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Abstract. Urysohn’s Lemma is a crucial property of normal spaces that deals with separation

of closed sets by continuous functions. It is also a fundamental ingredient in proving the

Tietze Extension Theorem, another property of normal spaces that deals with the existence
of extensions of continuous functions. Using the Cantor function, we give alternative proofs

for Urysohn’s Lemma and the Tietze Extension Theorem.

1. Introduction

Urysohn’s Lemma provides the means for proving big theorems in topology such as Urysohn’s
metrization theorem (see Urysohn’s final1 paper [17]) and the Tietze Extension Theorem proved
by Tietze [15] for metric spaces and generalised by Urysohn [16] to normal spaces. For further
details, see [6]. Using the Cantor function, we give new proofs for Urysohn’s Lemma (in Section 2)
and the Tietze Extension Theorem (in Section 3). Urysohn’s Lemma, the origin of which is in
the third appendix to Urysohn’s paper [16], gives a property that characterises normal spaces2:

Theorem 1.1 (Urysohn’s Lemma). If A and B are disjoint closed subsets of a normal space X,
then there exists a continuous function f : X → [0, 1] such that f = 0 on A and f = 1 on B.

Munkres, the author of the popular book [11], regards the Urysohn Lemma as “the first deep
theorem of the book” (see p. 207 in [11]). He adds that “it would take considerably more
originality than most of us possess to prove this lemma unless we were given copious hints.” For
the standard proof of Urysohn’s Lemma, see [8, p. 115], [11, p. 207] or [19, p. 102].

A function as in Theorem 1.1 is called a Urysohn function. Its existence is crucial to any of the
many approaches to the Tietze Extension Theorem ([1, 7, 10, 12, 13]). But, surprisingly, apart
from the classical one, it seems that no other constructions of a Urysohn function are known.

We reduce the proof of Theorem 1.1 to the case of a connected normal space when we construct
a new Urysohn function. Our argument neither relies on nor reduces to the standard proof (see
Remark 2.1). We use the Cantor set and Cantor function, which we introduce next.

Algebraically, a point p ∈ [0, 1] is in the Cantor set C if and only if p has a ternary expansion
that does not use digit 1. We thus write p = 0.p1p2 . . . pk . . .3, where pk ∈ {0, 2} for every k ≥ 1.
(The subscript 3 indicates that the expansion is in base 3.) Geometrically, we construct the
Cantor set as follows. Starting with the interval [0, 1], we remove its open middle third interval
(1/3, 2/3). We apply the same process to the remaining intervals [0, 1/3] and [2/3, 1]. The Cantor
set C is the set of points in [0, 1] that remain after continuing this removal process ad infinitum.
At each stage n ≥ 1 in this construction, we remove 2n−1 open intervals (α(n), β(n)), where

α(n) = 0.α
(n)
1 . . . α

(n)
n−113, β(n) = 0.α

(n)
1 . . . α

(n)
n−123. (1.1)

Date: February 29, 2020.

1991 Mathematics Subject Classification. Primary 54D15; Secondary 54C05, 54C99.
Key words and phrases. Urysohn’s Lemma, normal space, Cantor set.
1At the age of only 26, he drowned while swimming in the ocean.
2A topological space X is normal if every disjoint closed subsets of X can be included in disjoint open sets.

1
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Here, α
(n)
k ∈ {0, 2} for each 1 ≤ k ≤ n − 1. Let L = ∪∞n=1Ln, where Ln is the collection of all

points α(n) with a ternary representation as in (1.1). Hence, L1 = {1/3} and L2 = {1/9, 7/9}.
Now, L is countable and dense in C (but not dense in [0, 1]). All the numbers in L are “endpoints”
and right limit points of C. (Each number in L has a ternary expansion consisting entirely of 0s
and 2s. For example, 1 = 0.222 . . .3, 1/3 = 0.0222 . . .3 and 7/9 = 0.20222 . . .3.)

