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ABSTRACT. In this paper, we present first insights about the Dirichlet-to-
Neumann operator in L1 associated with the 1-Laplace operator or total
variational flow operator. This operator is the main object, for example, in
studying inverse problems related to image processing, but also admits
important relation to geometry. We show that this operator can be repre-
sented by the sub-differential in L1 × L∞ of a convex, homogeneous, and
continuous functional on L1. This is quite surprising since it implies a
type of stability or compactness result even though the singular Dirichlet
problem governed 1-Laplace operator by the might have infinitely many
weak solutions if the given boundary data is not continuous. As an ap-
plication, we obtain well-posedness and long-time stability of solutions
of a singular coupled elliptic-parabolic initial boundary-value problem.
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1. INTRODUCTION AND MAIN RESULTS

The goal of this paper is to provide a first insight on the Dirichlet-to-
Neumann operator Λ : L1(∂Ω) → L∞(∂Ω) associated with the 1-Laplace
operator

∆1u := div
(

Du
|Du|

)
on bounded domains Ω ⊆ Rd with a C1-boundary ∂Ω, d ≥ 2. Formally, Λ
assigns Dirichlet data h ∈ L1(∂Ω) to the co-normal derivative Du · ν/|Du|
on ∂Ω of an extension u on Ω of h, which is a weak solution of the singular
Dirichlet problem for the 1-Laplace operator

(1.1)

{
−∆1u = 0 in Ω,
u = h on ∂Ω,

in the following sense.

Definition 1.1. For given h ∈ L1(∂Ω), we call a function u ∈ BV(Ω) a weak
solution of Dirichlet problem (1.1) if there is a vector field zh ∈ L∞(Ω; Rd)
generalizing Du/|Du| through the three conditions

‖zh‖∞ ≤ 1,(1.2)

−div(zh) = 0 in D′(Ω), and(1.3)

(zh, Du) = |Du| as Radon measures(1.4)

and the weak trace [zh, ν] on ∂Ω (see Definition 2.8) of the generalized co-
normal derivative zh · ν satisfies

(1.5) [zh, ν] ∈ sign(h− Tr(u)) Hd−1-a.e. on ∂Ω.

It is well-known that for every h ∈ L1(∂Ω), there exist a weak solution
u of Dirichlet problem (1.1). But difficulties in deriving properties of the
Dirichlet-to-Neumann operator Λ arise, for instance, from the fact that the
notion of weak solutions u of (1.1) merely requires that the Dirichlet bound-
ary data u = h on ∂Ω is satisfied in the very weak sense (1.5). Because of
this, the Dirichlet problem (1.1) might have infinitely many weak solutions
u (see Remark 3.3 for more details). But, in addition, for each weak solu-
tions u of (1.1), there might be infinitely many vector fields zh ∈ L∞(Ω; Rd)
satisfying (1.2)-(1.5). In Section 3, we provide a brief review of the literature
about the current state of existence and (non)-uniqueness of weak solutions
to Dirichlet problem (1.1). Thus the following realization of the Dirichlet-
to-Neumann operator Λ in L1(∂Ω) defines a possibly multi-valued opera-
tor.

In the following, let BL∞(∂Ω) denote the closed unit ball of L∞(∂Ω) cen-
tered at h = 0.

Definition 1.2. Let Λ be the set of all pairs (h, g) ∈⊆ L1(∂Ω) × BL∞(∂Ω)

with the property that there is a weak solution uh ∈ BV(Ω) of Dirichlet
problem (1.1) for Dirichlet data h and there is a vector field zh ∈ L∞(Ω; Rd)
satisfying (1.2)-(1.5) with uh and

(1.6) [zh, ν] = g Hd−1-a.e. on ∂Ω.
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Then, we call Λ the Dirichlet-to-Neumann operator in L1(∂Ω) associated with
the 1-Laplace operator ∆1.

Now, our first main result reads as follows. Here, we write L∞
σ (∂Ω) for

the space L∞(∂Ω) equipped with the weak∗-topology σ(L∞(∂Ω), L1(∂Ω)).

Theorem 1.3. The Dirichlet-to-Neumann operator Λ in L1(∂Ω) associated with
the 1-Laplace operator ∆1 admits the following properties.

(1.) Λ is m-completely accretive in L1(∂Ω) and has effective domain D(Λ) =
L1(∂Ω);

(2.) Λ is homogeneous of order zero;
(3.) Λ is closed in L1(∂Ω)× L∞

σ (∂Ω);
(4.) Λ can be characterized by

(1.7) Λ = ∂L1×L∞(∂Ω)ϕ

for the sub-differential operator ∂L1×L∞(∂Ω)ϕ in L1 × L∞(∂Ω) of the convex,
even, homogeneous of order one, and continuous functional ϕ : L1(∂Ω) →
[0, ∞) defined by

(1.8) ϕ(h) =
∫

∂Ω
[z̃h, ν] h dHd−1

for every h ∈ L1(∂Ω), where z̃h ∈ L∞(Ω; Rd) is a vector field satisfying
(1.2)-(1.4) for some weak solution uh ∈ BV(Ω) of Dirichlet problem (1.1)
with boundary data uh = h.

In Section 5, we give the details of the proof of this theorem. Further,
we refer to Definition 2.21 and Definition 2.14 for the two notions of m-
completely accretive operators and homogeneous operators of order α ∈ R. Both
statements (1) and (2) in Theorem 1.3 follow from a careful study of the
Dirichlet problem (1.1) (see Proposition 5.3 and Proposition 5.4). In Propo-
sition 5.5, we show that ϕ is even, continuous, homogeneous of order one,
and convex. To establish the characterization (1.7) for the Dirichlet-to-
Neumann operator Λ, we first show in Proposition 5.6 that the closure
ΛL1×L∞

σ of Λ in L1(∂Ω)× L∞
σ (∂Ω) is contained in the sub-differential oper-

ator ∂L1×L∞(∂Ω)ϕ. Since ∂L1×L∞(∂Ω)ϕ is completely accretive in L1(Ω), once
we have shown that Λ is m-completely accretive in L1(Ω), the character-
ization (1.7) follows from a classical result by Bénilan and Crandall (see
Proposition 2.23). The property that the Dirichlet-to-Neumann operator Λ
is closed in L1(∂Ω)× L∞

σ (∂Ω) (statement (3)) is proved in Proposition 5.7,
and provides the following surprising stability/compactness result related
to the Dirichlet problem (1.1).

Corollary 1.4 (stability/compactness). For every sequence (hn)n≥1 in L1(∂Ω)
converging to some h in L1(∂Ω), there is a weak solution uh of Dirichlet prob-
lem (1.1) satisfying boundary data uh = h and a sub-sequence (hkn)n≥1 of (hn)n≥1
such that the generalized co-normal derivative [zhkn

, ν] corresponding to hkn con-
verges weakly∗ to [zh, ν] in L∞(∂Ω) and

(1.9) lim
n→∞

ϕ(hn) = ϕ(h).
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Of course, the limit (1.9) follows from the continuity property of ϕ, but
the surprising fact here is that the two divergence free vector field z̃h in
ϕ(h) and zh in the limit [zh, ν] don’t have to be the same. In fact, we show
in Theorem 3.4 that any two divergence free vector fields zh and ẑh are
interchangeable among the set of weak solutions uh and ûh of Dirichlet
problem (1.1). But according to Theorem 3.6, the value of ϕ(h) is invari-
ant among all divergence free vector fields zh, for which there is a weak
solution uh of Dirichlet problem (1.1). Hence, ϕ given by (1.8) is a well-
defined mapping on L1(∂Ω). The fact that ϕ is continuous on L1(∂Ω) can
easily be deduces from its convexity property and that ϕ is upper bounded
on an any bounded subset of its effective domain D(ϕ) = L1(∂Ω) (see
Proposition 5.5 for more details).

Further, we establish well-posedness and comparison principles in the
sense of mild solutions (see Definition 2.17), sufficient conditions implying
improved regularity properties of mild solutions, and the long-time stabil-
ity (in the case F ≡ 0 and g ≡ 0) of the inhomogeneous Cauchy problem
(in L1(∂Ω))

(1.10)


dh
dt

(t) + Λh(t) + F(h(t)) 3 g(t) for t ∈ (0, T),

h(0) = h0. on ∂Ω,

for every given g ∈ L1(0, T; L1(∂Ω)) and h0 ∈ L1(∂Ω). In the differential
inclusion (1.10), the lower order term F : L1(∂Ω) → L1(∂Ω) denotes the
Nemytskii operator

(1.11) F(h)(x) := f (x, h(x)) for a.e. x ∈ ∂Ω, h ∈ L1(∂Ω),

of a Lipschitz-Carathéodory function f : ∂Ω×R → R satisfying f (x, 0) = 0,
(x ∈ ∂Ω); that is,

(1.12)


there is an ω > 0 such that | f (x, h)− f (x, ĥ)| ≤ ω |h− ĥ|
for all h, ĥ ∈ R, uniformly for a.e. x ∈ ∂Ω, and
for all h ∈ R, x 7→ f (x, h) is measurable on ∂Ω.

It is worth noting that well-posedness, regularity and stability analysis
of Cauchy problem (1.10) are equivalent topics of the following singular
elliptic-parabolic boundary value problem

(1.13)



−div
(

Duh

|Duh|

)
= 0 in Ω× (0, T),

uh = h on ∂Ω× (0, T),

∂th +
Duh

|Duh|
· ν + f (·, h) 3 g on ∂Ω× (0, T),

h = h0 on ∂Ω× {t = 0}.



THE DTN-OPERATOR FOR THE 1-LAPLACIAN 5

Recently, existence and uniqueness to the elliptic-parabolic boundary value
problem 

λh− div
(

Duh

|Duh|

)
= 0 in Ω× (0, T),

uh = h on ∂Ω× (0, T),

∂th +
Duh

|Duh|
· ν 3 g on ∂Ω× (0, T),

h = h0 on ∂Ω× {t = 0}

for parameter λ > 0 and with initial data h0 ∈ L2(∂Ω) was obtained in [33].
We emphasize that for λ > 0, the associated Dirichlet problem λuh − div

(
Duh

|Duh|

)
= 0 in Ω,

uh = h on ∂Ω.

is uniquely solvable, but which is not true for the case λ = 0 (that is, Dirich-
let problem (1.1)). This makes this singular elliptic-parabolic boundary
value problem (1.13) more appealing, but also complements the research
in [33].

To study stronger regularity properties of mild solutions to Cauchy prob-
lem (1.10), we introduce the following operators.

Notation 1.5. For every 1 ≤ q ≤ ∞, we write Λ|Lq for the restriction of Λ
on Lq(∂Ω)× BL∞(∂Ω). In other words,

Λ|Lq = Λ ∩ (Lq(∂Ω)× BL∞(∂Ω)),

and call the operator Λ|Lq the Dirichlet-to-Neumann operator on Lq(∂Ω).

Thanks to the continuous embedding from Lq(∂Ω) into L1(∂Ω), the first
three statements in the next corollary follow immediately from (1) of Theo-
rem 1.3 and Corollary 1.4, and statement (4) with the characterization (1.14)
from Proposition 5.13.

Corollary 1.6. Let 1 ≤ q ≤ ∞. Then the following statements on the Dirichlet-
to-Neumann operator Λ|Lq in Lq(∂Ω) hold.

(1) Λ|Lq is m-completely accretive in Lq(∂Ω) with effective domain D(Λ|Lq)) =
Lq(∂Ω);

(2) Λ|Lq is homogeneous of order zero;
(3) Λ|Lq is closed in Lq(∂Ω)× L∞

σ (∂Ω);
(4) Λ|L2 can be characterized by

(1.14) Λ|L2 = ∂L2 ϕ|L2

where ∂L2 ϕ|L2 denotes the sub-differential operator on L2(∂Ω) of the re-
striction ϕ|L2 on L2(∂Ω) of the functional ϕ given by (1.8).

The property that the operator Λ|Lq is m-accretive in Lq(∂Ω) yields the
well-posedness of Cauchy problem (1.10) for initial values u0 in Lq(∂Ω) and
forcing term g ∈ L1(0, T; Lq(∂Ω)) in the sense of mild solutions in Lq(∂Ω).



6 DANIEL HAUER AND JOSÉ M. MAZÓN

Corollary 1.7 (Existence & Uniqueness in Lq(∂Ω)). Let 1 ≤ q ≤ ∞ and
suppose F is given by (1.11) with f satisfying (1.12). Then, for every u0 ∈
Lq(∂Ω) and g ∈ L1(0, T; Lq(∂Ω)), there is a unique mild solution of Cauchy
problem (1.10) in Lq(∂Ω).

Due to the fact that Λ|Lq is completely accretive and by [10] (see also [19]),
the following comparison principle is available. Here, we write [u]ν with
ν ∈ {+, 1} for either denoting the positive part [u]+ = max{0, u} of u or
u := [u]1 itself.

Corollary 1.8 (Comparison principle & Well-posedness). Let 1 ≤ q ≤ ∞
and suppose F is given by (1.11) with f satisfying (1.12). Then, for every h0 and
ĥ0 ∈ Lq(∂Ω), g, ĝ ∈ L1(0, T; Lq(∂Ω)), and corresponding two mild solutions h
and v of Cauchy problem (1.10), one has that

‖[h(t)− ĥ(t)]ν‖q ≤ eωt‖[h(s)− ĥ(s)]ν‖q +
∫ t

s
eω(t−s)‖[g(r)− ĝ(r)]ν‖q dr

for every 0 ≤ s < t ≤ T, and ν ∈ {+, 1}.
Our next theorem is concerned with the regularizing effect that a mild so-

lution of Cauchy problem (1.10) is, indeed, a strong solution of (1.10) (see
Definition 2.18). The regularizing effect described in the first two state-
ments is due to the fact that the Dirichlet-to-Neumann operator Λ|L2 in
L2(∂Ω) can be realized as a sub-differential operator (see (1.7) or (1.14))
and hence, follows from a classic result due to Brezis [14] (see, also [6]). The
regularizing effect stated in (3) results from the property that the Dirichlet-
to-Neumann operator Λ|Lq is homogeneous of order zero and so, follows
from an application of [29] (see also [8] and [31]). We give the details of the
proof of this theorem in Section 5.3.

Theorem 1.9 (Regularizing effect). Let F be given by (1.11) with f satisfy-
ing (1.12), and E : L2(∂Ω)→ R denote the functional given by

(1.15) E(h) := ϕ(h) +
∫

∂Ω

∫ h(x)

0
f (x, r)dr dHd−1 for every h ∈ L2(∂Ω),

where ϕ is the functional defined by (1.8).
Then the following statements hold.

(1) (Max. L2-regularity) If there is a b ∈ L∞(∂Ω) such that

(1.16) | f (x, h)| ≤ b(x) for all h ∈ R andHd−1-a.e. x ∈ ∂Ω,

then the functional E defined by (1.15) can be extended continuously to a
functional on L1(∂Ω) and for every h0 ∈ L1(∂Ω) and g ∈ L2(0, T; L2(∂Ω)),
the mild solution h of Cauchy problem (1.10) in L1(∂Ω) is a strong solu-
tion in L1(∂Ω) with time-derivative

dh
dt
∈ L2(0, T; L2(∂Ω))

and global estimate

(1.17) 1
2

∫ t

0

∥∥∥∥dh
ds

(s)
∥∥∥∥2

2
ds + E(h(t)) ≤ E(h0) +

1
2

∫ t

0
‖g(s)‖2

2ds

for every 0 ≤ t ≤ T.
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(2) For every h0 ∈ L2(∂Ω) and g ∈ L2(0, T; L2(∂Ω)), the mild solution u of
Cauchy problem (1.10) in L2(∂Ω) is a strong solution in L2(∂Ω) with

h and
dh
dt
∈ L2(0, T; L2(∂Ω)).

(3) (L1 Aronson-Bénilan type estimates) Let 1 ≤ q ≤ ∞. Then for every
h0 ∈ Lq(∂Ω) and g ∈W1,1(0, T; Lq(∂Ω)), the mild solution h of Cauchy
problem (1.10) in Lq(∂Ω) is a strong solution in Lq(∂Ω) satisfying

(1.18)
∥∥∥∥dh

dt+
(t)
∥∥∥∥

q
≤ 1

t

[
aω(t) + ω

∫ t

0
aω(s)eω(t−s)ds

]
for a.e. t ∈ (0, T),

where

aω(t) :=
∫ t

0
‖g′(s)‖q s ds +

[ (
1 + eωt) ‖h0‖q

+
∫ t

0
‖g(s)‖q ds + ω

∫ t

0

∫ s

0
e−ωr‖g(r)‖qdr ds

]
.

According to Corollary 1.6, for every 1 ≤ q ≤ ∞, the operator −(Λ|Lq +

F) generates a strongly continuous semigroup {e−t(Λ|Lq+F)}t≥0 of quasi-
contractions on Lq(∂Ω) (see Section 2.2 for a concise review of nonlinear
semigroup theory). But since ∂Ω is assumed to be compact, the semigroup
{e−t(Λ|Lq+F)}t≥0 generated by −(Λ|Lq + F) on Lq(∂Ω) coincides with the
semigroup {e−t(Λ+F)}t≥0 generated by −(Λ + F) on L1(∂Ω). For this rea-
son, it is sufficient to consider only the semigroup {e−t(Λ+F)}t≥0 on Lq(∂Ω),
which is quasi-contractive on Lq(∂Ω) for all 1 ≤ q ≤ ∞. The next corol-
lary summarizes the regularity properties of the semigroup {e−t(Λ+F)}t≥0.
Here, Λ◦ denotes the minimal selection of Λ defined by (4.4) in Section 2.2.

