Publication Search Results
Exact matches for:
- Author = Shi Y [web profile page]
1.
Joshi N, Kajiwara K, Masuda T, Nakazono N, Shi Y
Nalini Joshi , Kenji Kajiwara , Tetsu Masuda , Nobutaka Nakazono and Yang Shi:
Geometric description of a discrete power function associated with the sixth Painlevé equation,
Proceedings of the Royal Society A,
22 November 2017
(2017),
no. Online,
19 Pages.
2.
Joshi N, Nakazono N, Shi Y
N. Joshi, N. Nakazono, Y. Shi:
Lattice equations arising from discrete Painlevé systems. II. \(A_4^{(1)}\) case.,
Journal of Physics A: Mathematical and Theoretical,
(2016),
(to appear, 30 pages).
3.
Joshi N, Nakazono N, Shi Y
N. Joshi, N. Nakazono, Y. Shi:
Reflection groups and discrete integrable systems,
Journal of Integrable Systems,
(2016),
(37 pages).
4.
Joshi N, Nakazono N, Shi Y
Nalini Joshi, Nobutaka Nakazono, and Yang Shi:
Lattice equations arising from discrete Painlevé systems. I. \((A_2 + A_1)^{(1)}\) and \((A_1 + A'_1 )^{(1)}\) cases,
Journal of Mathematical Physics,
56
(2015),
no. 9,
Art. 092705 (25 pages).
5.
Hay M, Howes P, Nakazono N, Shi Y
Mike Hay, Phil Howes, Nobutaka Nakazono and Yang Shi:
A systematic approach to reductions of type-Q ABS equations,
Journal of Physics A: Mathematical and Theoretical,
48
(2015),
no. 9,
095201 (24 pp).
6.
Joshi N, Nakazono N, Shi Y
Nalini Joshi, Nobutaka Nakazono and Yang Shi:
Geometric reductions of ABS equations on an \(n\)-cube to discrete Painlevé systems,
Journal of Physics A: Mathematical and Theoretical,
47
(2014),
no. Online,
505201 (16 pages).
7.
Joshi N, Shi Y
Nalini Joshi and Yang Shi:
Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem. II. Hypergeometric solutions,
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
468
(2012),
no. 2146,
3247–3264.
MR2972380
8.
Joshi N, Shi Y
Nalini Joshi and Yang Shi:
Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions,
Proceedings of the Royal Society A,
467
(2011),
3443–3468.
Number of matches: 8 |