menuicon

Research

Follow us_twitter

Publication Search Results

Exact matches for:

1. Joshi N, Kajiwara K, Masuda T, Nakazono N, Shi Y
Nalini Joshi , Kenji Kajiwara , Tetsu Masuda , Nobutaka Nakazono and Yang Shi: Geometric description of a discrete power function associated with the sixth Painlevé equation, Proceedings of the Royal Society A, 22 November 2017 (2017), no. Online, 19 Pages.


2. Joshi N, Nakazono N, Shi Y
N. Joshi, N. Nakazono, Y. Shi: Lattice equations arising from discrete Painlevé systems. II. \(A_4^{(1)}\) case., Journal of Physics A: Mathematical and Theoretical, (2016), (to appear, 30 pages).


3. Joshi N, Nakazono N, Shi Y
N. Joshi, N. Nakazono, Y. Shi: Reflection groups and discrete integrable systems, Journal of Integrable Systems, (2016), (37 pages).


4. Joshi N, Nakazono N, Shi Y
Nalini Joshi, Nobutaka Nakazono, and Yang Shi: Lattice equations arising from discrete Painlevé systems. I. \((A_2 + A_1)^{(1)}\) and \((A_1 + A'_1 )^{(1)}\) cases, Journal of Mathematical Physics, 56 (2015), no. 9, Art. 092705 (25 pages).


5. Hay M, Howes P, Nakazono N, Shi Y
Mike Hay, Phil Howes, Nobutaka Nakazono and Yang Shi: A systematic approach to reductions of type-Q ABS equations, Journal of Physics A: Mathematical and Theoretical, 48 (2015), no. 9, 095201 (24 pp).


6. Joshi N, Nakazono N, Shi Y
Nalini Joshi, Nobutaka Nakazono and Yang Shi: Geometric reductions of ABS equations on an \(n\)-cube to discrete Painlevé systems, Journal of Physics A: Mathematical and Theoretical, 47 (2014), no. Online, 505201 (16 pages).


7. Joshi N, Shi Y
Nalini Joshi and Yang Shi: Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem. II. Hypergeometric solutions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468 (2012), no. 2146, 3247–3264. MR2972380


8. Joshi N, Shi Y
Nalini Joshi and Yang Shi: Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions, Proceedings of the Royal Society A, 467 (2011), 3443–3468.


Number of matches: 8