menuicon

Research

Follow us_twitter

Publication Search Results

Exact matches for:

1. Rubinstein JH, Spreer J, Tillmann S
J. Hyam Rubinstein, Jonathan Spreer, Stephan Tillmann: A New Family of Minimal Ideal Triangulations of Cusped Hyperbolic 3–manifolds, 2021-2022 MATRIX Annals, MATRIX Book Series, Springer Nature, Switzerland, (2024), 1–24. ISBN 9783031474170.


2. Spreer J, Tillmann S
Jonathan Spreer and Stephan Tillmann: Determining the trisection genus of orientable and non-orientable PL 4-Manifolds through Triangulations, Experimental Mathematics, 31 (2022), no. 3, 807–907.


3. Porti J, Tillmann S
Joan Porti, Stephan Tillmann: Projective Structures on a Hyperbolic 3-orbifold, Acta Mathematica Vietnamica, 46 (2021), 347–355.


4. Rubinstein H, Tillmann S
Hyam Rubinstein and Stephan Tillmann: Multisections of piecewise linear manifolds, Indiana University Mathematics Journal, 69 (2020), no. 6, 2209–2239.


5. Rubinstein JH, Segerman H, Tillmann S
J Hyam Rubinstein, Henry Segerman and Stephan Tillmann: Traversing three-manifold triangulations and spines, L'Enseignement Mathematique, 65 (2020), no. 1/2, 155–206.


6. Friedl S, Tillmann S
Stefan Friedl, Stephan Tillmann: Two-generator one-relator groups and marked polytopes, Annales de L'Institut Fourier, 70 (2020), no. 2, 831–879.


7. Casella A, Katerba C, Tillmann S
Alex Casella, Charles Katerba and Stephan Tillmann: Ideal points of character varieties, algebraic non-integral representations, and undetected closed essential surfaces in 3–manifolds, Proceedings of the American Mathematical Society, 148 (2020), no. 5, 2257––2271.


8. Jaco W, Rubinstein JH, Spreer J, Tillmann S
William Jaco, J Hyam Rubinstein, Jonathan Spreer, Stephan Tillmann: \(\mathbb{Z}_2\)-Thurston norm and complexity of 3-manifolds, II, Algebraic and Geometric Topology, 20 (2020), no. 1, 503–529.


9. Spreer J, Tillmann S
Jonathan Spreer and Stephan Tillmann: Determining the trisection genus of orientable and non-orientable PL 4-manifolds through triangulations., Experimental Mathematics, (2020), To appear.


10. Jaco W, Rubinstein H, Spreer J, Tillmann S
William Jaco, Hyam Rubinstein, Jonathan Spreer and Stephan Tillmann: On minimal ideal triangulations of cusped hyperbolic 3-manifolds, Journal of Topology, 13 (2020), no. 1, 308–342.


11. Rubinstein JH, Segerman H, Tillmann S
J Hyam Rubinstein, Henry Segerman and Stephan Tillmann: Traversing three-manifold triangulations and spines, L’Enseignement Mathématique, 65 (2019), no. 2, 155–206. MR4057358


12. Chu M, Tillmann S
Michelle Chu and Stephan Tillmann: Reflections on trisection genus, Revue Roumaine de Mathematiques Pures et Appliquees, 64 (2019), no. 4, 395–402. MR4049694


13. Haraway RC, Tillmann S
Robert C Haraway, Stephan Tillmann: Tessellating the Moduli Space of Strictly Convex Projective Structures on the Once-Punctured Torus, Experimental Mathematics, 28 (2019), no. 3, 369–384. MR3985841


14. Spreer J, Tillmann S
Jonathan Spreer and Stephan Tillmann: Unravelling the Dodecahedral Spaces, 2016 MATRIX annals, MATRIX Book Ser., Springer, Cham, (2018), 323–347. ISBN 978-3-319-72299-3.


15. Bell M, Hass J, Rubinstein JH, Tillmann S
Mark Bell, Joel Hass, Joachim Hyam Rubinstein and Stephan Tillmann: Computing trisections of 4-manifolds, Proceedings of the National Academy of Sciences of the United States of America, 115 (2018), no. 43, 10901–10907.


16. Rubinstein JH, Tillmann S
J Hyam Rubinstein and Stephan Tillmann: Generalized trisections in all dimensions, Proceedings of the National Academy of Sciences of the United States of America, 115 (2018), no. 43, 10908–10913.