Corollary 1.10. Let F be given by (1.11) with f satisfying (1.12) and 1 ≤ q ≤
∞. Then the operator −(Λ + F) generates a strongly continuous semigroup
{e−t(Λ+F)}t≥0 on L1(∂Ω), which is ω-quasi complete contractive on Lq(∂Ω) for
every q. Moreover, {e−t(Λ+F)}t≥0 has the following regularity properties:

(1) (L1 Aronson-Bénilan type estimates) For every h0 ∈ Lq(∂Ω), the mapping
t 7→ e−t(Λ+F)h0 is differentiable in Lq(∂Ω) at a.e. t ∈ (0, ∞) and∥∥∥∥ d

dt+
e−t(Λ+F)h0

∥∥∥∥
q
≤ 2 + ω t

t
eωt ‖h0‖q for every t > 0;

(2) If F ≡ 0, then for every h0 ∈ L1(∂Ω) and t > 0, d
dt+e
−tΛh0 exists in

L1(∂Ω) and

(1.19) |Λ◦e−tΛh0| ≤ 2
|h0|

t
Hd−1-a.e. on ∂Ω;

(3) (Order preservation of the semigroup) For every h0, ĥ0 ∈ Lq(∂Ω), one has
that h0 ≤ ĥ0 yields that

e−t(Λ+F)h0 ≤ e−t(Λ+F)ĥ0 for all t ≥ 0.
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(4) (Point-wise Aronson-Bénilan type estimates) For every h0 ∈ Lq(∂Ω) pos-
itive, one has that

d
dt+

e−t(Λ+F)h0 ≤
1
t

e−t(Λ+F)h0 + g0(t) for a.e. t > 0,

where g0 : (0, ∞)→ Lq(∂Ω) is a measurable function satisfying

‖g0(t)‖q ≤
ω

t

∫ t

0
eω(t−r)

∥∥∥∥ d
dt+

e−r(Λ+F)h0

∥∥∥∥
q

dr for a.e. t > 0.

The statements (1) and (3) follow from Theorem 1.9 and Corollary 1.8.
Statements (2) and (4) are direct applications of [29, Theorem 2.9 and Theo-
rem 4.14] (see also [30] including a correction, and [31] for inequality (1.19)).

Remark 1.11. (a) Even though, the semigroup {e−(Λp+F)}t≥0 generated by
the negative Dirichlet-to-Neumann operator −Λp associated with the
p-Laplace operator ∆p, 1 < p < ∞, admits an Lq-Lr regularization effect
for 1 ≤ q < r ≤ ∞ of the form

‖e−(Λ+F)h0‖r .
‖h0‖γ

q

tδ
, t > 0,

with exponents γ := γ(p, d, r, q), δ := δ(p, d, r, q) > 0, we stress that
one can not expect a similar regularization effect for the semigroup
{e−(Λ+F)}t≥0 generated by the negative Dirichlet-to-Neumann opera-
tor−Λ associated with the p-Laplace operator ∆1 since the trace-Sobolev
inequality on BV(Ω), merely maps into L1(∂Ω). We refer the interested
reader to the monograph [19] for further discussion on this topic.

(b) We recall from the linear semigroup theory the following striking theorem
by Lotz [34] (see also [5, Corollary 4.3.19]):

Theorem. If {e−tA}t≥0 is a strongly continuous linear semigroup on the
Banach space L∞(Σ, µ), where (Σ, µ) is a measure space, then the infinitesimal
generator −A has to be a bounded linear operator on L∞(Σ, µ).

Despite the linearity, the Dirichlet-to-Neumann operator Λ|L∞ maps
bounded sets of L∞(∂Ω) into (possibly several) subsets of the closed
unit ball BL∞(∂Ω) in L∞(∂Ω). Thus, this operator provides a first exam-
ple that Lotz’s theorem might have a valid analogue in the nonlinear
semigroup theory.

Our last theorem is dedicated to the long-time stability of the semigroup
{e−t(Λ|Lq+F)}t≥0 generated by −(Λ|Lq(∂Ω) + F) on Lq(∂Ω).

Theorem 1.12. Let 1 ≤ q ≤ ∞ and F be given by (1.11) with f satisfying (1.12).
Then the following statements hold.

(1) (Energy decreasing) For every h0 ∈ L1(∂Ω), the energy functional ϕ
given by (1.8) is monotonically decreasing along the trajectory

{e−t(Λ+F)h0 | t ≥ 0}.
In particular, one has that

ϕ∞ := lim
n→∞

ϕ(e−t(Λ+F)h0) exists.



THE DTN-OPERATOR FOR THE 1-LAPLACIAN 9

(2) (Conservation of mass) If F ≡ 0, then one has that∫
∂Ω

e−tΛh0 dHd−1 = h0 := 1
Hd−1(∂Ω)

∫
∂Ω

h0 dHd−1 for all t ≥ 0

and all h0 ∈ L1(∂Ω).
(3) (Long-time stability in Lq(∂Ω)) If F ≡ 0, then for every h0 ∈ Lq(∂Ω)

and q < ∞, then one has that

lim
t→∞

e−tΛh0 = h0 in Lq(∂Ω)

and ϕ∞ = ϕ(h0) = 0.
(4) (Entropy-Transport inequality) If F ≡ 0, then there is a C > 0 such that

‖e−tΛh0 − h0‖1 ≤ C ϕ(e−tΛh0) for all t > 0;

(5) For every h0 ∈ L2(∂Ω), one has that

ϕ(e−tΛh0) ≤ 2
‖h0‖2

2
t

for all t > 0.

The statements of Theorem 1.12 are established in the Propositions 5.14-
5.16 in Section 5.4.

Remark 1.13. (Conjecture) We conjecture that for every h0 ∈ L1(∂Ω), the
trajectory t 7→ e−tΛh0 − h0 extincts in finite time.

We conclude this first section with some important remarks and histori-
cal development on the 1-Laplace operator and the Dirichlet-to-Neumann
operator.

Remark 1.14. (a) It is well-known that for given h ∈ L2(∂Ω), there is a
vector field zh ∈ L∞(Ω, Rd) satisfying (1.2)-(1.4) for some weak solution
uh ∈ BV(Ω) of Dirichlet problem (1.1). By definition of Λ|L2 , it is clear
that (h, [zh, ν]) ∈ Λ|L2 . Now, on the one hand, an integrating by parts
(Proposition 2.9) gives that∫

∂Ω
[zh, ν] uh dHd−1 =

∫
Ω
|Duh|.

But on the other hand, the integral equality

(1.20)
∫

∂Ω
[z, ν] h dHd−1 =

∫
Ω
|Du|

is, in general, not true since for the notion of weak solutions uh of Dirich-
let problem (3.1), it is not required that the Dirichlet boundary con-
dition uh = h on ∂Ω is satisfied in the trace sense: that is, there is a
H ∈ BV(Ω) such that Tr(H) = h and H − uh ∈ BV0(Ω). Here, we
denote by BV0(Ω) the closure C∞

c (Ω)
BV(Ω) of the set of test functions

C∞
c (Ω) in BV(Ω).

(b) Our comment in (a) of this remark provides a strong reasoning, but not
an explicit proof, for why the recently developed theory [17] of j-elliptic
functionals can not be applied to the functional

(1.21) ϕ̂(u) =
∫

Ω
|Du|, (u ∈ V2(Ω)),
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where V2(Ω) :=
{

u ∈ BV(Ω)
∣∣∣ Tr(u) ∈ L2(∂Ω)

}
, in order to obtain

well-posedness of the Cauchy problem (1.10) in L2(∂Ω). To be more
precise, we briefly recall from [17] that the j-subdifferential operator
∂j ϕ̂ in L2(∂Ω) for ϕ̂ given by (1.21) and j = Tr|V2

the standard trace
operator Tr : BV(Ω) → L1(∂Ω) restricted on V2 is defined by the set of
all pairs (h, g) ∈ L2(∂Ω)× BL∞(∂Ω), for which there are a weak solution
uh ∈ V2 of Dirichlet problem (1.1) satisfying uh = h in the traces sense,
and a vector field zh ∈ L∞(Ω; Rd) satisfying (1.2)-(1.5) with uh and (5.1).
Clearly, one has that ∂Tr|V2

ϕ̂ ⊆ Λ|L2 . But we claim that the equation

(1.22) Λ|L2 = ∂Tr|V2
ϕ̂

can not be true in general. To see this, we recall that Sprandlin and
Tamasan [48] (cf. [22]) constructed a boundary function h0 ∈ L∞(S1)
on the the unit circle S1 in the plane R2, for there is no solution uh0 ∈
BV(D1) of the minimization problem

(1.23) inf
{ ∫

D1

|Dv|
∣∣∣ v ∈ BV(D1), v = h0 in the weak sense of traces

}
,

where we write D1 to denote the open unit disc in R2. Hence, one
has that h0 /∈ D(∂Tr|V2

ϕ̂). But on the other hand, since the effective
domain D(Λ|L2) of Λ|L2 is L2(∂Ω), and since S1 is compact, we have
that h0 ∈ D(Λ|L2), showing (1.22) can’t be true.

(c) Suppose Ω is a bounded Lipschitz domain in Rd whose boundary ∂Ω
satisfies the following two conditions:

(i) For every x ∈ ∂Ω there exists a r0 > 0 such that for every set
A ⊂⊂ B(x, r0) of finite perimeter (that is, P(A, Ω) := |D1A|(Ω) is
finite), one has that

P(Ω, Rd) ≤ P(Ω ∪ A, Rd);

(ii) For every x ∈ ∂Ω and every r > 0 there is a set A ⊂⊂ B(x, r) of
finite perimeter such that

P(Ω, B(x, r)) > P(Ω \ A, B(x, r)).

Then by [49, Theorem 3.7 & Corollary 4.2] and by the characteriza-
tion [35, Theorem 1.1] of functions of least gradients and weak solutions
to Dirichlet problem (1.1), for every boundary data h ∈ C(∂Ω) there is
a unique weak solution u ∈ BV(Ω) of (1.1) satisfying u = h a.e. on
∂Ω. Due to this existence and uniqueness result, we know that at least
in this situation, the integral equation (1.20) holds for every boundary
data h ∈ C(∂Ω).

The 1-Laplace operator ∆1 is not only interesting from his geometric per-
spectives and its applications to engineering sciences, but also by his math-
ematical challenges. For a given u ∈ BV(Ω), ∆1u is the scalar mean curvature
of the level sets of u. Thus, every level surface {u = t} of a function u of
least gradient has mean curvature zero; a necessary condition for functions
u whose super-level sets {u ≥ t} are area-minimizing. Functions of least
gradient do not have too much regularity, in the sense, that even though u
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might be essentially bounded, necessarily, u need not admit a continuous
representative on Ω. In fact, in some applications, this property of func-
tions of least gradient is strongly desired, for example, in image processing
(see [3] and the references therein); if the nonlinear diffusion process associ-
ated with ∆1 is used to recover a blurred picture u0 : Ω → [0, 1], (Ω ⊆ R2),
then the contours in u0 are maintained and not smoothened as compared
to diffusion processes involving linear or degenerate differential operators.
But the operator ∆1 also appears in other engineering fields. For example
in free material design (see [27]), or conductivity imaging (see [32]).

If Ω represents, for example, an electricity conducting medium, then the
operator Λ associated with the classical Laplace operator ∆u := ∑d

i=1 Diiu
appears in a natural way in measuring the current through the boundary
for given voltages on the boundary. Thus the operator Λ is the main object
in Calderón’s inverse problem [16]. The Dirichlet-to-Neumann operator Λ
can be constructed with various kind of differential operators (linear, non-
linear, singular, or degenerate) provided the corresponding Dirichlet prob-
lem admits a solution; for 1 < p < ∞, the Dirichlet-to-Neumann operator
Λ associated with the p-Laplace operator ∆pu := div

(
|Du|p−2Du

)
is also

referred to as the interior capacity operator (cf [20]) and was studied inten-
sively by many authors including by Díaz and Jiménez [21], Ammar, An-
dreu and Toledo [2], Salo and Zhong [46], Brander [13], the first author [28],
and with co-authors [17, 19, 6].

2. PRELIMINARIES.

We begin by summarizing some fundamental notions, definitions, and
results which we will apply later in this paper.

2.1. Functions of bounded variation. We begin by recalling some funda-
mental facts about functions of bounded variation. For more details on this
topic, we refer the interested reader to [1], or [51].

Let Ω an open subset of Rd, d ≥ 1. Then, a function u ∈ L1(Ω) is said to
be a function of bounded variation in Ω, if the distributional partial derivatives
D1u := ∂u

∂x1
, . . . , Ddu := ∂u

∂xd
are finite Radon measures in Ω, that is, if∫

Ω
u Di ϕ dx = −

∫
Ω

ϕ dDiu

for all ϕ ∈ C∞
c (Ω), i = 1, . . . , d. The linear vector space of functions u ∈

L1(Ω) of bounded variation in Ω is denoted by BV(Ω). Further, we set
Du = (D1u, . . . , Ddu) for the distributional gradient of u. Then, Du belongs
to the class Mb(Ω, Rd) of Rd-valued bounded Radon measure on Ω, and
throughout this paper, we either write |Du|(Ω) or

∫
Ω |Du| to denote the

total variation measure of Du. By (cf [1, Proposition 3.6]), we have

|Du|(Ω) = sup
{∫

Ω
u div z dx

∣∣∣ z ∈ C∞
0 (Ω, Rd), |z(x)| ≤ 1 for x ∈ Ω

}
.

In addition, it is worth noting that u 7→ |Du|(Ω) is lower semicontinuous
with respect to the L1

loc-topology.
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The space BV(Ω) equipped with the norm

‖u‖BV(Ω) := ‖u‖L1(Ω) + |Du|(Ω),

forms a Banach space.
The following result due to Modica [39] is crucial for the minimization

problem related to the Dirichlet problem for the 1-Laplace operator.

Proposition 2.1 ([39, Proposition 1.2]). Let Ω be a bounded domain with a
boundary ∂Ω of class C1, and τ : ∂Ω × R → R be a contraction in the sec-
ond variable, uniformly with respect to the first one. Then, the functional F :
BV(Ω)→ R given by

F(u) =
∫

Ω
|Du|+

∫
∂Ω

τ(x, Tr(u))dHd−1

is lower semicontinuous on BV(Ω) with respect to the topology of L1(Ω).

According to [23, Theorem 5.3.1] and [1, Theorem 3.87], if Ω is an open
and bounded subset of Rd with a Lipschitz continuous boundary ∂Ω, then
there is a bounded linear mapping Tr : BV(Ω)→ L1(∂Ω) assigning to each
u ∈ BV(Ω) an element Tr(u) ∈ L1(∂Ω) such that for Hd−1-almost every
x ∈ ∂Ω, one has that Tr(u)(x) ∈ R and

lim
ρ↓0

ρ−d
∫

Ω∩Bρ(x)
|u(y)− Tr(u)(x)|dy = 0.

Moreover, Tr is surjective, and for every u ∈ BV(Ω),

(2.1)
∫

Ω
u divξ dx = −

∫
Ω

ξ · dDu +
∫

∂Ω
(ξ · ν) Tr(u)dHd−1

for all ξ ∈ C1(Rd, Rd), where ν denotes the outer unit normal vector on ∂Ω.
We call Tr(u) the (weak) trace of u and Tr the trace operator on BV(Ω). Note,
if there is no danger of confusion, we sometimes also write simply u.

An important notion of convergence of measures in Mb(Ω) is the strict
convergence; we say that a sequence (un)n≥1 in BV(Ω) converges strictly to
some u ∈ BV(Ω) if

∫
Ω |Dun| converges to

∫
Ω |Du| and un converges to u in

L1(Ω). We have the following useful result.

Proposition 2.2 ([1, Theorem 3.88]). Let Ω be an open bounded subset of Rd

with a Lipschitz continuous boundary ∂Ω. Then, the trace operator Tr : BV(Ω)→
L1(∂Ω) is continuous from BV(Ω) equipped with the strict topology to L1(∂Ω),
and surjective. Moreover, there exists a constant C > 0 such that

(2.2) ‖Tr(u)‖1 ≤ ‖u‖BV(Ω) for all u ∈ BV(Ω).

The next proposition on Poincaré’s inequality for BV-functions can be
deduced from [51, Lemma 4.1.3] (see [18]). Here, we use the notation h to
denote the mean value of a function h ∈ L1(∂Ω), defined by

h = 1
Hd−1(∂Ω)

∫
∂Ω

h dHd−1.

Proposition 2.3. Let Ω be an open bounded subset of Rd with a Lipschitz contin-
uous boundary ∂Ω. Then, there is a constant C > 0 such that

(2.3) ‖Tr(u)− Tr(u)‖1 ≤ C
∫

Ω
|Du| for all u ∈ BV(Ω).
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Next, we recall the following embedding theorems as stated in [37, The-
orem 6.5.7/1, Theorem 9.5.7] and [45].

Theorem 2.4. Suppose that Ω ⊂ Rd is an open bounded set with Lipchitz bound-
ary. Then for every 1 ≤ p < ∞, there is a constant Cp,d > 0 such that

‖u‖
L

pd
d−p (Ω)

≤ Cp,d

[
‖∇u‖Lp(Ω) + ‖Tr(u)‖Lp(∂Ω)

]
function u ∈W1,p(Ω). Moreover,

(2.4) ‖u‖
L

d
d−1 (Ω)

≤ Cd

[
|Du|(Ω) + ‖Tr(u)‖L1(∂Ω)

]
for every u ∈ BV(Ω).

