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Abstract. We show that the homotopy type of a 4-manifold M
whose fundamental group is a finitely presentable PD3-group π,
and with w1(M) = w1(π) is determined by π, π2(M), k1(M) and
the equivariant intersection pairing λM .

The basic algebraic invariants of a closed 4-manifold M are the fun-
damental group π = π1(M), the Z[π]-module Π = π2(M), the equi-
variant homotopy intersection pairing λM on Π, the first k-invariant
κ = k1(M) ∈ H3(π; Π), the Euler characteristic χ(M), and the Stiefel-
Whitney classes w = w1(M) and w2(M). (Strictly speaking, λX de-
termines Π, and it also determines w if π ̸= 0.) These invariants
determine the stable homeomorphism type ofM (with respect to sums
with S2 × S2), if π is the group of an aspherical closed orientable 3-
manifold [14]. (The k-invariant is determined by the other data in this
situation.)
We shall show that the homotopy type of a PD4-complex X whose

fundamental group is a finitely presentable PD3-group π, and with
w1(X) = w1(π) is determined by the invariants π, Π, κ and λX . (How-
ever we do not yet know the possible values of κ or λX .) This leads to
an alternative approach to the results of [14], and also to an unstabi-
lized result when π is solvable.

1. Notation and terminology

We shall assume throughout that X is a PD4-complex such that
π = π1(X) is a finitely presentable PD3-group and w1(X) = w1(π). We

shall write w = w1(π), for simplicity. Let p : X̃ → X be the universal

covering. The homology of X̃ is given by Hi(X̃;Z) = Hi(X;Z[π]), for
all i. We assume that π acts on the left of X̃, and so these are left Z[π]-
modules. Since π has one end, Hi(X;Z[π]) = 0 if i ̸= 0, 2. Therefore
Π = H2(X;Z[π]) is not 0, since π is not a PD4-group.
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The homologies of X̃ and X are related by the Cartan-Leray spectral
sequence for the covering, which has the form

E2
p,q = Hp(π;Hq(X;Z[π])) ⇒ Hp+q(X;Z).

(Note that the groups H∗(π;A) = Tor
Z[π]
∗ (Z, A) with coefficients in a

left module A are defined via a resolution of Z by right Z[π]-modules.)
There is also a Universal Coefficient spectral sequence

Ep,q
2 = ExtqZ[π](Hp(X;Z[π]),Z[π]) ⇒ Hp+q(X;Z[π]),

which relates the homology and equivariant cohomology of the univer-
sal cover.

Let ε : Z[π] → Z be the augmentation homomorphism and Iπ =
Ker(ε) be the augmentation ideal. Clearly H0(π; Iπ) = 0. Applying the
fixed point functor HomZ[π](Z,−) to the augmentation exact sequence

0 → Iπ → Z[π] ε−−−→ Z → 0

gives H i(π;Z) ∼= H i+1(π; Iπ) for i ⩽ 2, while applying the functor
HomZ[π](−,Z[π]) givesHomZ[π](Iπ,Z[π]) ∼= Z[π] andExtiZ[π](Iπ,Z[π]) ∼=
H i+1(π;Z[π]), for i > 0. (In fact every homomorphism from Iπ to Z[π]
is the restriction of right multiplication by an element of Z[π].)

If M is a left Z[π]-module let Mw = Zw⊗M be the left Z[π]-module
with the same underlying abelian group and diagonal left π-action,
given by g(1 × x) = w(g)(1 × gx) for all g ∈ π and x ∈ Π. Then
Z[π]w ∼= Z[π], since we may define an isomorphism f : Z[π] → Z[π]w
by f(g) = w(g)⊗ g for all g ∈ π. The linear extension of w defines the
w-twisted augmentation εw : Z[π] → Zw, with kernel Iwπ . Arguments
similar to those of the previous paragraph apply to Iwπ .
If R is a right Z[π]-module let R be the left module with the same

underlying group and Z[π]-action determined by g.r = w(g)rg for all
r ∈ R and g ∈ π. We use a similar strategy and notation to obtain a
right module L from a left Z[π]-module L. Free right modules give rise
to free left modules of the same rank, and conversely. We may define
the dual of a left moduleM as the left moduleM † = HomZ[π](M,Z[π]).