The Cantor function Φ : [0, 1]→ [0, 1] is continuous, non-decreasing and surjective. It is given

by Φ =
∑n−1
k=1 α

(n)
k 2−k−1+2−n on

[
α(n), β(n)

]
and Φ(p) =

∑∞
k=1 pk2−(k+1) for every p ∈ C, where

p = 0.p1p2 . . . pk . . .3 with pk ∈ {0, 2} for every k ≥ 1. The binary expansion of any y ∈ [0, 1]
can be translated into a ternary representation of a number p ∈ C by replacing all the 1s by 2s.
Hence, Φ(C) = [0, 1] and Φ(L) = D \ {0, 1}, where D is the set of all dyadic rationals in [0, 1].

Notation. Fix α(n) ∈ Ln and β(n) = α(n) + 3−n. For k ≥ 1, let q
(n)
k := α(n) − 2 · 3−n−k

and `
(n)
k := β(n) + 3−n−k. Then, {q(n)k }k and {`(n)k }k are strictly monotone sequences in Ln+k

converging to α(n) and β(n), respectively, satisfying Φ(q
(n)
k )↗ Φ(α(n)) and Φ(`

(n)
k )↘ Φ(α(n)) as

k →∞. If p∗ = max {p ∈ ∪nj=1Lj ∪{0} : p < α(n)} and p∗ = min {p ∈ ∪nj=1Lj ∪{1} : p > β(n)},
then p∗, α

(n) and p∗ are consecutive points in ∪nj=1Lj ∪ {0, 1}.

2. Proof of Urysohn’s Lemma

The connected components of any topological space X form a partition of X and each con-
nected component of X is closed. Since normality is closed-hereditary, it is sufficient to prove
Urysohn’s Lemma when X is a connected normal space. Suppose A and B are disjoint closed
subsets of such a space X. Set U0 := A and U1 := X \B.
Step 1. We inductively generate a family {Up}p∈L of open neighbourhoods of A such that

Up ⊂ Uq for all p, q ∈ ∪n≥1Ln ∪ {1} with p < q. For n = 1, by the normality of X, the set U1

contains (strictly) the closure of an open neighbourhood U1/3 of A.
Fix n ≥ 1. Assume that {Up}p∈∪n

j=1Lj
is a family of open neighbourhoods of A satisfying

Up ⊂ Uq for all p, q ∈ ∪nj=1Lj ∪ {1} with p < q. (Bn)

Let α(n) ∈ Ln be arbitrary. Then, q
(n)
1 ∈ (p∗, α

(n)) and `
(n)
1 ∈ (α(n), p∗) are consecutive points in

Ln+1. By the induction assumption, Up∗ and Uα(n) are open neighbourhoods of Uα(n) and Up∗ ,

respectively. Thus, Up∗ contains the closure of an open neighbourhood U
`
(n)
1

of Uα(n) , whereas

Uα(n) contains the closure of an open neighbourhood U
q
(n)
1

of Up∗ . The collection of all U
q
(n)
1

and

U
`
(n)
1

obtained by varying α(n) ∈ Ln yields the family {Uq}q∈Ln+1 of open sets satisfying (Bn+1).

Step 2. We define g = 1 on X \ U1, g = 0 on A and g(x) = inf {p ∈ L : x ∈ Up} for every

x ∈ U1 \ A. If g(x) > p for p ∈ L, then x 6∈ Up. Otherwise, x ∈ Uq for every q ∈ L with q > p.
Then, g(x) ≤ q. By letting q ∈ L with q ↘ p, we arrive at g(x) ≤ p, which is a contradiction.

Let F = Φ ◦ g on X. Then, F = 0 on A and F = 1 on B. We prove that F : X → [0, 1] is
continuous. For any ζ ∈ D \ {0, 1}, there exist n ≥ 1 and α(n) ∈ Ln such that ζ = Φ(α(n)).

