
11–26.
MR4199211
22.
Voight J
John Voight:
Quaternion Algebras,
Graduate Texts in Mathematics,
Springer,
Cham, Switzerland,
(2021),
xxiii+885 pp.
ISBN 978-3-030-56692-0; 978-3-030-56694-4.
MR4279905
23.
Costa E, Lombardo D, Voight J
Edgar Costa, Davide Lombardo and John Voight:
Identifying central endomorphisms of an abelian variety via Frobenius endomorphisms,
Research in Number Theory,
7
(2021),
no. 3,
Paper number 46 (14 pages).
MR4280568
24.
Doran CF, Kelly TL, Salerno A, Sperber S, Voight J, Whitcher U
Charles F. Doran, Tyler L. Kelly, Adriana Salerno, Steven Sperber, John Voight and Ursula Whitcher:
Hypergeometric decomposition of symmetric K3 quartic pencils,
Research in the Mathematical Sciences,
7
(2020),
no. 2,
Paper number 7 (81 pages).
MR4078177
25.
Sikirić MD, Haensch A, Woerden WPJ, Voight J
Mathieu Dutour Sikirić, Anna Haensch, Wessel P.J. van Woerden and John Voight:
A canonical form for positive definite matrices,
ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium,
ANTS XIV—Fourteenth Algorithmic Number Theory Symposium,
Steven D. Galbraith (ed.),
The Open Book Series, 4,
Mathematical Sciences Publishers,
Berkeley, CA, United States,
(2020),
179–195.
ISBN 978-1-935107-08-8; 978-1-935107-07-1.
MR4235113
26.
Pizzo M, Pomerance C, Voight J
Maggie Pizzo, Carl Pomerance and John Voight:
Counting elliptic curves with an isogeny of degree three,
Proceedings of the American Mathematical Society, Series B,
7
(2020),
28–42.
MR4071798
27.
Voight J
John Voight:
Triangular modular curves,
2017 MATRIX annals,
Eight programs held at MATRIX,
David R. Wood, Jan de Gier, Cheryl E. Praeger and Terence Tao (eds.),
MATRIX Book Series, 2,
Springer,
Cham,
(2019),
481–483.
ISBN 978-3-030-04160-1; 978-3-030-04161-8.
28.
Doran CF, Kelly TL, Salerno A, Sperber S, Voight J, Whitcher U
Charles F. Doran, Tyler L. Kelly, Adriana Salerno, Steven Sperber, John Voight and Ursula Whitcher:
Alternate mirror families and hypergeometric motives,
2017 MATRIX annals,
Eight programs held at MATRIX,
David R. Wood, Jan de Gier, Cheryl E. Praeger and Terence Tao (eds.),
MATRIX Book Series, 2,
Springer,
Cham,
(2019),
441–448.
ISBN 978-3-030-04160-1; 978-3-030-04161-8.
29.
Javanpeykar A, Voight J
Ariyan Javanpeykar and John Voight:
The Belyi degree of a curve is computable,
Proceedings of the 16th International Conference "Arithmetic, Geometry, Cryptography, and Coding Theory",
16th International Conference "Arithmetic, Geometry, Cryptography, and Coding Theory",
Yves Aubry, Everett W. Howe and Christophe Ritzenthaler (eds.),
Contemporary Mathematics, 722,
American Mathematical Society,
Providence, RI, United States,
(2019),
43–57.
ISBN 978-1-4704-4212-5.
MR3896848
30.
Costa E, Mascot N, Sijsling J, Voight J
Edgar Costa, Nicolas Mascot, Jeroen Sijsling and John Voight:
Rigorous computation of the endomorphism ring of a Jacobian,
Mathematics of Computation,
88
(2019),
no. 317,
1303–1339.
MR3904148
31.
Clark PL, Voight J
Pete L. Clark and John Voight:
Algebraic curves uniformized by congruence subgroups of triangle groups,
Transactions of the American Mathematical Society,
371
(2019),
no. 1,
33–82.
MR3885137
32.
Musty M, Schiavone S, Sijsling J, Voight J
Michael Musty, Sam Schiavone, Jeroen Sijsling and John Voight:
A database of Belyi maps,
Proceedings of the Thirteenth Algorithmic Number Theory Symposium,
ANTS XIII,
Renate Scheidler and Jonathan Sorenson (eds.),
The Open Book Series, 2,
Mathematical Sciences Publishers,
Berkeley, CA, United States,
(2019),
375–392.
ISBN 978-1-935107-03-3; 978-1-935107-02-6.
MR3952023
33.
Brumer A, Pacetti A, Poor C, Tornaría G, Voight J, Yuen DS
Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight and David S. Yuen:
On the paramodularity of typical abelian surfaces,
Algebra & Number Theory,
13
(2019),
no. 5,
1145–1195.
MR3981316
34.
Smertnig D, Voight J
Daniel Smertnig and John Voight:
Definite orders with locally free cancellation,
Transactions of the London Mathematical Society,
6
(2019),
no. 1,
53–86.