Two (left) Z[π]-modules L and L′ are stably projective equivalent if
L ⊕ P ∼= L′ ⊕ P ′ for some finitely generated projective Z[π]modules
P, P ′. They are stably equivalent if we may assume that P and P ′

are each free modules. We shall let [L]pr and [L] denote the equiv-
alence classes corresponding to these two equivalence relations. As
our concern in this paper is mainly with finite PD4-complexes, which
correspond most closely to manifolds, stable equivalence is the more
useful notion. However our arguments apply with little change to the
more general setting of finitely dominated PD4-complexes (and even
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PD4-spaces in the sense of [13]), for which the broader notion of stably
projective equivalence is needed.

If A is an abelian group let rk(A) = dimQQ⊗ A be its rank.

2. the basic examples

Let Y = K(π, 1). We may assume that Y = Yo ∪D3, where (Yo, S
2)

is a PD3-pair and Yo is cohomologically 2-dimensional. Let τ be a
self-homeomorphism of S2 × S1 which does not extend over S2 × D2.
(There is an unique isotopy class of such maps τ .) Then X(π) =
(Yo×S1)∪S2×D2 andX(π)τ = (Yo×S1)∪τS

2×D2 are PD4-complexes
with fundamental group π, orientation character w = w1(Y ) and Euler
characteristic 2. Since X(π) = ∂(Yo ×D2), it retracts onto Yo.

The arguments of [15, §2] for the case when Y is a 3-manifold are
essentially homological and apply equally well in our situation. Let
U = Yo × S1. The long exact sequence of the pair (X(π), U) with
coefficients Z[π] gives a five-term exact sequence

H3(X(π), U ;Z[π]) → H2(U ;Z[π]) → H2(X(π);Z[π]) →
H2(X(π), U ;Z[π]) → H1(U ;Z[π]) → 0,

since Hi(X;Z[π]) = 0 for i ̸= 0, 2. Now H3(X(π), U ;Z[π]) = 0 and
H2(X(π), U ;Z[π]) ∼= Z[π], by excision, while
H2(U ;Z[π]) ∼= H2(Yo;Z[π])(∼= π2(Yo)) ∼= Z[π] and H1(U ;Z[π]) ∼= Z.
Hence this sequence reduces to

0 → π2(Yo) ∼= Z[π] → π2(X(π)) → Z[π] → Z → 0.

Hence π2(X(π)) is an extension of Iπ by π2(Yo) ∼= Z[π]. The extension
splits, since Ext1Z[π](Iπ,Z[π]) = H2(π;Z[π]) = 0, and so π2(X(π)) ∼=
Z[π]⊕ Iπ. The retraction of X(π) onto Yo determines a splitting.

A similar argument shows that π2(X(π)τ ) ∼= Z[π]⊕ Iπ also, but we
do not know whether X(π)τ retracts onto Yo.

If π has a balanced presentation then there is a closed 4-manifold
with π1(M) ∼= π and χ(M) = 2. Let K be a finite 2-complex with
π1(K) ∼= π and χ(K) = 1 and let N be a 4-dimensional handlebody
thickening of K. Then the double of N is a closed 4-manifold M with
π1(M) ∼= π and χ(M) = 2, and which retracts onto K.

If Y is a closed 3-manifold then the corresponding closed 4-manifolds
are the manifolds obtained by elementary surgery on the second factor
of Y × S1. (There are two possible framings of the normal bundle.)
Plotnick uses manifold topology, first to define a splitting of the above
exact sequence and then to show that the image of π2(Yo) in π2(X) is
self-annihilating, with respect to the equivariant homotopy intersection
pairing λX , in either case, and that π2(X(π)) is the direct sum of two
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self-annihilating summands. The equivariant homotopy intersection
pairings of these 4-manifolds are not isometric [15, Theorem 3.1].

3. Π, χ and λX

In this section we shall summarize the key properties of Π and χ,
which were determined in [11, Theorem 3.13], and define the equivari-
ant intersection pairing, using the cohomological formulation.