We have F−1([0, ζ)) = ∪ξ∈L∩(0,α(n))Uξ. Indeed, if x ∈ Uξ for ξ ∈ L ∩ (0, α(n)), then g(x) ≤ ξ,
which gives that F (x) = Φ(g(x)) ≤ Φ(ξ) < Φ(α(n)) = ζ. Conversely, if x ∈ F−1([0, ζ)), then

F (x) < Φ(q
(n)
k ) < ζ by taking k ≥ 1 large enough. Hence, g(x) < q

(n)
k so that x ∈ U

q
(n)
k

.

Similarly, we see that F−1((ζ, 1]) = ∪η∈L∩(β(n),1)(X \ Uη). Indeed, let x ∈ X \ Uη for η ∈ L
with η > β(n). Then, g(x) ≥ η and, hence, F (x) ≥ Φ(η) > ζ. Conversely, if x ∈ F−1((ζ, 1]),

then F (x) > Φ(`
(n)
k ) > ζ for k ≥ 1 large enough. We have g(x) > `

(n)
k and, hence, x 6∈ U

`
(n)
k

.

As S = {[0, τ), (τ, 1] : 0 < τ < 1} is a subbase for [0, 1] and D is dense in [0, 1], the continuity
of F follows using that F−1([0, ζ)) and F−1((ζ, 1]) are open for any dyadic rational ζ in (0, 1). �
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Remark 2.1. The standard approach of Urysohn’s Lemma comprises three steps: (i) construction
of a family {Ur}r∈D of open sets indexed by3 the dyadic rationals r = j/2k in the interval [0, 1]
such that A ⊆ U0, B = X \ U1 and Ur ⊆ Us whenever r < s; (ii) verification by induction that
the family of open sets {Ur}r∈D has the required properties; (iii) construction of the continuous
function: f(x) = inf{r : x ∈ Ur} for x ∈ X \B and f = 1 on B.

We observe that for our family {Up}p∈L of open sets, the index set L is not dense in [0, 1]. It
is dense in the Cantor set. Moreover, the continuity of our Urysohn function F (= Φ ◦ g) follows
essentially as a result of composing the Cantor function with g. And g is never continuous on the
connected space X since g takes values in the Cantor set (a perfect set that is nowhere dense).

3. Proof of the Tietze Extension Theorem

Using our new Urysohn function, we give an alternative proof of the Tietze Extension Theorem
(see Theorem 3.1). We use the following result, which is easy to establish (see [12, Lemma 1]).

Lemma 1. Let E and Y be closed subspaces in a normal space X and let U be an open neigh-
bourhood of Y in X. Let a subset C of E be a closed neighbourhood in E of Y ∩ E such that
C ⊆ U ∩ E. Then, Y admits a closed neighbourhood Z that is included in U and Z ∩ E = C.

Theorem 3.1. Let E be a closed subspace of a normal space X. Then, every continuous function
f : E → [0, 1] can be extended to a continuous function F : X → [0, 1].

Proof. As for Urysohn’s Lemma, we can assume that X is a connected normal space.
Case I. Let f : E → [0, 1] be a continuous and surjective function. The sets A = f−1(0) and
B = f−1(1) are disjoint and closed in E (and, hence, in X). Define U0 = A and U1 = X \B.

For Z ⊆ X, we set Zc := X \Z. We construct open neighbourhoods {Up}p∈L of A as in Step 1
of Urysohn’s Lemma and, in addition, Up ∩ E = f−1([0,Φ(p))) for every p ∈ L. More precisely,
for each n ≥ 1, we generate open neighbourhoods {Uq}q∈Ln

of A satisfying (Bn) and

U cq ∩ E = f−1([Φ(q), 1]) for every q ∈ Ln. (Dn)

By Lemma 1, B has a closed neighbourhood U c1/3 contained in Ac with U c1/3∩E = f−1([1/2, 1]).