For the rest of this subsection, we recall several results from [4] (see also
cf [3]). Let Ω ⊂ Rd be a bounded domain with a Lipschitz continuous
boundary ∂Ω.

For 1 ≤ p ≤ d and p′ given by 1 = 1
p + 1

p′ , we introduce the following
spaces

Xp(Ω) :=
{

z ∈ L∞(Ω, Rd)
∣∣∣ div(z) ∈ Lp(Ω)

}
, and

BV(Ω)p′ := BV(Ω) ∩ Lp′ (Ω).

Then, by the Maz’ya-Sobolev embedding (2.4), one has that

BV(Ω) = BV(Ω)d/(d−1).

Now, for given w ∈ C1(Ω), z ∈ L∞(Ω; Rd), and open subset A of Ω, the
integral

(2.5) µ(A) :=
∫

A
z · ∇w dx

defines a signed Radon measure on Ω. Inspired by (2.5), one can define a
bilinear mapping (·, D·) : Xp(Ω)× BV(Ω)p′ → Mb(Ω) by

(2.6) 〈(z, Dw), ϕ〉 = −
∫

Ω
w ϕ div(z)dx−

∫
Ω

w z · ∇ϕ dx

for all ϕ ∈ C∞
0 (Ω), z ∈ Xp(Ω) and w ∈ BV(Ω)p′ . From (2.6), one obtains

the following.

Proposition 2.5 ([4, Theorem 1.5]). , For every open set A ⊆ Ω and for all
ϕ ∈ C∞

0 (A), one has that

(2.7) |〈(z, Dw), ϕ〉| ≤ ‖ϕ‖L∞(A) ‖z‖L∞(A)

∫
A
|Dw|.

In particular, for given z ∈ Xp(Ω) and w ∈ BV(Ω)p′ , the linear functional
(z, Dw) : C∞

0 (Ω) → R is a signed Radon measure in Ω with total variation
measure |(z, Dw)|.

We shall denote by ∫
A
(z, Dw) and

∫
A
|(z, Dw)|
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the value of the measures (z, Dw) and |(z, Dw)| on Borel subsets A of Ω. In
fact, the measure (z, Dw) represents an extension of (2.5); namely, one has
that

(2.8)
∫

Ω
(z, Dw) =

∫
Ω

z · ∇w dx

for every w ∈W1,1(Ω) ∩ L∞(Ω) and z ∈ Xp(Ω).

Proposition 2.6 ([4, Corollary 1.6]). Let Ω be a bounded domain with a Lipschitz-
continuous boundary ∂Ω and for 1 ≤ p ≤ d and p′ given by 1 = 1

p + 1
p′ , let

u ∈ BV(Ω)p′ and z ∈ Xp(Ω). Then the measures (z, Du) and |(z, Du)| are
absolutely continuous with respect to the measure |Du| in Ω and

(2.9)
∣∣∣∣∫B

(z, Du)
∣∣∣∣ ≤ ∫B

|(z, Du)| ≤ ‖z‖L∞(A;Rd)

∫
B
|Du|

for every Borel set B and all open sets A such that B ⊆ A ⊆ Ω.

Thus, there is a density function θ(z, Dw, ·) ∈ L1(Ω, |Dw|) satisfying
(2.10)

θ(z, Dw, ·) = d(z, Dw)

d|Dw| with |θ(z, Dw, x)| = 1 for |Dw|-a.e. x ∈ Ω.

The function θ(z, Dw, ·) is called the Radon–Nikodým derivative of (z, Dw)
with respect to |Dw|. Moreover, the following results holds.

Proposition 2.7 ([4], Chain rule for (z, D·)). Let Ω be a bounded domain with
a Lipschitz-continuous boundary ∂Ω and for 1 ≤ p ≤ d and p′ given by 1 =
1
p +

1
p′ , let z ∈ Xp(Ω) and w ∈ BV(Ω)p′ . Then, for every Lipschitz continuous,

monotonically increasing function T : R→ R, one has that

(2.11) θ(z, D(T ◦ w), x) = θ(z, Dw, x) for |Dw|-a.e. x ∈ Ω.

Further, there is a unique linear extension γ : Xp(Ω) → L∞(∂Ω) satisfy-
ing

(2.12) ‖γ(z)‖∞ ≤ ‖z‖∞

and

γ(z)(x) = z(x) · ν(x) for every x ∈ ∂Ω and z ∈ C1(Ω, Rd).

Definition 2.8 ([4]). For every z ∈ Xp(Ω), we write [z, ν] for γ(z) and call
[z, ν] the weak trace of the normal component of z.

With these preliminaries in mind, we can now state the generalized inte-
gration by parts formula for functions w ∈ BV(Ω).

Proposition 2.9 ([4], Generalized integration by parts). Let Ω be a bounded
domain with a Lipschitz-continuous boundary ∂Ω and let 1 ≤ p ≤ d and p′ be
given by 1 = 1

p +
1
p′ . Then

(2.13)
∫

Ω
w div(z)dx +

∫
Ω
(z, Dw) =

∫
∂Ω

[z, ν]w dHd−1.

for every z ∈ Xp(Ω) and w ∈ BV(Ω)p′ .

We conclude this section on BV-functions with the following proposition
on convergence results.
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Proposition 2.10. Let Ω be a bounded domain with a Lipschitz-continuous bound-
ary ∂Ω and for 1 ≤ p ≤ d and p′ given by 1 = 1

p + 1
p′ , suppose (zn)n≥1 and z

are elements of Xp(Ω) such that

lim
n→∞

zn = z weakly∗ in L∞(Ω; Rd), and(2.14)

lim
n→∞

div(zn) = div(z) weakly in Lp(Ω).(2.15)

Then, the following statements hold.
(1.) For every v ∈ BV(Ω)p′ ,

(2.16) lim
n→∞

(zn, Dv) = (z, Dv) weakly∗ in Mb(Ω)

(2.) For v ∈ BV(Ω)p′ , (2.16) implies that

(2.17) lim
n→∞

∫
Ω
(zn, Dv) =

∫
Ω
(z, Dv).

(3.) If, in addition, there is an C > 0 such that

(2.18) sup
n≥1
‖div(zn)‖∞ ≤ C

and if there are (vn)n≥1, v in BV(Ω) such that

(2.19) lim
n→∞

vn = v weakly∗ in BV(Ω),

then

(2.20) lim
n→∞

(zn, Dun) = (z, Dv) weakly∗ in Mb(Ω).

The first limit (2.16) is obtained by a light modification of the proof of [4,
Proposition 2.1] and for the proofs of (2.17), we were inspired by the proof
of [4, Lemma 1.8]. For convenience, we give here the details.

Proof. Let v ∈ BV(Ω)p′ . By (2.14), one has that

(2.21) sup
n≥1
‖zn‖∞ =: M is finite and ‖z‖∞ ≤ M.

Applying (2.21) to (2.9), one sees that

(2.22)
∣∣∣∣∫Ω

(zn, Dv)
∣∣∣∣ ≤ ∫Ω

|(zn, Dv)| ≤ M
∫

Ω
|Dv|.

Thus and by (2.7), for verifying that (2.16) holds; that is,

(2.23) lim
n→∞
〈(zn, Dv), ϕ〉 = 〈(z, Dv), ϕ〉

for every ϕ ∈ C0(Ω), it is sufficient to check this limit holds for every test
functions ϕ ∈ C∞

c (Ω). But for ϕ ∈ C∞
c (Ω), (2.6) holds, and so by (2.14)

and (2.15), one has that

〈(zn, Dv), ϕ〉 = −
∫

Ω
v ϕ div(zn)dx−

∫
Ω

v zn · ∇ϕ dx

→ −
∫

Ω
v ϕ div(z)dx−

∫
Ω

v z · ∇ϕ dx

= 〈(z, Dv), ϕ〉
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as n→ ∞, which proves (2.23). Next, to see that (2.17) holds, we perform a
2ε-argument. For this, let ε > 0. Since the total variational measure |Dv| is
a bounded Radon measure on Ω, there is a subset U b Ω such that

(2.24)
∫

Ω\U
|Dv| ≤ ε

4M

and for every ϕ ∈ C∞
c (Ω), there is an N(ε, ϕ) ∈N such that

(2.25) |〈(zn, Dv), ϕ〉 − 〈(z, Dv), ϕ〉| < ε

2
for all n ≥ N(ε, ϕ). Now, we choose a test function ϕ ∈ C∞

c (Ω) with the
properties that ϕ ≡ 1 on U and 0 ≤ ϕ ≤ 1 on Ω. Then, by (2.9), (2.21), (2.24)
and (2.25), one finds that∣∣∣∣∫Ω

(zn, Dv)−
∫

Ω
(z, Dv)

∣∣∣∣ ≤ |〈(zn, Dv), ϕ〉 − 〈(z, Dv), ϕ〉|∫
Ω
(1− ϕ)d|(zn, Dv)|+

∫
Ω
(1− ϕ)d|(z, Dv)|

≤ ε

2
+
∫

Ω\U
|(zn, Dv)|+

∫
Ω\U
|(z, Dv)|

≤ ε

2
+ 2M

∫
Ω\U
|Dv|

≤ ε

2
+ 2M

ε

4M
= ε

for all n ≥ N(ε, ϕ), proving (2.17).
To see that the final claim (3) holds, we first note that by (2.6), the lim-

its (2.14), (2.15), (2.18) and (2.19) yield that

〈(zn, Dvn), ϕ〉 = −
∫

Ω
vn ϕ div(zn)dx−

∫
Ω

vn zn · ∇ϕ dx

→ −
∫

Ω
v ϕ div(z)dx−

∫
Ω

v z · ∇ϕ dx

= 〈(z, Dv), ϕ〉

for every ϕ ∈ C0(Ω), showing that ((zn, Dvn))n≥1 converges to (z, Dv)
in the distributional sense. But since (vn)n≥1 is bounded in BV(Ω), (2.22)
applied to w = vn gives that∣∣∣∣∫Ω

(zn, Dvn)

∣∣∣∣ ≤ ∫Ω
|(zn, Dvn)| ≤ M sup

n≥1

∫
Ω
|Dvn| ≤ M C.

Thus and by (2.7), convergence of ((zn, Dvn))n≥1 in the distributional sense
yields (2.20). �

2.2. A Primer on Nonlinear Semigroups. Throughout this second part of
the preliminary Section 2, suppose that X is a Banach space with norm ‖·‖X,
X′ its dual space, 〈·, ·〉X′,X the duality brackets on X′ × X, and let I denote
the identity on X.

In this framework, an operator A on X is a possibly nonlinear and mul-
tivalued mapping A : X → 2X. It is standard to identify an operator A on



THE DTN-OPERATOR FOR THE 1-LAPLACIAN 17

X with its graph

A :=
{
(u, v) ∈ X× X

∣∣∣ v ∈ Au
}

in X× X

and so, one sees A as a subset of X×X. The set D(A) := {u ∈ X | Au 6= ∅}
is called the domain of A, and Rg(A) :=

⋃
u∈D(A) Au ⊆ H the range of A.

Further, for an operator A on H, the minimal section A◦ of A is given by

A◦ :=
{
(u, v) ∈ A

∣∣∣ ‖v‖X = min
w∈Au
‖w‖X

}
.

Definition 2.11. For ω ∈ R, an operator A on X is called ω-quasi m-accretive
operator on X if A + ωI is accretive, that is, for every (u, v), (û, v̂) ∈ A and
every λ ≥ 0,

‖u− û‖X ≤ ‖u− û + λ(ω(u− û) + v− v̂)‖X

and if for some (or equiv., all) λ > 0 satisfying λ ω < 1, the range condition

(2.26) Rg(I + λA) = X

holds.

It is worth mentioning that in the case X = H is a Hilbert space with in-
ner product (·, ·)H, the notion of A being accretive is equivalent to A being
monotone; that is,

(v̂− v, û− u)H ≥ 0 for all (u, v), (û, v̂) ∈ A.

If A is a monotone operator on H then A is called maximal monotone if A is
monotone and, in addition, the range condition (2.26) holds.

Another important class of operators is given by the sub-differential oper-
ator

(2.27) ∂X×X′φ :=

{
(u, x′) ∈ X× X′

∣∣∣∣∣ 〈x′, v− u〉X′,X ≤ φ(v)− φ(u)
for all v ∈ X

}
of a proper, convex and lower semicontinuous function φ : X → (−∞,+∞]
on Banach space X. If X = H is a Hilbert space, then after identifying
the dual space H′ with H, the sub-differential operator ∂H×H′φ becomes a
maximal monotone operator A on H. In this setting we simply write ∂Hφ
for the operator ∂H×H′φ. In fact, ∂Hφ satisfies the following stronger type
of monotonicity.

Definition 2.12. An operator A on H is called cyclically monotone if for every
finite sequence ((ui, vi))

n
i=0 ⊆ A with u0 = un one has that

n

∑
j=1

(uj − uj−1, vj)H ≥ 0.

If A = ∂Hφ has a sub-differential structure, then A is cyclically monotone
(cf., [44, (2.1) in Section 2]). We recall this result in the next theorem.

Theorem 2.13 (Rockafellar [44], cf.,[14, Théorème 2.5 & Corollaire 2.8]). Let
A be a monotone operator on a Hilbert space H. Then, the following statements
hold.
(1.) A is cyclically monotone if and only if there is a proper, convex and lower

semicontinuous function φ : H → (−∞,+∞] such that A ⊆ ∂Hφ.
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(2.) A is maximal cyclically monotone if and only if there is a proper, convex and
lower semicontinuous function φ : H → (−∞,+∞] such that

(2.28) A = ∂Hφ.

Moreover, the function φ in (2.28) is unique up to an arbitrary additive con-
stant.

One can sharpen the statement (2) in Theorem 2.13 for homogeneous
operators A of degree α ∈ R.

Definition 2.14. An operator A on X is called homogeneous of order α ∈ R if
(0, 0) ∈ A and for every u ∈ D(A) and λ ≥ 0, one has that λu ∈ D(A) and

(2.29) A(λu) = λα Au.

Similarly, we call a functional φ : X → (−∞, ∞] homogeneous of order α ∈ R

if 0 ∈ D(φ) with φ(0) = 0 and for every u ∈ D(ϕ) and λ ≥ 0, one has that
λu ∈ D(φ) and

φ(λu) = λα φ(u).

Theorem 2.15. Let A be a homogeneous operator on a Hilbert space H of order
α ∈ R. Then A is maximal cyclically monotone if and only if (2.28) holds for a
unique proper, convex, lower semicontinuous φ : H → [0,+∞] satisfying

(2.30) φ(0) = 0 and φ(λu) = λα+1φ(u) for all u ∈ D(A).

Proof. By Theorem 2.13, we have that A is cyclically monotone if and only
if there is a proper, convex and lower semicontinuous function φ : H →
[0,+∞] such that (2.28) holds. Moreover, the functional φ is given by

φ(u) := sup
n∈N

sup
((ui ,vi))

n
i=0⊆A

{
(u− un, vn)H +

n

∑
j=1

(uj − uj−1, vj−1)H

}
, u ∈ H,

(cf. Rockafellar [44]). Thus, it remains to verify that this functional φ satis-
fies φ ≥ 0 on H and (2.30). To see this, let (u0, v0) = (0, 0) in the definition
of φ. Then by the cyclic monotonicity of A, one has that φ(0) = 0. More-
over, since (0, 0) ∈ ∂Hφ, it follows from the convexity of φ that φ ≥ 0 on H.
It is left to verify that

(2.31) φ(λu) = λα+1φ(u) for all u ∈ D(A).

Note, since D(A) ⊆ D(φ), it follows from the homogeneity of A that for
every u ∈ D(A) and λ ≥ 0, one has λu ∈ D(φ). Now, fix u ∈ D(A)
and λ > 0. Since for every finite sequence ((ui, vi))

n
i=0 ⊆ A, one has that

((λui, λαvi))
n
i=0 ⊆ A, it follows that

(λu− λun, λα+1vn)H +
n

∑
j=1

(λuj − λuj−1, λα+1vj−1)H

= λα+1
{
(u− un, vn)H +

n

∑
j=1

(uj − uj−1, vj−1)H

}
≤ λα+1 φ(u)
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for every finite sequence ((ui, vi))
n
i=0 ⊆ A. Hence, by taking the supremum

over all ((ui, vi))
n
i=0 ⊆ A in the above inequality yields that

φ(λu) ≤ λα+1 φ(u).

On the other hand, for every finite sequence ((ui, vi))
n
i=0 ⊆ A,

λα+1
{
(u− un, vn)H +

n

∑
j=1

(uj − uj−1, vj−1)H

}
= (λu− λun, λα+1vn)H +

n

∑
j=1

(λuj − λuj−1, λα+1vj−1)H

≤ φ(λu).

Taking again the supremum over all ((ui, vi))
n
i=0 ⊆ A in this inequality

leads to the reverse inequality λα+1 φ(u) ≤ φ(λu). The uniqueness of a
convex, proper, lower semicontinuous functional φ satisfying (2.30) follows
from the fact that φ(0) = 0. This completes the proof of this theorem. �

Convex functionals, which are homogeneous of order α + 1, α ∈ R, ad-
mit the following important property.

Proposition 2.16. Let φ : X → [0,+∞] be a convex, proper, and lower semicon-
tinuous functional on a Banach space X and suppose, there is an α ∈ R such that
(2.30) holds. Then, one has that

(2.32) (α + 1)φ(u) = 〈x′, u〉X′,X for every (u, x′) ∈ ∂X×X′φ.