MR4105795
35.
Park J, Poonen B, Voight J, Wood MM
Jennifer Park, Bjorn Poonen, John Voight and Melanie Matchett Wood:
A heuristic for boundedness of ranks of elliptic curves,
Journal of the European Mathematical Society,
21
(2019),
no. 9,
2859–2903.
MR3985613
36.
Linowitz B, Stover M, Voight J
Benjamin Linowitz, Matthew Stover and John Voight:
Commensurability classes of fake quadrics,
Selecta Mathematica (New Series),
25
(2019),
no. 3,
Paper number 48 (39 pages).
MR3984106
37.
Dummit DS, Voight J
David S. Dummit and John Voight:
The 2-Selmer group of a number field and heuristics for narrow class groups and signature ranks of units,
Proceedings of the London Mathematical Society, Third Series,
117
(2018),
no. 4,
682–726.
MR3873132
38.
Dasgupta S, Voight J
Samit Dasgupta and John Voight:
Sylvester's problem and mock Heegner points,
Proceedings of the American Mathematical Society,
146
(2018),
no. 8,
3257–3273.
MR3803653
39.
Doran CF, Kelly TL, Salerno A, Sperber S, Voight J, Whitcher U
Charles F. Doran, Tyler L. Kelly, Adriana Salerno, Steven Sperber, John Voight and Ursula Whitcher:
Zeta functions of alternate mirror Calabi-Yau families,
Israel Journal of Mathematics,
228
(2018),
no. 2,
665–705.
MR3874856
40.
Nugent S, Voight J
Steve Nugent and John Voight:
On the arithmetic dimension of triangle groups,
Mathematics of Computation,
86
(2017),
no. 306,
1979–2004.
MR3626545
41.
Voight J
John Voight:
Discriminants and the monoid of quadratic rings,
Pacific Journal of Mathematics,
283
(2016),
no. 2,
483–510.
MR3519113
42.
Booker AR, Sijsling J, Sutherland AV, Voight J, Yasaki D
Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight and Dan Yasaki:
A database of genus-2 curves over the rational numbers,
LMS Journal of Computation and Mathematics,
19
(2016),
235–254.
MR3540958
43.
Sijsling J, Voight J
Jeroen Sijsling and John Voight:
On explicit descent of marked curves and maps,
Research in Number Theory,
2
(2016),
Paper number 27 (35 pages).
MR3582054
44.
Linowitz B, Voight J
Benjamin Linowitz and John Voight:
Small isospectral and nonisometric orbifolds of dimension 2 and 3,
Mathematische Zeitschrift,
281
(2015),
no. 1–2,
523–569.
MR3384884
45.
Greenberg M, Voight J
Matthew Greenberg and John Voight:
Lattice methods for algebraic modular forms on classical groups,
Computations with modular forms,
Computations with modular forms: Summer School and Conference held at the University of Heidelberg,
Gebhard Böckle and Gabor Wiese (eds.),
Contributions in Mathematical and Computational Sciences, 6,
Springer,
Cham,
(2014),
147–179.
ISBN 978-3-319-03846-9; 978-3-319-03847-6.
MR3381452
46.
Voight J, Willis J
John Voight and John Willis:
Computing power series expansions of modular forms,
Computations with modular forms,
Computations with modular forms: Summer School and Conference held at the University of Heidelberg,
Gebhard Böckle and Gabor Wiese (eds.),
Contributions in Mathematical and Computational Sciences, 6,
Springer,
Cham,
(2014),
331–361.
ISBN 978-3-319-03846-9; 978-3-319-03847-6.
MR3381459
47.
Ryan NC, Tornaría G, Voight J
Nathan C. Ryan, Gonzalo Tornaría and John Voight:
Nonvanishing of twists of \(L\)-functions attached to Hilbert modular forms,
LMS Journal of Computation and Mathematics,
17
(2014),
330–348.
MR3240813
48.
Sijsling J, Voight J
Jeroen Sijsling and John Voight:
On computing Belyi maps,
Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres,
2014/1
(2014),
73–131.
MR3362631
49.
Klug M, Musty M, Schiavone S, Voight J
Michael Klug, Michael Musty, Sam Schiavone and John Voight:
Numerical calculation of three-point branched covers of the projective line,
LMS Journal of Computation and Mathematics,
17
(2014),
no. 1,
379–430.
MR3356040
50.
Dembélé L, Voight J
Lassina Dembélé and John Voight:
Explicit methods for Hilbert modular forms,
Elliptic curves, Hilbert modular forms and Galois deformations,
Henri Darmon, Fred Diamond, Luis V. Dieulefait, Bas Edixhoven and Víctor Rotger (eds.),
Advanced Courses in Mathematics. CRM Barcelona,
Birkhäuser/Springer,
Basel,
(2013),
135–198.
ISBN 978-3-0348-0617-6; 978-3-0348-0618-3.
MR3184337
Number of matches: 71 (showing page 1 of 2) | Select page: 1 2 |