17. Friedl S, Gill M, Tillmann S
S Friedl, M Gill and S Tillmann: Linear representations of 3-manifold groups over rings, Proceedings of the American Mathematical Society, 146 (2018), no. 11, 4951–4966.


18. Spreer J, Tillmann S
Jonathan Spreer and Stephan Tillmann: The trisection genus of standard simply connected PL 4-manifolds, Leibniz International Proceedings in Informatics, LIPICS, 34th International Symposium on Computational Geometry (SoCG 2018), Bettina Speckmann and Csaba D. Tóth (eds.), Dagstuhl Publishing, Germany, (2018), 71:1–13. ISBN 1868-8969.


19. Chang HC, Erickson J, Letsche D, Mesmay A, Schleimer S, Sedgwick E, Thurston D, Tillmann S
Hsien-Chih Chang, Jeff Erickson, David Letsche, Arnaud de Mesmay, Saul Schleimer, Eric Sedgwick, Dylan Thurston and Stephan Tillmann: Tightening Curves on Surfaces via Local Moves, Proceedings of the Twenty-ninth Annual ACM–SIAM Symposium on Discrete Algorithms, The Twenty-ninth Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2018), Artur Czumaj (ed.), SIAM, —, (2018), 121–135. ISBN 978-1-61197-503-1.


20. Cooper D, Long D, Tillmann S
D Cooper, D Long, S Tillmann: Deforming convex projective manifolds, Geometry and Topology, 22 (2018), no. 3, 1349–1404.


21. Friedl S, Schreve K, Tillmann S
S Friedl, K Schreve, S Tillmann: Thurston norm via Fox calculus, Geometry and Topology, 21 (2017), no. 6, 3759–3784.


22. Luo F, Tillmann S
Feng Luo and Stephan Tillmann: A new combinatorial class of 3-manifold triangulations, Asian Journal of Mathematics, 21 (2017), no. 3, 543–570.


23. Casella A, Luo F, Tillmann S
Alex Casella, Feng Luo and Stephan Tillmann: Pseudo-developing maps for ideal triangulations II: Positively oriented ideal triangulations of cone-manifolds, Proceedings of the American Mathematical Society, 145 (2017), no. 8, 3543–3560.


24. Klaff B, Tillmann S
Ben Klaff and Stephan Tillmann: A birationality result for character varieties, Mathematical Research Letters, 23 (2016), no. 4, 1099–1110. MR3554502


25. Jaco W, Johnson J, Spreer J, Tillmann S
William Jaco, Jesse Johnson, Jonathan Spreer, Stephan Tillmann: Bounds for the genus of a normal surface, Geometry and Topology, 20 (2016), 1625–1671. MR3523065


26. Cooper D, Tillmann S
Daryl Cooper and Stephan Tillmann: Complexity functions on 1–dimensional cohomology, Revue Roumaine de Mathématiques Pures et Appliquées, 60 (2015), no. 4, 535–550.


27. Rubinstein JH, Tillmann S
J H Rubinstein, S Tillmann: Even triangulations of n–dimensional pseudo-manifolds, Algebraic & Geometric Topology, 15 (2015), no. 5, 2949–2984.


28. Cooper D, Long DD, Tillmann S
D Cooper, D D Long, S Tillmann: On convex projective manifolds and cusps, Advances in Mathematics, 277 (2015), 181–251.


29. Burton BA, Coward A, Tillmann S
Benjamin A Burton, Alexander Coward, Stephan Tillmann: Computing Closed Essential Surfaces in Knot Complements, Proceedings of the twenty-ninth annual symposium on Computational geometry, 29th annual symposium on Computational geometry, SOCG, ACM, New York, USA, (2013), 405–413.


30. Luo F, Tillmann S, Yang T
Feng Luo, Stephan Tillmann and Tian Yang: Thurston's spinning construction and solutions to the hyperbolic gluing equations for closed hyperbolic 3-manifolds, Proceedings of the American Mathematical Society, 141 (2013), 335–350.


31. Rubinstein JH, Bökstedt M, Hodgson CD, Segerman H, Tillmann S
J Hyam Rubinstein, Marcel Bökstedt, Craig D. Hodgson, Henry Segerman and Stephan Tillmann: Triangulations of n-Manifolds, Oberwolfach Reports 24/2012, Triangulations, Gert-Martin Greuel (Editor-in-Chief) (ed.), EMS Publishing House, Switzerland, (2012), 1433–1436. ISBN 1660-8933.