We shall first state without proof a result from [11].

Theorem. [11, Theorem 3.13] Let X be a PD4-complex such that π =
π1(X) is a finitely presentable PD3-group and w1(X) = w1(π). Then
χ(X) ⩾ 2 and [Π]pr = [Iπ]pr. □

The Euler characteristic is in fact determined by π and Π. This
follows easily from the invariance of χ between the pages of a spectral
sequence, and the special nature of Π.

Corollary 1. χ(X) = rk(Π) + 1− β1(π).

Proof. The only nonzero entries in the Cartan-Leray homology spectral
sequence for the universal cover ofX are when 0 ⩽ p ⩽ 3 and q = 0 or 2,
and then E2

p,0 = Hp(π;Z), while E2
0,2 = Z⊗Z[π]Π and E2

p,2 = Hp+1(π;Z)
for p > 0, since [Π]pr = [Iπ]pr. Since χ(X) = Σp,q(−1)p+qrk(E2

p,q), the
corollary follows. □

If χ(X) = 2 then Π is stably projective equivalent to Z[π]⊕Iπ. Hence
H3(π; Π) ∼= Z ⊕ H1(π;Zw), since H3(π;Z[π]) ∼= Z and H3(π; Iπ) ∼=
H2(π;Z) ∼= H1(π;Zw), by Poincaré duality. If w = 1 this is just πab.

If X is a closed 4-manifold, π = π1(X) and w = w1(X) then geo-
metric intersection numbers can be used to define a w-hermitean equi-
variant intersection pairing on Π, with values in Z[π]. In the Poincaré
duality complex case we cannot count geometric intersection numbers
and so weshall use the cohomological formulation of the intersection
pairing instead. In fact this cohomological formulation is well suited
to application of [12, Theorem 2] in Theorem 8 below.

Lemma 2. There is an exact sequence of left Z[π]-modules

0 → H2(X;Z[π]) ev−−−→ Π† → Z → 0.

Proof. This follows from the Universal Coefficient spectral sequence,
since H2(π;Z[π]) = 0, H2(π;Z[π]) ∼= Z and Π ∼= H2(X;Z[π]) ∼=
H2(X;Z[π]), by Poincaré duality. (See [11, Lemma 3.3].) □
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Let D : Π → H2(X;Z[π]) be the isomorphism given by Poincaré
duality. Then the intersection pairing may be defined by

λX(u, v) = ev(v)([X] ∩ u), ∀ u, v ∈ H2(X;Z[π]).

(See [16, Proposition 4.58].) Then λX(gu, gv) = w(g)λX(u, v) for all
g ∈ π and u, v ∈ H2(X;Z[π]). Since Π ̸= 0 and ev is a monomorphism,
λX is non-zero, and so w is determined by λX . If r : X → Yo is a
retraction then r∗[X] = 0, and so r∗H2(Yo;Z[π]) ∼= Z[π] is a direct
summand of Π which is self-annihilating under λX .

It is clear from the argument in [11, Theorem 3.13] that if X is finite
and π is of type FF then Π ⊕ Z[π]r ∼= Z[π]χ(X)−1 ⊕ Iπ ⊕ Z[π]r for r
large, and so [Π] = [Iπ]. The minimal value χ(X) = 2 is realized by
the complexes X(π) and X(π)τ defined above.

In the 3-manifold group case K̃0(Z[π]) = 0, by work of Farrell and
Jones, anticipating the Geometrization Theorem [7]. In this case we
may again assume that [Π] = [Iπ], and some of our statements can be

simplified. We shall assume that K̃0(Z[π]) = 0 wherever convenient.
However even with this assumption there may be difficulties. If π is
polycyclic but not abelian then there are ideals J < Z[π] which are not
free but for which Z[π]⊕ J ∼= Z[π]2 [1].

The case π = Z3 is exceptional. All projectives are then free. In
this case Π† is stably free, hence free, and it follows from Lemma 2
that Π ∼= Z[π]χ(X)−1 ⊕ Iπ. Moreover, if K is any finite 2-complex with
π1(K) ∼= Z3 and χ(K) = 1 then π2(K) is free of rank 1, and so K ≃ T 3

o .