Proof. Let (u, x′) ∈ ∂X×X′φ. Then, by the definition of the sub-differential
∂X×X′φ, one has that

〈x′, w− u〉X′,X ≤ φ(w)− φ(u)

for every w ∈ H. For t ∈ (−1, 1], let w = (1 + t)u. Then by (2.30), w ∈
D(φ), the previous inequality reduces to

t 〈x′, u〉X′,X ≤
(
(1 + t)α+1 − 1

)
ϕ(u).

From this, we can deduce that (2.32) holds by first taking t > 0 then divid-
ing by t and subsequently sending t → 0+, and the proceed in a similar
way for t < 0. �

If A is ω-quasi m-accretive operator on a Banach space X, then by the
classical existence theory (see, e.g., [10, Theorem 6.5], or [7, Corollary 4.2]),
the first-order Cauchy problem

(2.33)


du
dt

+ A(u(t)) 3 g(t) on (0, T),

u(0) = u0;

is well-posed for every u0 ∈ D(A)
X , and g ∈ L1(0, T; X) in the following

mild sense.
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Definition 2.17. For given u0 ∈ D(A)
X and g ∈ L1(0, T; X), a function u ∈

C([0, T]; X) is called a mild solution of Cauchy problem (2.33) if u(0) = u0
and for every ε > 0, there is a partition τε : 0 = t0 < t1 < · · · < tN = T and
a step function

uε,N(t) = u0 1{t=0}(t) +
N

∑
i=1

ui 1(ti−1,ti ](t) for every t ∈ [0, T]

satisfying

• ti − ti−1 < ε for all i = 1, . . . , N,

•
N

∑
N=1

∫ ti

ti−1

‖g(t)− gi‖dt < ε where gi :=
1

ti − ti−1

∫ ti

ti−1

g(t)dt,

• ui − ui−1

ti − ti−1
+ Aui 3 gi for all i = 1, . . . , N,

and

sup
t∈[0,T]

‖u(t)− uε,N(t)‖X < ε.

Mild solutions are limits of step functions which are not necessarily dif-
ferentiable in time. This leads to the notion of strong solution to Cauchy
problem (2.33).

Definition 2.18. For given u0 ∈ D(A)
X and g ∈ L1(0, T; X), a function u ∈

C([0, T]; X) is called a strong solution of Cauchy problem (2.33) if u(0) = u0,
and for a.e. t ∈ (0, T), u is differentiable at t, u(t) ∈ D(A), and Au(t) 3
g(t)− du

dt (t).

Further, if A is quasi m-accretive, then the family {e−tA}T
t=0 of mappings

e−tA : D(A)
X × L1(0, T; X)→ D(A)

X defined by
(2.34)

e−tA(u0, g) := u(t) for every t ∈ [0, T], u0 ∈ D(A)
X , g ∈ L1(0, T; X),

where u is the unique mild solution of Cauchy problem (2.33), belongs to
the following class.

Definition 2.19. Given a subset C of X, a family {e−tA}T
t=0 of mapping

e−tA : C× L1(0, T; X) → C is called a strongly continuous semigroup of quasi-
contractive mappings e−tA if {e−tA}T

t=0 satisfies the following three proper-
ties:

• (semigroup property) for every (u0, g) ∈ D(A)
X × L1(0, T; X),

e−(t+s)A(u0, g) = e−tA(Ts(u0, g), g(s + ·))

for every t, s ∈ [0, T] with t + s ≤ T;
• (strong continuity) for every (u0, g) ∈ D(A)

X × L1(0, T; X),

t 7→ e−tA(u0, g) belongs to C([0, T]; X);
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• (ω-quasi contractivity) e−tA satisfies

‖e−tA(u0, g)− e−tA(û0, ĝ)‖X ≤ eωt‖u0 − û0‖X

+
∫ t

0
eω(t−s)‖g(s)− ĝ(s)‖X ds

2.2.1. Completely accretive operators. Here, we briefly recall the notion of
completely accretive operators, which was introduced by Bénilan and Cran-
dall [9] and further developed in [19].

We begin by introducing the framework of completely accretive oper-
ators. Let (Σ,B, µ) be a σ-finite measure space, and M(Σ, µ) the space
of µ-a.e. equivalent classes of measurable functions u : Σ → R. For
u ∈ M(Σ, µ), we write [u]+ to denote max{u, 0} and [u]− = −min{u, 0}.
We denote by Lq(Σ, µ), 1 ≤ q ≤ ∞, the corresponding standard Lebesgue
space.

Now, let

J0 :=
{

j : R→ [0,+∞]
∣∣∣j is convex, lower semicontinuous, j(0) = 0

}
.

Then, for every u, v ∈ M(Σ, µ), we write

u� v if and only if
∫

Σ
j(u)dµ ≤

∫
Σ

j(v)dµ for all j ∈ J0.

With these preliminaries in mind, we can now state the following defini-
tions.

Definition 2.20. A mapping S : D(S) → M(Σ, µ) with domain D(S) ⊆
M(Σ, µ) is called a complete contraction if

Su− Sû� u− û for every u, û ∈ D(S).

Now, we can state the definition of completely accretive operators.

Definition 2.21. An operator A on M(Σ, µ) is called completely accretive if
for every λ > 0, the resolvent operator Jλ of A is a complete contraction, or
equivalently, if for every (u1, v1), (u2, v2) ∈ A and λ > 0, one has that

u1 − u2 � u1 − u2 + λ(v1 − v2).

If X is a linear subspace of M(Σ, µ) and A an operator on X, then A is m-
completely accretive on X if A is completely accretive and satisfies the range
condition

Rg(I + λA) = X for some (or equivalently, for all) λ > 0.

Further, for ω ∈ R, an operator A on a linear subspace X ⊆ M(Σ, µ) is
called ω-quasi (m)-completely accretive in X if A + ωI is (m)-completely ac-
cretive in X. Finally, an operator A on a linear subspace X ⊆ M(Σ, µ) is
called quasi m-completely accretive if there is some ω ∈ R such that A + ωI
is m-completely accretive in X.

Before stating a useful characterization of completely accretive opera-
tors, we first need to introducing the following function spaces. Let

L1∩∞(Σ, µ) := L1(Σ, µ) ∩ L∞(Σ, µ) and L1+∞(Σ, µ) := L1(Σ, µ) + L∞(Σ, µ)
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be the intersection and the sum space of L1(Σ, µ) and L∞(Σ, µ), which re-
spectively equipped with the norms

‖u‖1∩∞ := max
{
‖u‖1, ‖u‖∞

}
,

‖u‖1+∞ := inf
{
‖u1‖1 + ‖u2‖∞

∣∣∣u = u1 + u2, u1 ∈ L1(Σ, µ), u2 ∈ L∞(Σ, µ)
}

are Banach spaces. In fact, L1∩∞(Σ, µ) and L1+∞(Σ, µ) are respectively the
smallest and the largest of the rearrangement-invariant Banach function
spaces (cf [11, Chapter 3.1]). If µ(Σ) is finite, then L1+∞(Σ, µ) = L1(Σ, µ)
with equivalent norms, but if µ(Σ) = ∞ then⋃

1≤q≤∞

Lq(Σ, µ) ⊂ L1+∞(Σ, µ).

Further, we will employ the space

L0(Σ, µ) :=
{

u ∈ M(Σ, µ)
∣∣∣ ∫

Σ

[
|u| − k

]+ dµ < ∞ for all k > 0
}

,

which equipped with the L1+∞-norm is a closed subspace of L1+∞(Σ, µ). In
fact, one has that (cf [9]) L0(Σ, µ) = L1(Σ, µ) ∩ L∞(Σ, µ)

1+∞ . Since for every
k > 0, the function Tk(s) := [|s| − k]+ is a Lipschitz mapping Tk : R → R

satisfying Tk(0) = 0, and by using Chebyshev’s inequality, it is not difficult
to see that Lq(Σ, µ) ↪→ L0(Σ, µ) for every 1 ≤ q < ∞ (and q = ∞ if the
measure µ(Σ) is finite).

Proposition 2.22 ([9] for the case ω = 0, [19]). Let P0 denote the set of all
functions p ∈ C∞(R) satisfying 0 ≤ T′ ≤ 1, p′ is compactly supported, and
x = 0 is not contained in the support supp(p) of p. Then for ω ∈ R, an operator
A ⊆ L0(Σ, µ)× L0(Σ, µ) is ω-quasi completely accretive if and only if∫

Σ
p(u− û)(v− v̂)dµ + ω

∫
Σ

p(u− û)(u− û)dµ ≥ 0

for every p ∈ P0 and every (u, v), (û, v̂) ∈ A.

The next proposition is quite useful for characterizing operators.

Proposition 2.23 ([9]). Let X ⊆ L0(Σ, µ) be a normal Banach space and A a
completely accretive operator in X and let AL0 be the closure of A in L0(Σ, µ). If
there is an λ0 such that the range Rg(I + λ0A) is dense in L0(Σ, µ), then the
operator

AX := AL0 ∩ (X× X)

is the unique m-completely accretive extension of A in X. Moreover, AX can be
characterized by

AX =
{
(u, v) ∈ X×X

∣∣∣ u− û� u− û+λ(v− v̂) for all (û, v̂) ∈ A, λ > 0
}

.
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3. THE DIRICHLET PROBLEM FOR THE 1-LAPLACE OPERATOR

In this section, we review the current state of knowledge about existence
and uniqueness to the singular Dirichlet problem

(3.1)


−div

( Du
|Du|

)
= 0 in Ω,

u = h on ∂Ω,

for given boundary data h ∈ L1(∂Ω). As mentioned at the beginning of
this paper, we always assume, if nothing else is said, that Ω is a bounded
Lipschitz domain in Rd, d ≥ 2.

In order to obtain existence of solutions to Dirichlet problem (3.1), it is
natural, to study the existence of a minimizer of the famous least gradient
problem

(3.2) inf
{ ∫

Ω
|Dv|

∣∣∣ v ∈ BV(Ω), v = h on ∂Ω
}

.

Existence of solutions to the minimizing problem (3.2) was obtained by
Parks [41, 42] under the hypotheses Ω is strictly convex and the bound-
ary data h satisfies the bounded slope condition. Sternberg, Williams and
Ziemer [49] improved this result by establishing existence and uniqueness
of a minimizer u ∈ BV(Ω)∩C(Ω) of (3.2) for boundary data u ∈ C(∂Ω) on
bounded domains Ω with a Lipschitz boundary ∂Ω of non-negative mean
curvature (in the weak sense) and not being locally area-minimizing.

On BV(Ω), there is a continuous trace operator Tr : BV(Ω) → L1(∂Ω)
available (see Proposition 2.2). Thus Sternberg, Williams and Ziemer called
in [50] a function u ∈ BV(Ω) to be of least gradient if∫

Ω
|Du| = min

{ ∫
Ω
|Dv|

∣∣∣ v ∈ BV(Ω), Tr(u) = Tr(v)
}

.

Since for given h ∈ L1(∂Ω), there is a H ∈ BV(Ω) satisfying Tr(H) = h, a
function u ∈ BV(Ω) satisfies the boundary constrain

(3.3) u = h on ∂Ω

in the traces sense if Tr(u) = Tr(H). In many elliptic boundary-value prob-
lems (as for example, the Dirichlet problem associated with the p-Laplace
operator, see, e.g., [28]), it is standard that the solution attains the boundary
condition (3.3) merely in the sense of traces. However, by using this weak
notion of attaining the boundary condition (3.3), a function u ∈ BV(Ω) is
a minimizer of (3.2) if u minimizes the total variation

∫
Ω|Dv| on the affine

space Tr(H) + BV0(Ω) (cf. [50, Theorem 2.2]), where BV0(Ω) is the closure
of the BV-norm of the set of test functions C∞

c (Ω). But this last problem has
the two challenges that the trace operator Tr is only continuous with respect
to the strict topology and of missing compactness results on BV(Ω). Thus,
to establish existence and uniqueness of a minimizer to (3.2) and related
problems, the continuity condition on the boundary data h was used by
many authors, including Miranda [38], Parks and Ziemer [43], Bombieri,
De Giorgi, Giusti [12], or more recently, Jerrard, Moradifam, and Nach-
man [32].
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Recently, Spradlin and Tamasan [48] constructed an essentially bounded
boundary function h on the unit circle S1 in R2 for which the minimizing
problem (3.2) has no solution u ∈ BV(Ω) satisfy (3.3) in the sense of traces.
If the set of discontinuities is countable, then in the planar case, Górny [26]
(see also [27, 24], and Rybka and Sabra [27]) could establish existence of a
minimizer to problem (3.2).

This suggests that for discontinuous boundary data h ∈ L1(∂Ω), the no-
tion of traces for the boundary condition (3.3) might not be the right one for
establishing existence of a minimizer to problem (3.2). Thus, Rossi, Segura
and the second author [35] studied for given h ∈ L1(∂Ω), the following
relaxed functional Φh : L

d
d−1 (Ω)→ (−∞,+∞] given by

(3.4) Φh(v) =


∫

Ω
|Dv|+

∫
∂Ω
|h− v|dHd−1 if v ∈ BV(Ω),

+∞ if v ∈ L
d

d−1 (Ω) \ BV(Ω).

The functional Φh is convex, lower semicontinuous on L
d

d−1 (Ω), and thanks
to the Sobolev inequality (2.4), Φh is coercive. Thus, there is a u ∈ BV(Ω)
solving the variational problem

(3.5) min
v∈BV(Ω)

Φh(v).

One easily verifies that if u ∈ BV(Ω) is a function of least gradient sat-
isfying the boundary condition (3.3) in the sense of traces, then u is a min-
imizer of problem (3.5). Moreover, every minimizer u of (3.5) satisfies the
following inclusion of the first variation

(3.6) 0 ∈ ∂
L

d
d−1×Ld(Ω)

Φh(u) in L
d

d−1 (Ω)× Ld(Ω),

which is directly related to notion of weak solutions to Dirichlet problem (3.1).
By characterizing the sub-differential ∂

L
d

d−1×Ld(Ω)
Φh, Rossi, Segura and

the second author [35] discovered that for boundary data h ∈ L1(∂Ω),
a minimizer uh of (3.5) satisfies the Dirichlet boundary condition (3.3) in
problem (3.1) merely in the following weaker sense: there is a divergence
free vector field zh ∈ L∞(Ω; Rd) such that ‖zh‖∞ ≤ 1 and

(3.7) [zh, ν] ∈ sign(h− Tr(u)) Hd−1-a.e. on ∂Ω,

where [zh, ν] denotes Anzellotti’s generalized normal trace, ν the outward-
pointing unit normal vector (see Section 2.1), and sign(·) is the accretive
graph in R2 of the signum given by

sign(r) :=


1 if r > 0,
[−1, 1] if r = 0,
−1 if r < 0.

More precisely, they obtained the following one.

Proposition 3.1 ([35, Theorem 2.5]). For h ∈ L1(∂Ω) and u ∈ BV(Ω), the
following statements are equivalent:

(i) 0 ∈ ∂
L

d
d−1×Ld(Ω)

Φh(u).
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(ii) there exists a vector field zh ∈ L∞(Ω; Rd) satisfying (3.7),

‖zh‖∞ ≤ 1,(3.8)

−div(zh) = 0 in D′(Ω), and(3.9)

(zh, Du) = |Du| as Radon measures.(3.10)

Having this characterization in mind, every solution u ∈ BV(Ω) of the
constrained least gradient problem (3.2) is a weak solution to the Dirichlet
problem (3.1), and vice versa.

Definition 3.2. For given h ∈ L1(∂Ω), we call a function u ∈ BV(Ω) a
weak solution to Dirichlet problem (3.1) if there exists a vector field zh ∈
L∞(Ω; Rd) satisfying (3.7)–(3.10).

By using Definition 3.2, further examples could be constructed showing
the phenomenon of non-uniqueness in Dirichlet problem (3.1).

Example 3.3. In [35], the following counter example to the uniqueness of
solutions to Dirichlet problem (3.1) on the unit ball Ω = {(x, y) ∈ R2 :
x2 + y2 < 1} was constructed for discontinuous boundary data. Let the
boundary function h ∈ L∞(∂Ω) be given (in polar coordinates) by

h(θ) :=
{

cos(2θ) + 1, if cos(2θ) > 0;
cos(2θ)− 1, if cos(2θ) < 0;

for every θ ∈ (−π, π]. Now, for every −1 ≤ λ ≤ 1, let uλ : Ω → R be
given by

uλ(x, y) =


2x2 , if |x| >

√
2

2 , |y| <
√

2
2 ;

λ , if |x| <
√

2
2 , |y| <

√
2

2 ;

−2y2 , if |x| <
√

2
2 , |y| >

√
2

2 .

Then, each uλ is a weak solution of Dirichlet problem (3.1) satisfying the
boundary conditions (3.3) in the weaker sense (3.7) with h.

Example 3.3 and the one given in [25] demonstrate well that smooth-
ness of the boundary ∂Ω and other nice geometric properties of Ω (as, for
instance, convexity of Ω) are not sufficient to establish uniqueness of solu-
tions to the Dirichlet problem (3.1) for discontinuous boundary data h ∈
L∞(∂Ω). This justifies the notation of differential inclusion used in (3.6).
But, in particular, shows that the Dirichlet-to-Neumann operator Λ might
be multi-valued.

Next, we turn to the following observation (cf., [35, Remark 2.8]).