32. Tillmann S
Stephan Tillmann: Structure of 0-efficient or minimal triangulations, Oberwolfach Reports, Volume 9, Issue 2, 2012, Triangulations, Gert-Martin Greuel (Editor-in-Chief) (ed.), Oberwolfach Reports, EMS Publishing House, Zürich, Switzerland, (2012), 1474–1478. ISBN ISSN: 1660-8933.


33. Tillmann S
Stephan Tillmann: Degenerations of ideal hyperbolic triangulations, Mathematische Zeitschrift, 272 (2012), no. 3-4, 793–823. MR2995140


34. Burton BA, Rubinstein JH, Tillmann S
Ben Burton, Hyam Rubinstein and Stephan Tillmann: The Weber-Seifert dodecahedral space is non-Haken, Trans Amer Math Soc, 364 (2012), no. 2, 911–932. MR2846358


35. Tillmann S
Stephan Tillmann: Geometry & Topology Down Under, Gazette of the Australian Mathematical Society, 38 (2011), no. 5, 261–263.


36. Segerman H, Tillmann S
Henry Segerman and Stephan Tillmann: Pseudo-developing maps for ideal triangulations I: essential edges and generalised hyperbolic gluing equations, Topology and geometry in dimension three, Topology and Geometry in Dimension Three: Triangulations, Invariants, and Geometric Structures, Weiping Li, Loretta Bartolini, Jesse Johnson, Feng Luo, Robert Myers and J. Hyam Rubinstein (eds.), Contemporary Mathematics, Amer. Math. Soc., Providence, RI, (2011), 85–102. ISBN 978-0-8218-5295-8. MR2866925


37. Jaco W, Rubinstein JH, Tillmann S
William Jaco, Hyam Rubinstein and Stephan Tillmann: Coverings and Minimal Triangulations of 3-Manifolds, Algebraic and Geometric Topology, 11 (2011), 1257–1265.


38. Hodgson CD, Rubinstein JH, Segerman H, Tillmann S
Stephan Tillmann, Craig Hodgson, Hyam Rubinstein and Henry Segerman: Veering triangulations admit strict angle structures, Geometry and Topology, 15 (2011), 2073–2089.


39. Jaco W, Rubinstein JH, Tillmann S
William Jaco, Hyam Rubinstein and Stephan Tillmann: Minimal triangulations for an infinite family of lens spaces, Journal of Topology, 2 (2009), no. 1, 157–180.


40. Cooper D, Tillmann S
Daryl Cooper, Stephan Tillmann: The Thurston norm via normal surfaces, Pacific Journal of Mathematics, 239 (2009), 1–15.


41. Luo F, Tillmann S
Stephan Tillmann and Feng Luo: Angle structures and normal surfaces, Trans Amer Math Soc, 360 (2008), 2849–2866.


42. Luo F, Schleimer S, Tillmann S
Stephan Tillmann, Feng Luo and Saul Schleimer: Geodesic ideal triangulations exist virtually, Proc Amer Math Soc, 136 (2008), 2625–2630.


43. Tillmann S
Stephan Tillmann: Normal surfaces in topologically finite 3-manifolds, L'Enseignement Mathématique, 54 (2008), 329–380.


44. Tillmann S
Stephan Tillmann: Applications of tropical geometry to groups and manifolds, Tropical geometry, Tropical Geometry, Gert-Martin Greuel (Editor-in-Chief) (ed.), Oberwolfach Reports, European Mathematical Society Publ. House, Zürich, Switzerland, (2007), 3281–3283. ISBN 1660-8933. MR2463651


45. Chesebro E, Tillmann S
Stephan Tillmann and Eric Chesebro: Not all boundary slopes are strongly detected by the character variety, Communications in Analysis and Geometry, 15 (2007), 695–723.


46. Tillmann S
Stephan Tillmann: Boundary slopes and the logarithmic limit set, Topology, 44 (2005), 203–216.


47. Tillmann S
Stephan Tillmann: Character varieties of mutative 3-manifolds, Algebraic and Geometric Topology, 4 (2004), 133–149.


48. Tillmann S
Stephan Tillmann: On the Kinoshita-Terasaka knot and generalised Conway mutation, Journal of Knot Theory and its Ramifications, 9 (2000), 557–575.


Number of matches: 48