4. k1 and retractions onto Yo

The first k-invariant is an element of H3(π; Π), and is well-defined
up to the actions of Aut(π) and Autπ(Π). If Z is a cell complex we may
assume that the Postnikov 2-stage f2(Z) : Z → P2(Z) is an inclusion,
and that P2(Z) is obtained from Z by adding cells of dimension ⩾ 4.

Lemma 3. Let G be a PDn-group and let C∗ be a projective resolution
of the augmentation module Z of length n such that Cn

∼= Z[G]. Then
the class [C∗] of C∗ in Hn(G;Cn) = ExtnZ[G](Z, Cn) ∼= Z is a generator.

Proof. Let D∗ be the chain complex with Di = Ci for i < n and
Di = 0 for i ⩾ n, and let E∗ be the chain complex with Ei = Di for
i ̸= n − 1 and En−1 = Cn−1/Zn−1 ⊕ Cn. Then D∗ and E∗ are of type
(Z, 0, Cn, n− 1) as defined in [6, Definition 7.1]. The k-invariant of D∗
is represented by the class [C∗], while the k-invariant of E∗ is 0.
If [C∗] = 0 then there is a c.h.e, f : D∗ → E∗ [6, Satz 7.6], and since

Hn−1(f) is an isomorphism we see that C∗ is chain homotopy equivalent
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to a sequence in which ∂n is a split injection. Hence Hn(C∗;Z[G]) = 0,
contrary to hypothesis.

Similarly, if [C∗] is a p-fold multiple of some other class for some
prime p then Hn(C∗;Fp[G]) = 0, again contrary to hypothesis. There-
fore [C∗] is indivisible, and so is a generator of Hn(G;Z[G]) ∼= Z. □

Theorem 4. Let X, Y and π be as in §1 and §2 above. Then

(1) P2(X) retracts onto P2(Yo) if and only if Π ∼= Z[π] ⊕ L, for
some L, and the image of k1(X) in H3(π;Z[π]) is a generator;

(2) if X ′ is another PD4-complex with π1(X
′) ∼= π, π2(X

′) ∼= Π
and which retracts onto Yo then P2(X

′) ≃ P2(X).

Proof. If P2(X) retracts onto P2(Yo) then there is a pair of maps j :
P2(Yo) → P2(X) and r : P2(X) → P2(Yo) such that rj ∼ idYo . It
follows immediately that π2(Yo) ∼= Z[π] is a direct summand of Π, and
that j∗k1(X) = k1(Yo), up to the action of automorphisms. The chain
complex C∗(Yo;Z[π]) is chain homotopy equivalent to a finite projective
complex D∗ with Di = 0 for i > 2. The complex C∗ with Ci = Di for
i ̸= 3 and C3 = H2(D∗) ∼= π2(Yo) is a projective resolution of Z, and
k1(Yo) is the class of C∗ in H3(π;Z[π]). Hence k1(Yo) is a generator of
H3(π;Z[π]), by Lemma 3.

Conversely, if the conditions hold then there are morphisms between
the algebraic 2-types [π,Π, k1(X)] and [π, π2(Yo), k1(Yo)] which can be
realized by maps defining a retraction.

Suppose now that Π ∼= Z[π] ⊕ L, for some Z[π]-module L, and let
e generate the first summand. If k and k′ in H3(π; Π) each represent
generators of H3(π;Z[π]) ∼= Z then there is an automorphism ϕ of Π
such that ϕ(e) = ±e+ ℓ, for some ℓ ∈ L, and ϕ|L = idL, and such that
the induced automorphism of H3(π; Π) carries k to k′. This proves the
second assertion. □

Assertion (2) extends partially an observation in [14], namely that
the k-invariant plays no role in their stable classification.

Corollary 5. P2(X) ≃ P2(∂(Yo ×D2)) ⇔ Π ∼= Z[π]⊕ Iπ. □

If P2(X) retracts onto P2(Yo) then the composite of f2(Yo) with the
inclusion P2(Yo) → P2(X) factors through f2(X), since Yo has dimen-
sion ⩽ 3, while P2(X) = X ∪ e⩾4.