Theorem 3.4. For given h ∈ L1(∂Ω), let u and û be two weak solutions of Dirich-
let problem (3.1) for the same boundary data h. If the vector field z ∈ L∞(Ω; Rd)
satisfies (3.7)–(3.10) with respect to u and ẑh ∈ L∞(Ω; Rd) satisfies (3.7)–(3.10)
with respect to û, then ẑh also satisfies (3.7)–(3.10) with respect to u and zh satis-
fies (3.7)–(3.10) with respect to û.

From Theorem 3.4, by the fact that the minimization problem (3.5) al-
ways admits a weak solution, and by Proposition 3.1, we can conclude the
following consequence (cf., [40, Theorem 1.2]).
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Corollary 3.5. For given boundary data h ∈ L1(∂Ω), there is a divergence-free
vector field zh ∈ L∞(Ω; Rd) satisfying ‖zh‖∞ ≤ 1 such that every weak solution
u of Dirichlet problem (3.1) satisfies (3.10) and (3.7) for the same zh.

Corollary 3.5 says that there is a divergence-free vector field zh, which
determines the level set of all weak solutions u of Dirichlet problem (3.1).
More precisely, since ‖zh‖∞ ≤ 1 on Ω, (2.9) yields that

(3.11)
∫

Ω
(zh, Dw) ≤ 1

for every w ∈ BV(Ω) with |Dw|(Ω) = 1. Note, that (3.11) can well be
interpreted as a Radon-measure version of the point-wise inequality

zh · ξ ≤ 1 a.e. on Ω

holding for any vector fields ξ ∈ Sd−1. Thus, (3.10) says that for every
weak solutions u of Dirichlet problem (3.1), the vector field Dw = Du/|Du|
maximizes (3.11) in the sense of Radon measures. Recall, for given vector
fields z ∈ Rd with |z| ≤ 1 and ξ ∈ Sd−1, the equality z · ξ = 1 implies that z
and ξ are parallel to each other and |z| = 1. Thus, and since |Dw|(Ω) = 1,
(3.10) one be can understood as a condition implying that the two vector
fields zh and Dw are parallel to each other in some weak sense.

Further, as outlined in [40], (3.7) describes the set of possible jumps on
the boundary ∂Ω of a weak solution u of (3.1). More precisely, it follows
from (3.7) that up to a set ofHd−1-measure zero, one has that

{x ∈ ∂Ω | Tr(u)(x) > h(x)} ⊆ {x ∈ ∂Ω | [zh, ν] = −1},
{x ∈ ∂Ω | Tr(u)(x) < h(x)} ⊆ {x ∈ ∂Ω | [zh, ν] = 1},

and

{x ∈ ∂Ω | Tr(u)(x) = h(x)} ⊆ {x ∈ ∂Ω | − 1 ≤ [zh, ν] ≤ 1}.

We now turn to the Proof of Theorem 3.4.

Proof of Theorem 3.4. Let u and û be two solutions of Dirichlet problem (3.1)
for the same given boundary function h ∈ L1(∂Ω). Further, let zh and
ẑh ∈ L∞(Ω; Rd) be two vector fields satisfying (3.7)–(3.10) with respect to u
and û, respectively.

Note, by (3.9), the two vector fields zh and ẑh belong to Xd(Ω) and by
Sobolev-inequality (2.4), (u − û) ∈ BVd/(d−1)(Ω). Thus, the generalized
integration by parts formula (2.13) yields∫

Ω
(zh, D(u− û))−

∫
∂Ω

[zh, ν]
(

Tr(u)− Tr(û)
)

dHN−1 = 0

and ∫
Ω
(ẑh, D(u− û))−

∫
∂Ω

[ẑh, ν]
(

Tr(u)− Tr(û)
)

dHN−1 = 0 .
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Subtracting these two equations from each other and using the fact that the
pairing (zh, Dw) is bilinear yields∫

Ω
(zh − ẑh, D(u− û))

+
∫

∂Ω

(
[zh, ν]− [ẑh, ν]

)(
h− Tr(u)− (h− Tr(û))

)
dHd−1 = 0 .

(3.12)

Since zh and ẑh satisfy ‖zh‖∞ ≤ 1, ‖ẑh‖∞ ≤ 1, it follows from (2.9) that∣∣∣∣∫Ω
(zh, Dû)

∣∣∣∣ ≤ |Dû| (Ω) and
∣∣∣∣∫Ω

(ẑh, Du)
∣∣∣∣ ≤ |Du|(Ω).

Thus, the bilinearity of the pairing (·, D·) yields∫
Ω
(zh − ẑh, D(u− û)) = |Dû|(Ω)−

∫
Ω
(zh, Dû)

+ |Du|(Ω)−
∫

Ω
(ẑh, Du) ≥ 0.

(3.13)

Further, by the monotonicity of the sign-graph in R2, and since zh and ẑh
satisfy (3.7), one has that(

[zh, ν]− [ẑh, ν]
) (

(h− Tr(u))− (h− Tr(û))
)
≥ 0 Hd−1-a.e. on ∂Ω

and so, ∫
∂Ω

(
[zh, ν]− [ẑh, ν]

)(
(h− Tr(u))− (h− Tr(û))

)
dHd−1 ≥ 0

Thus, (3.12) implies that∫
Ω
(zh − ẑh, D(u− û)) = 0

or, equivalently,

(3.14)
∫

Ω
(zh, Dû) = |Dû|(Ω) and

∫
Ω
(ẑh, Du) = |Du|(Ω),

and(
[zh, ν]− [ẑh, ν]

) (
(h− Tr(u))− (h− Tr(û))

)
= 0 Hd−1-a.e. on ∂Ω.

Then,

0 =
(
[zh, ν]− [ẑh, ν]

)
(h− Tr(u))− (h− Tr(û))

= |h− û| − [zh, ν](h− Tr(û)) + |h− Tr(u)| − [ẑh, ν](h− Tr(u))

Hd−1-a.e. on ∂Ω. Since ‖[zh, ν]‖∞ ≤ 1 and ‖[ẑh, ν]‖∞ ≤ 1, the previous
equation yields that

[ẑh, ν](h− Tr(u)) = |h− Tr(u)| and [zh, ν](h− Tr(û)) = |h− Tr(û)|

Hd−1-a.e. on ∂Ω. From this, we can conclude that

[ẑh, ν] ∈ sign(h−Tr(u)) and [zh, ν] ∈ sign(h−Tr(û)) Hd−1-a.e. on ∂Ω.

Further, by recalling (2.10), there are Radon-Nikodým derivatives

θ(zh, Dû, ·) = d(zh, Dû)
d|Dû| and θ(ẑh, Du, ·) = d(ẑh, Du)

d|Du|
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satisfying |θ(zh, Dû, x)| = 1 for |Dû|-a.e. x ∈ Ω and |θ(ẑh, Du, x)| = 1 for
|Du|-a.e. x ∈ Ω. Applying this to (3.14) yields that∫

Ω
θ(zh, Dû, ·)d|Dû| = |Dû|(Ω) and

∫
Ω

θ(ẑh, Du, ·)d|Dû| = |Du|(Ω),

implying that θ(zh, Dû, ·) = 1 and θ(ẑh, Du, ·) = 1 a.e. on Ω. This shows
that

(zh, Dû) = |Dû| and (ẑh, Du) = |Du|
as Radon measures. This completes the proof of showing that ẑh satisfies
(3.7)-(3.10) with respect to u and zh satisfies (3.7)-(3.10) with respect to û.

�

Even though that there might be infinitely many divergence-free vector
fields zh ∈ L∞(Ω; Rd) to a given boundary data h ∈ L1(∂Ω), the value of
the integral ∫

∂Ω
[zh, ν] h dHd−1

remains the same for all vector fields ẑh satisfying (3.7)-(3.10) for some u ∈
BV(Ω).

Theorem 3.6. For every given boundary data h ∈ L1(∂Ω), one has that

(3.15)
∫

∂Ω
[zh, ν] h dHd−1 = min

v∈BV(Ω)
Φh(v).

for every vector fields zh ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10) for some u ∈
BV(Ω).

Proof of Theorem 3.6. Let h ∈ L1(∂Ω) and zh ∈ L∞(Ω; Rd) satisfy (3.7)-(3.10)
for some u ∈ BV(Ω). Then, u is a weak solution of Dirichlet problem (3.1)
and so, Proposition 3.1 says that u satisfies

(3.16) min
v∈BV(Ω)

Φh(v) =
∫

Ω
|Du|+

∫
∂Ω
|h− Tr(u)|dHd−1.

On the other hand, by (3.10), the generalized integration by parts for-
mula (2.13), (3.9), and (3.7), one sees that∫

∂Ω
[zh, ν] h dHd−1 −

∫
Ω
|Du|

=
∫

∂Ω
[zh, ν] h dHd−1 −

∫
Ω
(zh, Du)

=
∫

∂Ω
[zh, ν] h dHd−1 −

∫
∂Ω

[zh, ν] Tr(u)dHd−1

=
∫

∂Ω
[zn, ν] (h− Tr(u))dHd−1

=
∫

∂Ω
|h− Tr(u)|dHd−1

and so,

(3.17)
∫

∂Ω
[zh, ν] h dHd−1 =

∫
Ω
|Du|+

∫
∂Ω
|h− Tr(u)|dHd−1.

Clearly, (3.15) follows from combining (3.16) with (3.17). �
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4. A ROBIN-TYPE PROBLEM FOR THE 1-LAPLACE OPERATOR

In order to show that the Dirichlet-to-Neumann operator Λ associated
with the 1-Laplace operator ∆1satisfies the range condition (2.26), we recall
some recent results obtain by the second author with collaborators [36] on
the following inhomogeneous Robin-type boundary-value problem

(4.1)

 −∆1u = 0 in Ω,
Du
|Du| · ν = T1(g− αu) on ∂Ω,

for the 1-Laplace operator ∆1, for given α > 0 and g ∈ L2(∂Ω).

In the boundary condition of problem (4.1), the function T1 : R → R

given by T1(s) = s if |s| ≤ 1 and T1(s) = sign(s) if |s| ≥ 1, denotes the
truncator operator, which is necessary to add in (4.1), since it preserves the
condition

(4.2)
∥∥∥∥ Du
|Du| · ν

∥∥∥∥
∞
≤ 1

satisfied by every solution u of problem (4.1) (cf., (2.12) and the fact that
every vector field z associated with a weak solution u of (4.1) satisfies
‖z‖∞ ≤ 1). We emphasize that the use of a truncator T1 in the Robin-type
boundary condition (4.1) is a phenomenon, which is exclusively generated
by the structure of the 1-Laplace operator ∆1 (and its co-normal derivative).

Another reason supporting the use of the truncator T1 in the singular
boundary-value problem (4.1) is provided by studying the correct associ-
ated (energy) functional; intuitively, the natural functional associated with
problem (4.1) (without T1) is given by

Iα,g(u) :=
∫

Ω
|Du|+

∫
∂Ω

[
α
2 |Tr(u)|2 − g Tr(u)

]
dHd−1, u ∈ V2(Ω),

where the space V2(Ω) is given by

V2(Ω) =
{

u ∈ BV(Ω) | Tr(u) ∈ L2(∂Ω)
}

.

But the functional Iα,g is, in general, not lower semicontinuous with respect
to the L1(Ω)-topology (cf., [39]). Thus, one employs instead the L1-lower
semicontinuous envelope

(4.3) Θα,g(u) :=
∫

Ω
|Du|+

∫
∂Ω

Γg(x, Tr(u))dHd−1,

u ∈ V2(Ω), where Γg : ∂Ω×R → R is a Borel function, which is convex
and contractive with respect to the second variable, uniformly with respect
to the first one, and satisfies ∂

∂u Γg(x, u) = T1(g(x)− αu). Here, for the L1-
lower semicontinuity of the functional Θg, the contractivity property of the
mapping u 7→ Γg(x, u) is crucial (cf., Proposition 2.1).

To find the correct notion and the existence of weak solutions u to the
inhomogeneous Robin-type problem (4.1), the authors of [36] start from the
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more regular Robin-type problem associated with the p-Laplace operator
(for p > 1)

(4.4)

{
−∆pup = 0 in Ω,

|∇up|p−2∇up · ν = T1(g− αu) on ∂Ω.

It is not hard to see that for every given g ∈ L2(∂Ω) and α > 0, prob-
lem (4.4) admits a unique weak solution up ∈ W1,p(Ω). After deriving a
priori-estimates for p ∈ (1, 2), they establish in [36, Theorem 1.1.] the exis-
tence of the following type of solutions.

Definition 4.1. For given g ∈ L2(∂Ω) and α > 0, we say that u ∈ V2(Ω)
is a weak solution to the inhomogeneous Robin-type problem (4.1) for the
1-Laplace operator if for u, there is a vector field z ∈ L∞(Ω; Rd) satisfy-
ing (3.8)–(3.10), and

(4.5) [z, ν] = T1(g− αu) Hd−1-a.e. on ∂Ω.

For later use, we restate the existence result [36, Theorem 1.1.] with more
details to the convergence by the approximate problem (4.4).

Theorem 4.2 ([36, Theorem 1.1.]). Let Ω be a bounded domain with a boundary
∂Ω of class C1. Then, for every g ∈ L2(∂Ω) and α > 0, there is a weak solu-
tion u ∈ V2(Ω) of the inhomogeneous Robin-type problem (4.1) for the 1-Laplace
operator. Moreover, for every sequence (pn)n≥1 in (1, 2) converging to 1, there
is a subsequence (pkn)n≥1 and a weak solution u ∈ V2(Ω) the inhomogeneous
Robin-type problem (4.1) for the 1-Laplace operator such that

lim
n→∞

upkn
= u in Lq(Ω) for all 1 ≤ q <

d
d− 1

,

where upkn
is the unique solution of the Robin-type problem (4.4) associated with

the pkn -Laplace operator.

Further, the following relation between the the inhomogeneous Robin-
type problem (4.1) and the Dirichlet problem (3.1) was obtained in [36].

Proposition 4.3 ([36, Proposition 2.13]). Let g, h ∈ L2(∂Ω), α > 0, and
u ∈ BV(Ω). Then the following statements hold. If u is a weak solution to the
inhomogeneous Robin-type problem (4.1), then u is a weak solution to the Dirichlet
problem (3.1) with Dirichlet boundary data

(4.6) h = g− α [z, ν] on ∂Ω,

in the weak sense (3.7), where z ∈ L∞(Ω; Rd) is some vector field associated with
u via the conditions (3.7)-(3.10).

5. PROOFS OF THE MAIN RESULTS

This section is dedicated to outline the proofs of our main results Theo-
rem 1.3, Theorem 1.9, and Theorem 1.12. The proofs of these results are ob-
tained in several steps, which we fix respectively in a separate proposition.
We begin by introducing the Dirichlet-to-Neumann operator Λ associated
with the 1-Laplace operator ∆1 as an operator in L1(∂Ω).



THE DTN-OPERATOR FOR THE 1-LAPLACIAN 31

5.1. The Dirichlet-to-Neumann operator in L1. We start this subsection
with the following definition.

Definition 5.1. We define the Dirichlet-to-Neumann operator Λ in L1(∂Ω) as-
sociated with the 1-Laplace operator ∆1 by the set of all pairs (h, g) ∈ L1(∂Ω)×
L1(∂Ω) with the property that there is a weak solution u ∈ BV(Ω) of
Dirichlet problem (3.1) with Dirichlet data h and there is a vector field
z ∈ L∞(Ω; Rd) associated with u (through (3.7)-(3.10)) such that

(5.1) g = [z, ν] Hd−1-a.e. on ∂Ω.

Remark 5.2. (a) Since the minimization problem (3.5) admits a solution
for every boundary data h ∈ L1(∂Ω) and by Proposition 3.1, the effective
domain D(Λ) of the Dirichlet-to-Neumann operator Λ associated with ∆1
satisfies

D(Λ) = L1(∂Ω).
(b) The Dirichlet-to-Neumann operator Λ associated with ∆1 satisfies

(5.2) Λ ⊆ L1(∂Ω)× L∞(∂Ω)

since for every pair (h, g) ∈ Λ, one has that

‖g‖∞ = ‖[z, ν]‖∞ ≤ 1,

where z ∈ L∞(Ω; Rd) is any associated vector field to some weak solution
u ∈ BV(Ω) of Dirichlet problem (3.1) with Dirichlet data h.

We come to the first property of the Dirichlet-to-Neumann operator Λ.

Proposition 5.3. The Dirichlet-to-Neumann operator Λ associated with the 1-
Laplace operator ∆1 is completely accretive in L1(∂Ω).

Proof. We aim to show that

(5.3)
∫

∂Ω
(g− ĝ) p(h− ĥ)dHd−1 ≥ 0

for every (h, g), (ĥ, ĝ) ∈ Λ and p ∈ P0. Note, even if the truncator p in (5.3)
would be the identity on R, the integral in (5.3) would exist due to (5.2).
Now, let (h, g), (ĥ, ĝ) ∈ Λ and p ∈ P0. Then by the definition of Λ, for each
pair (h, g), (ĥ, ĝ), there are weak solutions u, û of Dirichlet problem (3.1)
with Dirichlet data h and ĥ, respectively, and associated vector fields z,
ẑ ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10). By the chain rule for BV-functions ([1,
Theorem 3.96]), the function p(u − û) belongs to BV(Ω). Thus, applying
the generalized integration by parts formula (2.13) to w = p(u− û) and to
the two vector fields z and ẑ, respectively, and by using (3.9), gives∫

Ω
(z, D(p(u− û))) =

∫
∂Ω

[z, ν]p(Tr(u)− Tr(û))dHd−1

and ∫
Ω
(ẑ, D(p(u− û))) =

∫
∂Ω

[ẑ, ν]p(Tr(u)− Tr(û))dHd−1.