This proves the claim for n = 1. For n ≥ 1, assume that {Up}p∈∪n
j=1Lj is a family of open

neighbourhoods of A satisfying (Bn) and (Dn). For fixed α(n) ∈ Ln, let p∗, p
∗, q

(n)
1 and `

(n)
1 be as

in §2. Using the induction assumption and Lemma 1, we find that U cp∗ has a closed neighbourhood

U c
`
(n)
1

contained in (Uα(n))c and (Dn+1) holds for q = `
(n)
1 ∈ Ln+1. Similarly, U c

α(n) has a closed

neighbourhood U c
q
(n)
1

contained in (Up∗)c and (Dn+1) holds for q = q
(n)
1 ∈ Ln+1. All U

q
(n)
1

and

U
`
(n)
1

obtained by varying α(n) ∈ Ln yield the family {Uq}q∈Ln+1
satisfying (Bn+1) and (Dn+1).

Let F : X → [0, 1] be our Urysohn function associated to {Up}p∈L. For any ζ ∈ D \ {0, 1},
there exist n ≥ 1 and α(n) ∈ Ln with ζ = Φ(α(n)) = Φ(β(n)). By the density of L in C, for every
ρ ∈ L with ρ > β(n), there exists η ∈ L ∩ (β(n), ρ), which yields that U cρ ⊆ X \ Uη. Then, by

Step 2 in §2, F−1((ζ, 1]) = ∪{U cρ : ρ ∈ L, ρ > β(n)} and F−1([0, ζ)) = ∪{Uξ : ξ ∈ L, ξ < α(n)}.
Thus, E ∩ F−1((ζ, 1]) = f−1((ζ, 1]) and E ∩ F−1([0, ζ)) = f−1([0, ζ)). These equalities extend
to every ζ ∈ (0, 1) by density of D in [0, 1]. Hence, F : X → [0, 1] is a continuous extension of f .
Case II. Let h : E → [0, 1] be any continuous function (E ⊂ X is closed). We choose open
sets V1 and V2 such that E ⊂ V1 and V1 ⊂ V2. Urysohn’s Lemma gives a continuous function
ϕ : X → [0, 1] with ϕ = 0 on V1 and ϕ = 1 on V c2 . We have ϕ(V2\V1) = [0, 1] by the connectedness
of X. If f = ϕ on V2 \ V1 and f = h on E, then f : (V2 \ V1) ∪ E → [0, 1] is continuous and
surjective. By Case I, f (and thus h) has a continuous extension F : X → [0, 1]. �

3The index set D can be any subset of Q that is dense in [0, 1].
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4. Notes on the Cantor set and Cantor function

The Cantor set4 and Cantor function are two of Cantor’s ingenious creations that go back to
1883. During the years 1879–1884, G. Cantor (1845–1918) gave the first systematic treatment

of the point set topology of the real line in a series of papers entitled “Über unendliche, lineare
Punktmannichfaltigkeiten.” Among the terms he introduced and still in current use, we mention
two: everywhere dense set and perfect set. The terminology (but not the concept5) of “limit
point”, along with the notion of derived set, was introduced by Cantor in a paper of 1872.

The Cantor set ranks as one of the most frequently quoted fractal objects in the literature.
It emerges again and again in many areas of mathematics from topology, analysis and abstract
algebra to fractal geometry [9, 18]. The Cantor set appeared in a footnote to Cantor’s statement
[2] that perfect sets need not be everywhere dense. Without any indication on how he came
upon it, Cantor noted that this set is an infinite and perfect set that is nowhere dense6 in any
interval, regardless of how small it is. The first occurrence of the Cantor function is in a letter
by Cantor [3] dated November 1883. The Cantor function in [3] served as a counterexample to
Harnack’s extension of the Fundamental Theorem of Calculus to discontinuous functions.

The properties of the Cantor function (also called the Lebesgue function or the Devil’s Stair-
case) are surveyed in [4]. For the history of the Cantor set and Cantor function, see [5].
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