5. the main theorem

Let Γ be the quadratic functor of Whitehead. Let L be a finitely
generated left Z[π]-module, and let Herw(L

†) be the abelian group of
w-hermitean pairings on L†. Then there is a natural homomorphism
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BL : Zw ⊗Z[π] Γ(L) → Herw(L
†), which is an isomorphism if π is 2-

torsion-free and L is projective [12, Theorem 1].
If π is a PD3-group then it is torsion-free. However the modules of

interest to us are not projective, since Iπ has projective dimension 2.
We shall show that when Π is stably equivalent to Iπ then BΠ remains
injective. We first recall some details about Γ from [3, Chapter 1.§4].
Let γA : A → Γ(A) be the canonical quadratic map. We may define a
homomorphism [−] : A⊙ A→ Γ(A) by

[a⊙ b] = γ(a+ b)− γ(a)− γ(b).

Then [a⊙ a] = 2γ(a) for all a ∈ A.
As abelian groups, Γ(A⊕B) ∼= Γ(A)⊕ Γ(B)⊕ (A⊗B). If A and B

are Z[G]-modules the summands are invariant under the action of G,
and so this direct sum splitting is a Z[G]-module splitting.

The following lemma is close to the first part of [9, Lemma 2.3]
(which considered only finite groups G).

Lemma 6. Let G be a group. Then Γ(Z[G]) ∼= Z[G]⊕ Γ(IG) as a left
Z[G]-module.

Proof. Let ig = g− 1, for g ∈ G, and let j : Z → Z[G] be the canonical
ring homomorphism. Then IG is free with basis {ig | g ∈ G}, and
Z[G] ∼= Im(j)⊕ IG as abelian groups. Hence Γ(Z[G]) splits as a direct
sum of abelian groups Γ(Z)⊕Γ(IG)⊕ (IG ⊗Z). The middle summand
is a Z[G]-submodule, but the others are not.

The complement of Γ(IG) in Γ(Z[G]) is freely generated (as an abelian
group) by the elements e = γZ[G](1) and {ig ⊗ 1 | g ∈ G}, and so the
quotient Γ(Z[G])/Γ(IG) is freely generated by the images of these el-
ements. The group G acts on the basis elements by h.1 = 1 + ih and
h.ig = ihg − ih. Hence

2(h.e) = h.2γZ[G](1) = h([1⊙ 1]) ≡ [1⊙ 1] + 2ih ⊗ 1 mod Γ(IG).

Since [1 ⊙ 1] = 2e and Γ(Z[G])/Γ(IG) is torsion-free (as an abelian
group),

h.e ≡ e+ ih ⊗ 1 mod Γ(IG).

We also have

h.(ig ⊗ 1) ≡ ihg ⊗ 1− ig ⊗ 1 mod Γ(IG).

Thus the bijection sending ig to ig⊗1 and 1 to e defines an isomorphism
Z[G] ∼= Γ(Z[G])/Γ(IG). Hence Γ(Z[G]) ∼= Z[G]⊕ Γ(IG). □

We may strengthen this result as follows.

Lemma 7. If Π ⊕ Z[π]r ∼= Z[π]s ⊕ Iπ then Γ(Π) is a direct summand
of Γ(Z[π]s+1).
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Proof. Since Γ(Π) is a direct summand of Γ(Π⊕ Z[π]r), it shall suffice
to assume that Π ∼= Z[π]s ⊕ Iπ. We may compare the splittings

Γ(Z[π]s ⊕ Iπ) = Γ(Z[π]s)⊕ Γ(Iπ)⊕ (Z[π]s ⊗ Iπ)

and

Γ(Z[π]s+1) = Γ(Z[π]s)⊕ Γ(Z[π])⊕ (Z[π]s ⊗ Z[π]).
If the abelian group underlying a Z[π]-module M is free abelian with
basis {mi} then the tensor products M ⊗ Z[π] and Z[π]⊗M with the
diagonal left Z[π]-structures are free Z[π]-modules with bases {mi⊗1}
and {1⊗mi}, respectively. Hence