Since g = [z, ν] and ĝ = [ẑ, ν], we can conclude from these two integral
equations that

(5.4)
∫

∂Ω
(g− ĝ) p(Tr(u)− Tr(û))dHd−1 =

∫
Ω
(z− ẑ, D(p(u− û))).
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Since p is Lipschitz continuous and monotonically increasing, the chain
rule for (z, D·) (Proposition 2.7) yields that for the Radon-Nikodým de-
rivative θ(z, D(p(u − û)), x) of (z, D(p(u − û))) with respect to the total
variational measure |D(p(u− û))|, one has that

θ(z, D(p(u− û)), x) = θ(z, D(u− û), x) for |D(u− û)|-a.e. x ∈ Ω.

Moreover, the Radon-Nikodým derivative θ(z − ẑ, D(u − û), x) of (z −
ẑ, D(u − û)) is positive since by the bilinearity of the pairing (·, D·) and
by (3.10), (3.8) and (2.9), one has that∫

Ω
(z− ẑ, D(u− û)) =

∫
Ω
|Du| −

∫
Ω
(ẑ, Du)

+
∫

Ω
|Dû| −

∫
Ω
(ẑ, Du) ≥ 0.

Thus, ∫
Ω
(z− ẑ, D(p(u− û)))

=
∫

Ω
θ(z− ẑ, D(p(u− û)), x) |D(p(u− û))|

=
∫

Ω
θ(z− ẑ, D((u− û), x) |D(p(u− û))| ≥ 0.

Applying this to (5.4), shows that

(5.5)
∫

∂Ω
(g− ĝ) p(Tr(u)− Tr(û))dHd−1 ≥ 0,

which would complete the proof of this proposition if the weak solutions u
and û of Dirichlet problem (3.1) would satisfy the Dirichlet boundary con-
dition (3.3) in the sense of traces. But our notion of solutions to Dirichlet
problem (3.1) assumes only that u and û satisfy Dirichlet boundary condi-
tion (3.3) in the weak sense (3.7). Thus, we still need to provide an argu-
ment, why (5.5) implies the desired inequality (5.3). Now, by (5.5),∫

∂Ω
(g− ĝ) p(h− ĥ)dHd−1

≥
∫

∂Ω
(g− ĝ)

(
p(h− ĥ)− p(Tr(u)− Tr(û))

)
dHd−1

=
∫

∂Ω
(g− ĝ)

∫ 1

0
p′
(

s(h− ĥ) + (1− s)(Tr(u)− Tr(û))
)

ds×

×
[
(h− ĥ)− (Tr(u)− Tr(û))

]
dHd−1.

(5.6)

Using again that g = [z, ν] and ĝ = [ẑ, ν], and since u and û satisfy the
Dirichlet boundary condition (3.3) in the weak sense (3.7), one finds that(

g− ĝ
) (

(h− Tr(u))− (ĥ− Tr(û))
)

= |h− Tr(u)|+ |ĥ− Tr(û)| − [z, ν](ĥ− Tr(û))− [ẑ, ν](h− Tr(u)) ≥ 0

forHd−1-a.e. on ∂Ω. Moreover, since p′ ≥ 0, the integral∫ 1

0
p′
(

s(h− ĥ) + (1− s)(Tr(u)− Tr(û))
)

ds ≥ 0
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Hd−1-a.e. on ∂Ω, the last integral on the right hand-side in (5.6) is positive,
implying that (5.3) holds. �

Proposition 5.4. The Dirichlet-to-Neumann operator Λ associated with the 1-
Laplace operator ∆1 is homogeneous of order zero.

Proof. Let λ > 0 and (h, g) ∈ Λ. Then, there are u ∈ BV(Ω) and a vec-
tor field z ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10). First, we show that for the
boundary data λh, the function λu is a weak solution of Dirichlet prob-
lem (3.1). To see this, we begin by applying the bilinearity of (·, D·) and
homogeneity of the total variational measure |D·|. Then, since u satis-
fies (3.10), one sees that

(z, D(λu)) = λ(z, Du) = λ |Du| = |D(λu)|.

Further, for the same vector field z, which satisfies (3.7)-(3.9), one has that

[z, ν] ∈ sign
(

h− Tr(u)
)
= 1

λ sign
(

λh− λ Tr(u)
)

,

implying that g = [z, ν] satisfies

[z, ν] ∈ sign
(

λh− λ Tr(u)
)

.

Thus, λu is a weak solution of Dirichlet problem (3.1) for the boundary
data λh with the same value g for the generalized Neumann derivative
[z, ν] associated with the weak solution u of Dirichlet problem (3.1). Since
(h, g) ∈ Λ were arbitrary, we thereby have shown that Λ(λh) = Λh for all
h ∈ D(Λ), establishing the claim of this proposition. �

One of our aims is to relate the closure ΛL1×L∞
σ in L1 × L∞

σ (∂Ω) of the
Dirichlet-to-Neumann operator Λ with a sub-differential structure ∂ϕ in
L1× L∞(∂Ω). Here, we write L∞

σ (∂Ω) to denote L∞(∂Ω) equipped with the
weak∗-topology σ(L∞(∂Ω), L1(∂Ω)). For this, we introduce the following
potential candidate of a convex function.

Proposition 5.5. The functional ϕ : L1(∂Ω)→ [0, ∞) given by

(5.7) ϕ(h) =
∫

∂Ω
[zh, ν] h dHd−1 for every h ∈ L1(∂Ω),

where zh is any vector field zh ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10) for some u ∈
BV(Ω) with boundary data h, is a well-defined convex and continuous functional
on L1(∂Ω), which is homogeneous of order one and even.

Proof. First, we note that thanks to Theorem 3.6, for given boundary value
h ∈ L1(∂Ω), the value ϕ(h) given by (5.7) is independent of the vector field
zh ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10) for some u ∈ BV(Ω) with boundary
data h, and given by

ϕ(h) = min
v∈BV(Ω)

Φh(v),

where Φh is defined by (3.4). Therefore, ϕ is a well-defined, proper map-
ping. Next, we show that ϕ is homogeneous of order one. For this, let
h ∈ L1(∂Ω) and u ∈ BV(Ω) a weak solution of Dirichlet problem (3.1)
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with Dirichlet data h and corresponding vector field zh ∈ L∞(Ω; Rd) satis-
fying (3.7)-(3.10) with respect to u and h. Then by Proposition 3.1,

λϕ(h) = λ min
v∈BV(Ω)

Φh(v) = λΦh(u) = Φλh(λu)

for every λ ≥ 0. Since

sign(h− Tr(u)) = sign(λ(h− Tr(u))) = sign(λh− Tr(λu))

for every λ ≥ 0, and since zh ∈ L∞(Ω; Rd) satisfies (3.7)-(3.9) with respect
to u and h, it follows that the same vector field zh satisfies (3.7)-(3.9) with
respect to λu and Dirichlet data λh. Moreover, by the linearity of the map-
pings (zh, D·) and |D·|, (3.10) yields that

(zh, D(λu) = λ (zh, D(u) = λ |Du| = |D(λu)|,
showing that zh and λu also satisfy (3.10). Therefore, for every λ > 0, one
has that zh = zλh; more precisely, zh satisfies (3.7)-(3.10) with respect to λu,
implying that

(5.8) λϕ(h) = ϕ(λh)

for every λ > 0. Note, if λ = 0, then u ≡ 0 is certainly a minimizer of Φ0
over BV(Ω) and a weak solution of Dirichlet problem (3.1) with Dirichlet
data h = 0 with corresponding vector field z0 ≡ 0 ∈ Rd. Therefore, ϕ also
satisfies (5.8) for λ = 0, completing the proof of homogeneity of ϕ.

To see that ϕ is convex, let h1, h2 ∈ L1(∂Ω), and λ ∈ (0, 1). Then, there
are weak solutions u1, u2 ∈ BV(Ω) of Dirichlet problem (3.1) with Dirichlet
data h1, h2 and corresponding vector fields zh1 , zh2 ∈ L∞(Ω; Rd) satisfy-
ing (3.7)-(3.10) with respect to u1 and u2. Then by the homogeneity of ϕ,
we have that

λ ϕ(h1) = Φλh1(λu1) and (1− λ) ϕ(h2) = Φ(1−λ)h2
((1− λ) u2)

and so, by the convexity of Φ, and by Theorem 3.6,

λ ϕ(h1) + (1− λ) ϕ(h2)

= λ Φλh1(λu1) + (1− λ)Φ(1−λ)h2
((1− λ) u2)

≥ Φλh1+(1−λ)h2
(λu1 + (1− λ) u2)

≥ min
v∈BV(Ω)

Φλh1+(1−λ)h2
(v) = ϕ(λh1 + (1− λ)h2).

To see that the convex, proper functional ϕ given by (5.7) is continuous
on L1(∂Ω), it is sufficient to show (cf., [47, Lemma 7.1]) that for every h ∈
L1(∂Ω), ϕ is bounded on a neighborhood of h. For this, let h ∈ L1(∂Ω),
r > 0 and ĥ an element of the open ball BL1(h, r) in L1(∂Ω) centered at h of
radius r. Then, as for every vector field zĥ ∈ L∞(Ω, Rd) related to a weak
solution uĥ of Dirichlet problem (3.1) with Dirichlet data ĥ, one has that
‖[zĥ, ν]‖∞ ≤ 1, it follows that

ϕ(ĥ) ≤ ‖ĥ‖1 ≤ r + ‖h‖1.

Finally, we show that ϕ is even. For this let h ∈ L1(∂Ω). Since the effec-
tive domain D(ϕ) is the whole space L1(∂Ω), we also have that−h ∈ D(ϕ).
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Moreover, let uh ∈ BV(Ω) and zh ∈ L∞(Ω; Rd) satisfy (3.7)-(3.9) with re-
spect to uh and h, and set

u−h := −uh and z−h := −zh.

Then, obviously, z−h satisfies ‖z−h‖∞ ≤ 1,−div(z−h) = 0 inD′(Ω) and by
the bilinearity of the measure (·, D·), it follows that

(z−h, Du−h) = (−zh, D(−uh)) = (zh, Duh) = |Duh| = |D(−uh)| = |Du−h|

as Radon measures. In addition, by (3.7), one has that

[z−h, ν] = −[zh, ν] ∈ − sign(h− Tr(uh)) = sign(−h− Tr(u−h))

Hd−1-a.e. on ∂Ω. Hence, we have shown that the pair (u−h, z−h) sat-
isfy (3.7)-(3.9). Thus, and by the linearity of the weak trace z 7→ [z, ν],
one sees that

ϕ(−h) =
∫

∂Ω
[z−h, ν](−h)dHd−1 =

∫
∂Ω

[zh, ν] h dHd−1 = ϕ(h).

This completes the proof of this proposition. �

Next, we turn to the relation of the closure

ΛL1×L∞
σ =

{
(h, g) ∈ L1× L∞(∂Ω)

∣∣∣∣∣ there exists ((hn, gn))n≥1 ⊆ Λ s.t.
lim
n→∞

(hn, gn) = (h, g) in L1 × L∞
σ (∂Ω)

}

of the Dirichlet-to-Neumann operator Λ in L1(∂Ω)× L∞
σ (∂Ω) with the sub-

differential operator ∂L1×L∞(∂Ω)ϕ in L1 × L∞(∂Ω).

Proposition 5.6. For the closure ΛL1×L∞
σ in L1 × L∞

σ (∂Ω) of the Dirichlet-to-
Neumann operator Λ associated with the 1-Laplace operator, one has that

ΛL1×L∞
σ ⊆ ∂L1×L∞(∂Ω)ϕ,

where ∂ϕ denotes the sub-differential operator in L1(∂Ω)× L∞(∂Ω) of the func-
tional ϕ : L1(∂Ω)→ [0, ∞) given by (5.7).

Proof. We begin by taking (h, g) ∈ Λ and ĥ ∈ L1(∂Ω). By definition of Λ
and since the variational problem (3.5) for Dirichlet data ĥ admits a solution
which is characterized by Proposition 3.1, there are uĥ ∈ BV(Ω) and zh,
zĥ ∈ L∞(Ω; Rd) such that (uĥ, zĥ) satisfies (3.7)-(3.10), and, in addition, g
and zh satisfy (5.1). Then, multiply g by (ĥ− h) and integrating over ∂Ω.
Then by (5.1), the definition of ϕ, since ‖g‖∞ ≤ 1, and by the generalized
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integration by parts formula (2.13), one sees that∫
∂Ω

g(ĥ− h)dHd−1

=
∫

∂Ω
g ĥ dHd−1 − ϕ(h)

=
∫

∂Ω
g (ĥ− Tr(uĥ))dHd−1 +

∫
∂Ω

g Tr(uĥ)dHd−1 − ϕ(h)

≤
∫

∂Ω
|ĥ− Tr(uĥ)|dH

d−1 +
∫

Ω
(zĥ, Duĥ)dx− ϕ(h)

≤
∫

∂Ω
|ĥ− Tr(uĥ)|dH

d−1 +
∫

Ω
|Duĥ| − ϕ(h)

= ϕ(ĥ)− ϕ(h).

Therefore, one has that (h, g) ∈ ∂L1×L∞(∂Ω)ϕ, showing that Λ ⊆ ∂L1×L∞(∂Ω)ϕ.
Next, let (h, g) ∈ ΛL1×L∞

σ , ((hn, gn))n≥1 ⊆ Λ such that hn → h in L1(∂Ω)
and gn → g in L∞

σ (∂Ω). Then by the first part of this proof, we have that
each (hn, gn) ∈ ∂L1×L∞(∂Ω)ϕ and hence,

ϕ(ĥ)−
∫

∂Ω
gn(ĥ− hn)dHd−1 ≥ ϕ(hn)

for every ĥ ∈ L1(∂Ω) and every n ≥ 1. Taking the limit inferior as n → ∞
on both sides of this inequality and using that ϕ is lower semicontinuous
in L1(∂Ω), one finds that

ϕ(ĥ)−
∫

∂Ω
g(ĥ− h)dHd−1 ≥ ϕ(h),

showing that (h, g) ∈ ∂L1×L∞(∂Ω)ϕ and thereby, completing the proof of this
proposition. �

With the help of the functional ϕ, we can now show that the Dirichlet-
to-Neumann operator Λ is closed in L1 × L1(∂Ω).

Proposition 5.7. The Dirichlet-to-Neumann operator Λ is closed in L1× L∞
σ (∂Ω).

Proof of Proof 5.7. Let (h, g) ∈ ΛL1×L∞
σ the closure of the Dirichlet-to-Neumann

operator Λ in L1 × L∞
σ (∂Ω). Then, there is a sequence

((hn, gn))n≥1 ⊆ Λ such that (hn, gn)→ (h, g) in L1(∂Ω)× L∞
σ (∂Ω).

By definition of Λ, for every pair (hn, gn), there are un ∈ BV(Ω) and zn ∈
L∞(Ω; Rd) satisfying

‖zn‖∞ ≤ 1,(5.9)

−div(zn) = 0 in D′(Ω), and(5.10)

(zn, Dun) = |Dun| as Radon measures,(5.11)

gn = [zn, ν] Hd−1-a.e. on ∂Ω,(5.12)

and

(5.13) [zn, ν] ∈ sign
(

hn − Tr(un)
)

Hd−1-a.e. on ∂Ω.



THE DTN-OPERATOR FOR THE 1-LAPLACIAN 37

Now, (5.9) yields that there is a vector field zg ∈ L∞(Ω; Rd) satisfying
‖zg‖∞ ≤ 1 and, after possibly passing to a subsequence of ((hn, gn))n≥1,
one has that

(5.14) zn ⇀ zg weakly∗ in L∞(Ω, Rd).

Therefore and by (5.10), it follows that also the vector field zg satisfies

(5.15) − div(zg) = 0 in D′(Ω).

Thanks to (5.12), (5.9), and since gn → g weakly∗ in L∞(∂Ω), we can pass
to a subsequence, if necessary, to conclude that

‖g‖L∞(∂Ω) ≤ lim inf
n→∞

‖gn‖L∞(∂Ω) ≤ 1.

Now, by (5.10), since zg satisfies (5.15), and (5.14), it follows from Proposi-
tion 2.10 that

(5.16) lim
n→∞

∫
Ω
(zn, Dw) =

∫
Ω
(zg, Dw).

for every w ∈ BV(Ω). Thus, if ξ ∈ L1(∂Ω) and w ∈ BV(Ω) such that
Tr(w) = ξ, then by the generalized integration by parts formula (2.13),
by (5.12), since zg satisfies (5.15), and by (5.16), one sees that∫

∂Ω
g ξ dHd−1 = lim

n→∞

∫
∂Ω

gn ξ dHd−1

= lim
n→∞

∫
∂Ω

[zn, ν] ξ dHd−1

= lim
n→∞

∫
Ω
(zn, Dw) +

∫
Ω

div(zn)w dx

=
∫

Ω
(zg, Dw)

=
∫

∂Ω
[zg, ν] ξ dHd−1.

Since ξ ∈ L1(∂Ω) was arbitrary, we have thereby shown that

(5.17) g = [zg, ν] Hd−1-a.e. on ∂Ω

and

(5.18)
∫

Ω
(zg, Dw) =

∫
∂Ω

[zg, ν] Tr(w)dHd−1 for every w ∈ BV(Ω).

On the other hand, since each un is a weak solution of Dirichlet prob-
lem (3.1) with boundary data hn, Proposition 3.1 yields that∫

Ω
|Dun|+

∫
∂Ω
|Tr(un)− hn|dHd−1

≤
∫

Ω
|Dw|+

∫
∂Ω
|Tr(w)− hn|dHd−1

(5.19)

for every w ∈ BV(Ω). Combining this estimate for some fixed w ∈ BV(Ω)
together with the triangle inequality and the fact that (hn)n≥1 is bounded
in L1(∂Ω), one finds a constant M such that∫

Ω
|Dun|+

∫
∂Ω
|Tr(un)|dHd−1 ≤ M for all n ≥ 1.
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Therefore and by the Maz’ya inequality (2.4), the sequence (un)n≥1 is boun-
ded in BV(Ω). Hence, there is a uh ∈ BV(Ω) such that after possibly pass-
ing to a subsequence, un → uh weakly∗ in BV(Ω). Now, let w ∈ BV(Ω).
Then by (5.19),∫

Ω
|Dun|+

∫
∂Ω
|Tr(un)− h|dHd−1

≤
∫

Ω
|Dun|+

∫
∂Ω
|Tr(un)− hn|dHd−1 +

∫
∂Ω
|hn − h|dHd−1

≤
∫

Ω
|Dw|+

∫
∂Ω
|Tr(w)− hn|dHd−1 +

∫
∂Ω
|hn − h|dHd−1

and so, by the limit hn → h in L1(∂Ω) and by Modica’s convergence result
(Proposition 2.1), one gets that∫

Ω
|Duh|+

∫
∂Ω
|Tr(uh)− h|dHd−1 ≤

∫
Ω
|Dw|+

∫
∂Ω
|Tr(w)− h|dHd−1

for every w ∈ BV(Ω), showing that uh is a minimizer of the relaxed func-
tional Φh given by (3.4). Thus, by Proposition 3.1, uh is a weak solution of
the Dirichlet problem (3.1) with boundary data h. Hence, there is a vector
field zh ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10) with respect to uh.

Now, by (5.10)-(5.13) and the generalized integration by parts formula,
one sees that∫

∂Ω
[zn, ν] hn dHd−1 −

∫
Ω
|Dun|

=
∫

∂Ω
[zn, ν] hn dHd−1 −

∫
∂Ω

[zn, ν] Tr(un)dHd−1

=
∫

∂Ω
[zn, ν] (hn − Tr(un))dHd−1

=
∫

∂Ω
|hn − Tr(un)|dHd−1,

or, equivalently,∫
∂Ω

[zn, ν] hn dHd−1 =
∫

Ω
|Dun|+

∫
∂Ω
|hn − Tr(un)|dHd−1.

Note that the left-hand side in the above equation is ϕ(hn) for the functional
ϕ given by (5.7). Since (hn, gn) → (h, g) in L1(∂Ω)× L∞

σ (∂Ω), and since by
Proposition 5.5, ϕ is continuous, one has that

∫
∂Ω

g h dHd−1 = lim
n→∞

∫
∂Ω

gn hn dHd−1

= lim
n→∞

∫
∂Ω

[zn, ν] hn dHd−1

= lim
n→∞

ϕ(hn) = ϕ(h) =
∫

∂Ω
[zh, ν] h dHd−1.

Hence, we have shown that

(5.20)
∫

∂Ω
[zg, ν] h dHd−1 =

∫
∂Ω

g h dHd−1 =
∫

∂Ω
[zh, ν] h dHd−1.
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Next, we intend to show that

(5.21) (zg, Duh) = |Duh| as Radon measures.

To see this, recall that by (5.20) and since the pair (zh, uh) satisfy (3.7) and
(3.10), one has that∫

∂Ω
[zg, ν] h dHd−1 =

∫
∂Ω

[zh, ν] h dHd−1

=
∫

Ω
|Duh|+

∫
∂Ω
|h− Tr(uh)|dHd−1.

On the other hand, an integration by parts gives∫
∂Ω

[zg, ν]hdHd−1 =
∫

∂Ω
[zg, ν]Tr(uh)dHd−1 +

∫
∂Ω

[zg, ν]
(

h− Tr(uh)
)

dHd−1

=
∫

Ω
(zg, Duh) +

∫
∂Ω

[zg, ν]
(

h− Tr(uh)
)

dHd−1

Combining those two equations, one finds that∫
Ω
(zg, Duh) +

∫
∂Ω

[zg, ν]
(

h− Tr(uh)
)

dHd−1

=
∫

Ω
|Duh|+

∫
∂Ω
|h− Tr(uh)|dHd−1

or, equivalently,∫
Ω
(zg, Duh)−

∫
Ω
|Duh|

=
∫

∂Ω
|h− Tr(uh)| − [zg, ν]

(
h− Tr(uh)

)
dHd−1.

(5.22)

Now,

(5.23) [zg, ν]
(

h− Tr(uh)
)
≤ |h− Tr(uh)| Hd−1-a.e. on ∂Ω

and by (2.9) and ‖zg‖∞ ≤ 1, one has that∣∣∣∣∫Ω
(zg, Duh)

∣∣∣∣ ≤ ‖zg‖∞

∫
Ω
|Duh| ≤

∫
Ω
|Duh|.

Thus at both sides in (5.22), one has that

0 ≥
∫

Ω
(zg, Duh)−

∫
Ω
|Duh|

=
∫

∂Ω
|h− Tr(uh)| − [zg, ν]

(
h− Tr(uh)

)
dHd−1 ≥ 0,

which implies that

(5.24)
∫

Ω
(zg, Duh) =

∫
Ω
|Duh|

and

(5.25)
∫

∂Ω
|h− Tr(uh)| − [zg, ν]

(
h− Tr(uh)

)
dHd−1 = 0.

Since (zg, Du) is absolutely continuous w.r.t. |Duh|, (5.24) implies that (5.21)
holds. Further, by (5.23), (5.25) implies that

[zg, ν](h− Tr(uh))− |h− Tr(uh)| = 0 Hd−1-a.e. on ∂Ω.
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Since [zh, ν] and uh satisfy (3.7), this means that

[zg, ν] = [zh, ν] Hd−1-a.e. on {h 6= Tr(uh)}.

Since ‖[zg, ν]‖∞ ≤ 1, we have thereby shown that

(5.26) [zg, ν] ∈ sign(h− Tr(uh)) Hd−1-a.e. on ∂Ω.

Summarizing, we have shown that for every (h, g) ∈ ΛL1×L∞
σ , there are uh ∈

BV(Ω) and zg ∈ L∞(Ω; Rd) satisfying ‖zg‖∞ ≤ 1, (5.15), (5.17), (5.21),
and (5.26), proving that (h, g) ∈ Λ. �

To complete the proof of Theorem 1.3, it remains to show that the Dirichlet-
to-Neumann operator Λ associated with the 1-Laplace operator satisfies the
range condition

(5.27) Rg (I + λ Λ) = L1(∂Ω)

for some (or, equivalently, for all) λ > 0. But for this, we later use that
the restriction ΛL2 of Λ on L2(∂Ω)× L∞(∂Ω) is m-accretive in L2(∂Ω). This
property of Λ|L2 and the proof of its sub-differential structure is outlined in
the following subsection.

5.2. The Dirichlet-to-Neumann operator in L2. In this subsection, we fo-
cus on the Dirichlet-to-Neumann operator Λ|L2 in L2(∂Ω).

Definition 5.8. We define the Dirichlet-to-Neumann operator Λ|L2 in L2(∂Ω)
associated with the 1-Laplace operator ∆1 by

Λ|L2 = Λ ∩
(

L2(∂Ω)× L2(∂Ω)
)

;

or equivalent, by the set of all pairs (h, g) ∈ L2(∂Ω) × L2(∂Ω) with the
property that there is a weak solution u ∈ BV(Ω) of Dirichlet problem (3.1)
with Dirichlet data h and there is a vector field z ∈ L∞(Ω; Rd) associated
with u (satisfying (3.7)-(3.10)) and

g = [z, ν] Hd−1-a.e. on ∂Ω.

Remark 5.9. Since L2(∂Ω) ⊆ L1(∂Ω), it follows from Remark 5.2 that the
effective domain D(Λ|L2) of the Dirichlet-to-Neumann operator Λ|L2 asso-
ciated with ∆1 satisfies

D(Λ|L2) = L2(∂Ω)

and the operator

(5.28) Λ|L2 ⊆ L2(∂Ω)× BL∞(∂Ω).

It is clear that Λ|L2 is completely accretive in L2(∂Ω) since Λ admits this
property in L1(∂Ω). We can say more about Λ|L2 .

Proposition 5.10. The Dirichlet-to-Neumann operator Λ|L2 in L2(∂Ω) associ-
ated with the 1-Laplace operator ∆1 is cyclically monotone.
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Proof. Let (hj)
n
j=0 ⊆ D(Λ|L2) be a finite cyclic sequence with h0 = hn and

(gj)
n
j=0 a corresponding sequence of elements gj ∈ Λ|L2 hj. Then, for every

j = 0, . . . , n, there is a weak solution uj ∈ BV(Ω) of Dirichlet problem (3.1)
with Dirichlet data hj, (w.l.g., we may assume u0 = un), and there is a
vector field zj ∈ L∞(Ω; Rd) associated with uj (satisfying (3.7)-(3.10)) and

(5.29) gj = [zj, ν] Hd−1-a.e. on ∂Ω.

By applying the generalized integration by parts formula (2.13) to w =
(uj − uj−1) and the vector field zj, and by using (3.9), gives∫

Ω
(zj, D(uj − uj−1)) =

∫
∂Ω

[zj, ν]
(

Tr(uj)− Tr(uj−1)
)

dHd−1

for j = 1, . . . , n. Therefore, by (5.29), the bilinearity of the pairing (·, D·),
and since u0 = un, it follows from the last integral equation that

n

∑
j=1

∫
Ω
(zj, D(uj − uj−1)) =

n

∑
j=1

[∫
Ω
|Duj| −

∫
Ω
(zj, Duj−1)

]

=
n−1

∑
j=1

[∫
Ω
|Duj| −

∫
Ω
(zj+1, Duj)

]
+
∫

Ω
|Dun| −

∫
Ω
(z1, Du0).

By (2.9), (3.10), and since u0 = un, we can conclude that the right hand-side
in the last equation is non-negative and hence, we have shown that

n

∑
j=1

∫
∂Ω

gj

(
Tr(uj)− Tr(uj−1)

)
dHd−1 ≥ 0.

By using now this inequality, one sees that
n

∑
j=1

∫
∂Ω

gj

(
hj − hj−1

)
dHd−1

≥
∫

∂Ω

n

∑
j=1

gj

(
(hj − Tr(uj))− (hj−1 − Tr(uj−1))

)
dHd−1.

(5.30)

By (5.29), since uj satisfies the Dirichlet boundary condition (3.3) in the
weak sense (3.7) with h = hj, and since h0 = hn and u0 = un, one finds
that

n

∑
j=1

gj

(
(hj − Tr(uj))− (hj−1 − Tr(uj−1))

)
=

n

∑
j=1

gj (hj − Tr(uj))−
n

∑
j=1

gj (hj−1 − Tr(uj−1))

=
n

∑
j=1

gj (hj − Tr(uj))−
n−1

∑
j=0

gj+1 (hj − Tr(uj))

=
n−1

∑
j=1
|hj − Tr(uj)| − [zj+1, ν](hj − Tr(uj))
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+ |hn − Tr(un)| − [z1, ν](h0 − Tr(u0)) ≥ 0

forHd−1-a.e. on ∂Ω. Applying this to (5.30) yields that
n

∑
j=1

∫
∂Ω

gj

(
hj − hj−1

)
dHd−1 ≥ 0,

and since the cyclic sequence (hj)
n
j=0 ⊆ D(Λ|L2) was arbitrary, we have

thereby shown that Λ|L2 is cyclically monotone. �

Proposition 5.11. The Dirichlet-to-Neumann operator Λ|L2 associated with the
1-Laplace operator satisfies the range condition (2.26) for X = L2(∂Ω).

Proof. Let g ∈ L2(∂Ω) and λ > 0. Then, our aim is to find a boundary
function h ∈ L2(∂Ω) such that the inclusion

(5.31) h + λΛ|L2 h 3 g

holds. By the definition of Λ|L2 , inclusion (5.31) is equivalent to the fact
that there is a vector field z ∈ L∞(Ω; Rd) and a weak solution u ∈ BV(Ω)
of Dirichlet problem (3.1) with Dirichlet data h related through (3.7)-(3.10)
and the weak trace [z, ν] of the normal component of z is uniquely given by

g− h
λ

= [z, ν] Hd−1-a.e. on ∂Ω.

Since ‖[z, ν]‖∞ ≤ 1, it is natural to impose on the vector field z the condition

(5.32) [z, ν] = T1

(
g− h

λ

)
Hd−1-a.e. on ∂Ω,

where T1 denotes the truncator introduced in Section 4. Thus, if we find
a boundary function h such that there is a weak solution u to the elliptic
boundary-value problem

(5.33)


−∆1u = 0 in Ω,

u = h on ∂Ω,
Du
|Du| · ν = T1

(
g− h

λ

)
on ∂Ω,

then h is a solution to the inclusion (5.31).

Definition 5.12. For given g ∈ L2(∂Ω) and λ > 0, we call a function u ∈
BV(Ω) a weak solution of boundary problem (5.33) if there is a vector field
z ∈ L∞(Ω; Rd) satisfying (3.8)-(3.10) and the weak trace [z, ν] satisfies (5.32)
and

(5.34)
g− h

λ
∈ sign(h− Tr(u)) Hd−1-a.e. on ∂Ω.

According to Theorem 4.2, there is a weak solution u of the Robin-type
boundary-value problem (4.1) with α = λ; that is, u ∈ BV(Ω) with trace
Tr(u) ∈ L2(∂Ω), and there is a vector field z ∈ L∞(Ω; Rd) satisfying (3.8)-
(3.10), and

[z, ν] = T1(g− λu) Hd−1-a.e. on ∂Ω.
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Now, according to Proposition 4.3, u is also a weak solution of Dirichlet
problem (3.1) for Dirichlet data

h := g− λ [z, ν].

Since for this choice of h, one trivially has that
g− h

λ
= [z, ν], one easily ver-

ifies that u, h and z satisfy (5.32) and (5.34). Moreover, since h ∈ L2(∂Ω),
we have thereby shown that there is a h satisfying the inclusion (5.31), com-
pleting the proof of Proposition 5.11. �

We conclude this section with the following characterization of the Dirich-
let-to-Neumann operator Λ|L2 on L2(∂Ω).

Proposition 5.13. The Dirichlet-to-Neumann operator Λ|L2 in L2(∂Ω) can be
characterized as the sub-differential operator ∂L2(∂Ω)ϕ|L2 in L2(∂Ω); that is,

Λ|L2 = ∂L2(∂Ω)ϕ|L2

where ϕ|L2 denotes the restriction on L2(∂Ω) of the functional ϕ given by (5.7).

We prove Proposition 5.13 in two different ways.

1st Proof of Proposition 5.13. By Proposition 5.10 and Proposition 5.11, the
Dirichlet-to-Neumann operator ΛL2 is a maximal cyclically monotone op-
erator in L2(∂Ω). Moreover, by Proposition 5.4 and since ΛL2 ⊆ Λ, we have
that ΛL2 is homogeneous of order zero. Therefore by Theorem 2.15, there
is a unique proper, convex, lower semicontinuous functional φ on L2(∂Ω),
which is homogeneous of order one satisfying ΛL2 = ∂L2(∂Ω)φ. Since φ is
homogeneous of order one, it follows from (2.32) that φ satisfies

φ(h) =
∫

∂Ω
g h dHd−1 for every (h, g) ∈ ΛL2 .

By definition of ΛL2 , for every (h, g) ∈ ΛL2 there is a vector field zh ∈
L∞(Ω; Rd) and uh ∈ BV(Ω) satisfying (3.7)-(3.10), and g = [z, ν]. From
this, we can conclude that

φ(h) =
∫

∂Ω
[z, ν] h dHd−1 = ϕ(h)

for every h ∈ L2(∂Ω), which identifies the functional φ with ϕ. �

The argument of our second proof of Proposition 5.13 is a bit shorter.

2nd Proof of Proposition 5.13. On the other hand, the restriction ϕ|L2 of the
functional ϕ given by (5.7) on L2(∂Ω) is by Proposition 5.5, convex, proper,
lower semicontinuous on L2(∂Ω) and homogeneous of order one. More-
over, by following the same argument as in the proof of Proposition 5.6,
one easily sees that ΛL2 ⊆ ∂L2(∂Ω)ϕ|L2 , which means that ∂L2(∂Ω)ϕ|L2 is a
monotone extension of ΛL2 . But since ΛL2 is maximal monotone, this is
only possible if ΛL2 = ∂L2(∂Ω)ϕ|L2 (see [14, Proposition 2.2]), which proves
the claim of Proposition 5.13. �
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5.3. The Dirichlet-to-Neumann operator in L1 (continued). With this in
mind, we can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3. We only show that Λ satisfies the range condition (5.27)
since then the characterization (1.7) follows from Proposition 2.23 and the
other statements of this theorem were proved in the beforegoing proposi-
tions. By Proposition 5.11, the restriction Λ|L2 of Λ on L2(∂Ω) satisfies the
range condition (2.26) for X = L2(∂Ω). Thus and since Λ|L2 ⊆ Λ, we have
that Λ satisfies the range condition (5.31) for every g ∈ L2(∂Ω). Now, let
g ∈ L1(∂Ω) and choose a sequence (gn)n≥1 in L2(∂Ω) such that gn → g in
L1(∂Ω). Then, for every n ≥ 1, there is an hn ∈ L2(∂Ω) satisfying (5.31)
with right hand-side gn. By Proposition 5.3, (hn)n≥1 is a Cauchy sequence
in L1(∂Ω). Hence, there is an h ∈ L1(∂Ω) such that hn → h in L1(∂Ω). Now,

Λ|L2 hn 3
gn − hn

λ
→ g− h

λ
in L1(∂Ω) as n→ ∞.