(Z[π]s ⊗ Z[π])⊕ Γ(Z[π]) ∼= (Z[π]s ⊗ Iπ)⊕ Z[π]⊕ Γ(Iπ)⊕ Z[π],

and so Γ(Z[π]s ⊕ Iπ) is a direct summand of Γ(Z[π]s+1). □

If [Π] = [I] then [Πw] = [Iw]. Therefore Hi(π; Π
w) ∼= Hi+1(π;Zw) for

i > 0. Hence H2(π; Π
w) ∼= Z and H3(π; Π

w) = 0.
In the formulation of the next theorem, we have included Π among

the relevant invariants, although (as observed earlier) it is determined
by the intersection pairing.

Theorem 8. Let X be a PD4-complex such that π = π1(X) is a PD3-
group and w1(X) = w1(π). Then the homotopy type of X is determined
by π, Π = π2(X), κ = k1(X) and λX .

Proof. The homotopy type of a PD4-complex X is determined by
P2(X) and the image of a fundamental class [X] in H4(P2(X);Zw).
where w = w1(X) [4, Theorem 3.1]. (This was first proven in [9, Theo-
rem 1.1], assuming also that β2(X;Q) > 0.) The invariants π,Π and κ
determine P2(X). We shall show that λX determines the image of [X]
in H4(P2(X);Zw).
The Cartan-Leray spectral sequences for the universal covers give

epimorphisms δX : H4(X;Zw) → H2(π; Π
w) and δP : H4(P2(X);Zw) →

H2(π; Π
w), since c.d.π = 3. Since π has one end δX is an isomorphism,

while there is an exact sequence

0 → Zw ⊗Z[π] H4(Π, 2;Z)
ϕ−−−→ H4(P2(X);Zw)

δP−−−→ H2(π; Π
w) → 0.

The universal cover of P2(X) is a K(Π, 2)-space, and the ‘boundary”
homomorphism b : H4(Π, 2;Z) ∼= Γ(Π) of Whitehead is an isomor-
phism, since πi(K(Π, 2)) = 0 for i ̸= 2 (see [3, 1.3.7]. Hence ψ = Zw⊗Γb
is also an isomorphism.

Since Zw ⊗Z[π] Γ(Π) is a direct summand of Zw ⊗Z[π] Γ(Z[π]s+1), by
Lemma 7, and since BM is an isomorphism if M is a finitely generated
projective module [12, Theorem 2], BΠ is a monomorphism.
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Let θ : H4(P2(X);Zw) → Herw(Π
†) be the function defined by

θ(ξ)(u, v) = v(u ∩ ξ) ∀ u, v ∈ H2(X;Z[π]) and ξ ∈ H4(P2(X);Zw).

Then θϕ = BΠψ, and so θϕ is also a monomorphism.
Suppose that X1 is a second such PD4-complex and h : P2(X1) →

P2(X) is a homotopy equivalence which induces an isometry f : λX1
∼=

λX . Then the images of h∗[X1] and [X] in H2(π; Π
w) agree, and so

h∗[X1]−[X] is in the image of ϕ. Since h induces an isometry λX1
∼= λX

and since θϕ is a monomorphism, it follows that h∗[X1] = [X]. Hence
X1 ≃ X [4, Theorem 3.1]. □

Corollary 9. If M is a closed 4-manifold, π = π1(M) is a solvable
PD3-group and w1(M) = w1(π) then the homeomorphism type of M is
determined by λM .

Proof. Solvable PDn-groups are torsion free and polycyclic, and satisfy
the Farrell-Jones conjectures [7, 8]. Since such groups π are “good”,
standard surgery techniques apply in this 4-dimensional setting. □

With present knowledge, these are the only known good PD3-groups.
Theorem 8 in conjunction with the Farrell-Jones conjectures for 3-

manifold groups [2, Corollary 1.3] suggests an alternative route to some
of the results of [14] on the stable homeomorphism classification of
closed orientable 4-manifolds with COAT fundamental groups, using
stable 4-dimensional surgery [5] rather than the modified surgery of
Kreck.
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