Note, that the sequence ((gn− hn)/λ)n≥1 is also bounded in L∞(∂Ω). Thus,
after passing to a subsequence, we also have that (gn− hn)/λ→ (g− h)/λ
weakly∗ in L∞(∂Ω). Since by Proposition 5.7, Λ is closed in L1 × L∞

σ (∂Ω),
we have thereby shown that

Λh =
g− h

λ
,

which is equivalent to the range condition (2.26) for X = L1(∂Ω). This
completes the proof of this theorem. �

Next, we outline the proof of Theorem 1.9.

Proof of Theorem 1.9. By Proposition 5.13 and the Hilbert space theory on
maximal monotone operators (see [14]), for every h0 ∈ L2(∂Ω) and g ∈
L2(0, T; L2(∂Ω)), there is a unique strong solution

h ∈W1,2([δ, T); L2(∂Ω)) ∩ C([0, ∞); L2(∂Ω)), δ ∈ (0, T),

of Cauchy problem (in L2(∂Ω))

(5.35)


dh
dt

(t) + Λh(t) + F(h(t)) 3 g(t) for t ∈ (0, T),

h(0) = h0. on ∂Ω.

Under the hypothesis that f (·, h) satisfies either (1.12) or (1.16), the function
G : L2(∂Ω)→ R defined by

(5.36) G(h) :=
∫

∂Ω

∫ h(x)

0
f (x, r)dr dHd−1

is C1(L2(∂Ω); R) with derivative G′(h) = F(h). Hence, the following chain
rule holds

d
dt

G(h(t)) = (G′(h(t)),
dh
dt

(t))L2(∂Ω) = (F(h(t)),
dh
dt

(t))L2(∂Ω)
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for every h ∈ W1,2(0, T; L2(∂Ω)). Thus and by [14, Lemme 3.3] applied to
the second functional ϕ in E , we get

(5.37)
∥∥∥∥dh

dt
(t)
∥∥∥∥2

2
+

d
dt
E(h(t)) =

(
g(t),

dh
dt

(t)
)

L2(∂Ω)
for a.e. t > 0.

Now, since E is defined for all h ∈ L2(∂Ω), we can integrate the latter
equation over the whole interval (0, t) for any t ∈ (0, T). Then, we find∫ t

0

∥∥∥∥dh
ds

(s)
∥∥∥∥2

2
ds + E(h(t)) = E(h0) +

∫ t

0

(
g(s),

dh
ds

(s)
)

L2(∂Ω)
ds.

Now, applying Young’s inequality to compensate the term
dh
ds

(s) on the
right-hand side, we arrive to the global estimate (1.17). This proves state-
ment (2) of Theorem 1.9 and that the global inequality (1.17) holds for initial
data h0 ∈ L2(∂Ω).

Next, suppose that f (x, h) satisfies (1.16), and let g ∈ L2(0, T; L2(∂Ω)),
h0 ∈ L1(∂Ω), and (h0,n)n≥1 a sequence in L2(∂Ω) converging to h0 in L1(∂Ω).
Since ∂Ω has finite measure, each strong solutions hn of Cauchy problem
(in L2(∂Ω))

(5.38)


dhn

dt
(t) + Λhn(t) + F(hn(t)) 3 g(t) for t ∈ (0, T),

hn(0) = h0,n. on ∂Ω.

is also a strong solution in L1(∂Ω) of (5.38). Moreover, by Corollary 1.8,

(5.39) lim
n→∞

hn = h in C([0, T]; L1(∂Ω))

and h is the unique mild solution of Cauchy problem (5.35) in L1(∂Ω). Un-
der the condition (1.16) on f , the functional E defined by (1.15) can be ex-
tended continuously on L1(∂Ω) and so, we can apply hn to the global in-
equality (1.17). Thus, one finds that the sequence(

dhn

dt

)
n≥1

is bounded in L2(0, T; L2(∂Ω)).

Hence, there is a χ ∈ L2(0, T; L2(∂Ω)) and a subsequence of (hn)n≥1, which,
for simplicity, we denote again by (hn)n≥1, such that

(5.40) lim
n→∞

dhn

dt
= χ weakly in L2(0, T; L2(∂Ω)).

Let ξ ∈ C∞
c (0, T) and v ∈ L2(∂Ω). Since

dhn

dt
is the weak derivative of hn in

L2(0, T; L2(∂Ω)), one has that∫ T

0
(

dhn

dt
, v)L2(∂Ω))ξ(t)dt = −

∫ T

0
(hn, v)L2(∂Ω))

d
dt

ξ(t)dt.

By (5.39) and (5.40), sending n→ ∞ in the last equation gives that∫ T

0
(χ(t), v)L2(∂Ω))ξ(t)dt = −

∫ T

0
(h, v)L2(∂Ω))

d
dt

ξ(t)dt.



46 DANIEL HAUER AND JOSÉ M. MAZÓN

Since ξ ∈ C∞
c (0, T) and v ∈ L2(∂Ω) were arbitrary, this proves that χ is the

weak derivative of h in L2(0, T; L2(∂Ω)). Coming back to inequality (1.17)
applied to hn, if one takes the limit inferior in this inequality, and uses that
E is continuous on L1(∂Ω), then one sees that (1.17) also holds for initial
data h0 ∈ L1(∂Ω), completing the proof of statement (1) of this theorem.
Statement (2) follows from [14] and inequality (1.17). Statement (3) of The-
orem 1.9 follows immediately from [29], which completes the proof of The-
orem 1.9. �

5.4. Long-time Stability. In this section, we give the proof of Theorem 1.12
on the long-time stability of the semigroup {e−t(Λ|Lq+F)}t≥0 generated by
−(Λ|Lq(∂Ω) + F) on Lq(∂Ω).

We begin by the following proposition.

Proposition 5.14. Let F be given by (1.11) with f satisfying (1.12), and ϕ be the
functional given by (5.7). Then the following statements hold.

(1) For every h0 ∈ L1(∂Ω), the functional E : L1(∂Ω)→ R defined by

E(h) := ϕ(h) +
∫

∂Ω

∫ h(x)

0
f (x, r)dr dHd−1, h ∈ L1(∂Ω),

decreases monotonically along the trajectory {e−t(Λ+F)h0 | t ≥ 0};
(2) If F ≡ 0, then one has that

(5.41) 〈 d
dt

e−tΛh0, e−tΛh0〉L∞,L1 = −ϕ(e−tΛh0)

for a.e. t > 0 and every h0 ∈ L1(∂Ω).
(3) If F ≡ 0, then for every positive h0 ∈ L1(∂Ω), e−tΛh0 ∈ L∞(∂Ω), one

has that

(5.42) ϕ(e−tΛh0) ≤ −
1
t
‖e−tΛh0‖2

2 ≤ 0

Proof. By taking g ≡ 0 in (5.37), and subsequently integrating over (s, t) for
any 0 ≤ s ≤ t, one finds

E(e−t(Λ+F)h0) ≤ E(e−s(Λ+F)h0),

showing that E is decreasing along {e−t(Λ+F)h0 | t ≥ 0} provided the initial
data h0 ∈ L2(∂Ω). But for given h0 ∈ L1(∂Ω), there is a sequence (h0,n)n≥1

in L2(∂Ω) converging to h in L1(∂Ω). By Corollary 1.8, e−t(Λ+F)h0,n →
e−t(Λ+F)h0 in C([0, T]; L1(∂Ω)) for every T > 0. Thus and by the continuity
of E on L1(∂Ω), for given 0 ≤ s ≤ t, we can send n→ ∞ in

E(e−t(Λ+F)h0,n) ≤ E(e−s(Λ+F)h0,n)

and find that E is decreasing along {e−t(Λ+F)h0 | t ≥ 0} for any initial data
h0 ∈ L1(∂Ω). It remains to show that (5.41) holds. For this, we note that by
Theorem 1.9, for every h0 ∈ L1(∂Ω), h(t) := e−t(Λ+F)h0 is a strong solution
of the Cauchy problem (in L1(∂Ω))

dh
dt

(t) + Λh(t) 3 0 for t ∈ (0, T),

h(0) = h0. on ∂Ω.
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Hence, multiplying by h(t) and using that ϕ is homogeneous of order one,
yields (5.41).

�

For the rest of this section, we focus on the case F ≡ 0. Then, we have
the following.

Proposition 5.15. The semigroup {e−tΛ}t≥0 generated by the negative Dirichlet-
to-Neumann operator−Λ on L1(∂Ω) conserves mass; in other words, one has that

(5.43)
∫

∂Ω
h0 dHd−1 =

∫
∂Ω

e−tΛh0 dHd−1

for all t ≥ 0 and h0 ∈ L1(∂Ω).

Proof. Recall that by Theorem 1.9, for every h0 ∈ L1(∂Ω), h(t) := e−tΛh0 is
a strong solution of the Cauchy problem (in L1(∂Ω))

(5.44)


dh
dt

(t) + Λh(t) 3 0 for t ∈ (0, T),

h(0) = h0. on ∂Ω.

Hence, for a.e. t > 0, there is a weak solution uh(t) ∈ BV(Ω) of Dirichlet
problem (3.1) and a vector field zh(t) ∈ L∞(Ω; Rd) satisfying (3.7)-(3.10)
with boundary data h(t), and the generalized co-normal derivative

(5.45) [zh(t), ν] = −dh
dt

(t) Hd−1-a.e. on ∂Ω.

Let 1Ω denote the constant 1 function on Ω. Multiplying (5.45) by Tr(1Ω) =
1∂Ω with respect to the L2-inner product and then, integrating by parts
(Proposition 2.9) yields that

− d
dt

∫
∂Ω

h(t)1dHd−1 = −
∫

∂Ω

dh
dt

(t)1dHd−1

=
∫

∂Ω
[zh(t), ν]1dHd−1

=
∫

Ω
(zh(t), D1) = 0.

Hence, integrating this equation over (0, t) for any t > 0, shows that (5.43)
holds. �

Next, we establish the long-time convergence in Lq(∂Ω) of the semi-
group {e−tΛ}t≥0.

Proposition 5.16. Let 1 ≤ q < ∞, ϕ given by (5.7), and h0 ∈ Lq(∂Ω). Then,
the following statements hold.

(1) One has that

(5.46) lim
t→∞

e−tΛh0 = h0 := 1
Hd−1(∂Ω)

∫
∂Ω

e−tΛh0 dHd−1 in Lq(∂Ω);

(2) One has that

(5.47) lim
t→∞

ϕ(e−tΛh0) = ϕ(h0) = 0;
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(3) (Entropy-Transport inequalities) There is a C > 0 such that

‖e−tΛh0 − h0‖1 ≤ C ϕ(e−tΛh0) for all t > 0;

Moreover, for every 1 < q < r ≤ ∞ and h0 ∈ Lr(∂Ω), one has that

‖e−tΛh0 − h0‖q ≤ ‖h0 − h0‖
(q−1)r
q(r−1)
r C

(
ϕ(e−tΛh0)

) r−q
q(r−1)

(4) For every h0 ∈ L2(∂Ω), one has that

(5.48) ϕ(e−tΛh0) ≤ 2
‖h0‖2

2
t

for all t > 0.

Proof. We first establish (5.46) for h0 ∈ L2(∂Ω). Since the functional ϕ
given by (5.7) is even, and since the Dirichlet-to-Neumann operator Λ|L2

is the sub-differential operator of the restriction ϕ|L2 of ϕ on L2(∂Ω), the
limit (5.46) follows from a classic result due to Bruck [15, Theorem 5] in
the Hilbert space theory. Moreover, by the continuity of ϕ|L2 on L2(∂Ω), it
follows that (5.47) holds.

Next, let h0 ∈ Lq(∂Ω) for a given 1 ≤ q ≤ ∞. One can always con-
struct a sequence (h0,n)n≥1 in L∞(∂Ω) such that h0,n → h0 in Lq(∂Ω) and by
the continuous embedding from Lq(∂Ω) into L1(∂Ω), one also has that the
mean-values h0,n → h0 in R as n → ∞. If q = ∞, then one simply choose
the sequence (h0,n)n≥1 given by h0,n ≡ h0 for all n ≥ 1. Then, for given
ε > 0, there is a n0 = n0(ε) ∈N large enough such that

‖h0,n − h0‖q <
ε

3
and ‖h0,ε − h0‖q <

ε

3
.

Since each e−tΛ is a contractive in Lq(∂Ω), one has that

‖e−tΛh0 − h0‖q ≤ ‖e−tΛh0 − e−tΛh0,n0‖q + ‖e−tΛh0,n0 − h0,n0‖q

+ ‖h0,n0 − h0‖q

≤ ‖h0 − h0,n0‖q + ‖e−tΛh0,n0 − h0,n0‖q

+ ‖h0,n0 − h0‖q

≤ 2
ε

3
+ ‖e−tΛh0,n0 − h0,n0‖q.

Thus, in order to prove (5.46) in Lq(∂Ω) for general h0 ∈ Lq(∂Ω), it is suffi-
cient to establish (5.46) for h0 ∈ L∞(∂Ω). So, let h0 ∈ L∞(∂Ω). Since h0 also
belongs to L2(∂Ω), the first part of this proof implies that e−tΛh0 → h0 in
L2(∂Ω) as t → ∞. If q < 2, then by the continuous embedding of L2(∂Ω)
into Lq(∂Ω), one has that (5.46) needs to be true also in this case. Thus, let’s
focus now on the case 2 < q ≤ ∞. Since h0 ∈ L∞(∂Ω), by the contractivity
property of e−tΛ in L∞(∂Ω), and by the fact that

e−tΛ(c1∂Ω) = c1∂Ω Hd−1-a.e. on ∂Ω for all t ≥ 0,

one sees that

‖e−tΛh0 − h0‖q ≤ ‖e−tΛh0 − h0‖
q−2

q
∞ ‖e−tΛh0 − h0‖

2
q
2

≤ ‖h0 − h0‖
q−2

q
∞ ‖e−tΛh0 − h0‖

2
q
2 → 0
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as t → ∞. This completes the proof of statement (1) and by using the
continuity of the functional ϕ, it follows that (1) implies (2). To see that (3)
holds, we recall that by Theorem 3.6,

(5.49) ϕ(e−tΛh0) =
∫

Ω
|Due−tΛh0

|+
∫

∂Ω
|e−tΛh0 − Tr(ue−tΛh0

)|dHd−1

for every t > 0, where Due−tΛh0
∈ BV(Ω) denotes a weak solution of Dirich-

let problem (3.1) with boundary data e−tΛh0. Further, by the Poincaré trace-
inequality (2.3) for BV-functions, there is a constant Cp > 0 such that

(5.50) ‖Tr(ue−tΛh0
)− Tr(ue−tΛh0

)‖1 ≤ Cp

∫
Ω
|Due−tΛh0

|.

Now, by using (5.49), (5.50), and (5.43), then one finds that

∫
∂Ω
|e−tΛh0 − h0|dHd−1 ≤

∫
∂Ω
|e−tΛh0 − Tr(ue−tΛh0

)|dHd−1

+
∫

∂Ω
|Tr(ue−tΛh0

)− Tr(ue−tΛh0
)|dHd−1

+
∫

∂Ω
|Tr(ue−tΛh0

)− h0|dHd−1

≤
∫

∂Ω
|e−tΛh0 − Tr(ue−tΛh0

)|dHd−1

+ Cp

∫
Ω
|Due−tΛh0

|

+

∣∣∣∣∫
∂Ω

(
Tr(ue−tΛh0

)− h0
)
dHd−1

∣∣∣∣
=
∫

∂Ω
|e−tΛh0 − Tr(ue−tΛh0

)|dHd−1

+ Cp

∫
Ω
|Due−tΛh0

|

+

∣∣∣∣∫
∂Ω

(
Tr(ue−tΛh0

)− e−tΛh0
)
dHd−1

∣∣∣∣
≤ 2

∫
∂Ω
|e−tΛh0 − Tr(ue−tΛh0

)|dHd−1

+ Cp

∫
Ω
|Due−tΛh0

|

≤ (2 + Cp) ϕ(e−tΛh0)

for all t ≥ 0, proving (3). Finally, to see that (5.48) holds, one simply ap-
plies (1.19) to

[ze−tΛh0
, ν] = −dh

dt+
(t) Hd−1-a.e. on ∂Ω,
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where the vector field ze−tΛh0
∈ L∞(Ω; Rd) is such that [ze−tΛh0

, ν] = Λ◦(e−tΛh0).
Then one finds that

ϕ(e−tΛh0) =
∫

∂Ω
[ze−tΛh0

, ν]e−tΛh0 dHd−1

≤
∫

∂Ω
|[ze−tΛh0

, ν]| |e−tΛh0|dHd−1

≤ 2
∫

∂Ω

|e−tΛh0|2
t

dHd−1

for all t > 0. This completes the proof of this proposition.
�
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