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1 Introduction

Thurston observed that ideal triangulations are a useful tool to study the geometry and topology of cusped
hyperbolic 3–manifolds. Geometric triangulations are useful to study geometric properties of a manifold. Min-
imal triangulations, i.e. topological ideal triangulations using the least number of ideal 3–simplices, are used
in census enumeration, and as a platform to study the topology of the manifold using normal surface theory.
In this paper we establish basic facts about minimal ideal triangulations of cusped hyperbolic 3–manifolds in
analogy with our previous work for closed 3–manifolds [20, 21, 22].

Throughout this paper, by a cusped hyperbolic 3–manifold we mean an orientable non-compact 3–manifold M
that admits a complete hyperbolic structure of finite volume. Such a manifold is known to be the interior of
a compact, irreducible, ∂ –irreducible, atoroidal, anannular 3–manifold M with non-empty boundary a finite
union of tori. If M has exactly n boundary components, we say that M is n–cusped.

Let c(M) be the minimal number of ideal tetrahedra in a (topological) ideal triangulation of the cusped hy-
perbolic 3–manifold M. In this paper, we use the topology of M to study the anatomy of a minimal ideal
triangulation, and with this derive lower bounds on the complexity, and apply it to describe some infinite fam-
ilies of minimal ideal triangulations. Before stating our results, we describe previous work on minimal ideal
triangulations using the geometry of the manifold.

1.1 Minimal ideal triangulations via geometry

The canonical cell decompositions of cusped hyperbolic 3–manifolds due to Epstein and Penner [7] are gener-
ically ideal triangulations. It follows from work of Guéritaud [11, Theorem 2.1.7 in Section 2.1.4] that the
canonical cell decompositions of hyperbolic 2–bridge link complements are ideal triangulations. However,
these are not minimal in general. We thank Jessica Purcell and the anonymous referee for pointing us to these
examples.

If four ideal tetrahedra in a geometric ideal triangulation form a non-convex ideal octahedron, then there are
4–4 moves on this triangulation that result in non-geometric ideal triangulations. Neil Hoffman verified that in
the current censuses of cusped hyperbolic 3–manifolds up to 6 tetrahedra, there is always at least one minimal

1

ar
X

iv
:1

80
8.

02
83

6v
2 

 [
m

at
h.

G
T

] 
 6

 S
ep

 2
01

9



triangulation that is geometric, but that non-geometric minimal ideal triangulations appear through the presence
of 4–4 moves as described above. In particular, it is currently not known whether there is always at least one
minimal ideal triangulation that is geometric.

Let v3 denote the volume of a regular ideal hyperbolic tetrahedron; this is approximately 1.0149. An argument
due to Thurston [34] shows that

c(M)≥ Vol(M)

v3
. (1.1)

In particular, any geometric triangulation only involving regular ideal hyperbolic tetrahedra is minimal. The
figure eight knot complement has such a triangulation. By taking finite sheeted coverings this leads to infinitely
many minimal triangulations that are geometric and for which the above inequality is an equality. A census of
such manifolds decomposed into at most 25 ideal regular ideal hyperbolic tetrahedra was given by Fominykh,
Garoufalidis, Goerner, Tarkaev and Vesnin [9].

In general the gap in inequality (1.1) can be arbitrarily large. To see this neither requires explicit minimal
triangulations nor computation of volumes: Thurston’s theory of hyperbolic Dehn surgery implies that for any
n≥ 1 there are sequences of n–cusped hyperbolic 3–manifolds with bounded volume and whose complexities
are an unbounded sequence.

An equivalent approach to complexity is via Matveev’s theory of special spines. From this point of view,
Petronio and Vesnin [29] give a lower bound on complexity using a volume estimate. Ishikawa and Nemoto [15]
combined this with an upper bound on the complexity of 2–bridge links and determined the complexity of an
infinite family of 2–bridge links. These ideal triangulations were described by Sakuma and Weeks [32] and
proved to be canonical by Guéritaud [11, Theorem 2.1.7 in Section 2.1.4]. Independently, Akiyoshi, Sakuma,
Wada and Yamashita have announced a proof of this statement [3]. A proof of this fact for the fibered 2–bridge
links was given by Sakata [31].

1.2 Minimal ideal triangulations via topology

In this paper, we are first concerned with the anatomy of a minimal ideal triangulation. In particular, in §2 we
characterise edges of low degree, and analyse subcomplexes that we call maximal layered ∂ –punctured solid
tori. These are solid tori with a point missing on the boundary, and imbued with a special ideal triangulation.
These subcomplexes were exhibited by Guéritaud and Schleimer [13] in canonical decompositions of cusped
hyperbolic 3–manifolds satisfying certain genericity hypotheses, and are thus a natural part of the structure
of an ideal triangulation to analyse from a geometrical viewpoint. Our methods show that they also have an
important topological role to play. In §3 we describe normal surfaces representing Z2 –homology classes in
ideal triangulations. We use this in §4 to prove our main result Theorem 1, which is analogous to the main
result of [22]. Before we can state it, we need to introduce some extra definitions.

Let M be a cusped hyperbolic 3–manifold, and let S be an embedded closed surface representing a given
c ∈ H2(M;Z2). We wish to emphasise that we do not work with H2(M,∂M;Z2). An analogue of Thurston’s
norm [35] is defined in [22] as follows. If S is connected, let χ−(S) = max{0,−χ(S)}, and otherwise let

χ−(S) = ∑
Si⊂S

max{0,−χ(Si)},

where the sum is taken over all connected components of S. Note that Si is not necessarily orientable. Define:

|| c ||= min{χ−(S) | [S] = c}.

The surface S representing a class c ∈ H2(M;Z2) is said to be Z2 –taut if no component of S is a sphere or
torus and χ(S) = −|| c ||. Note that M contains no projective plane or Klein bottle. As in [35], one observes
that every component of a Z2 –taut surface is non-separating and geometrically incompressible.
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Theorem 1 Let T be an ideal triangulation of the cusped hyperbolic 3–manifold M. If H ≤ H2(M,Z2) is a
rank 2 subgroup, then

|T | ≥ ∑
06=c∈H

|| c ||.

Moreover, in the case of equality the triangulation is minimal, each canonical normal representative of a non-
zero element in H ≤ H2(M,Z2) is taut and meets each tetrahedron in a quadrilateral disc, and the number of
tetrahedra in the triangulation is even.

As an application, we obtain the following statement.

Theorem 2 Monodromy ideal triangulations of once-punctured torus bundles are minimal.

Monodromy ideal triangulations of hyperbolic once-punctured torus bundles are described by Floyd and Hatcher [8]
and attributed to Thurston. These triangulations are canonically determined by the monodromy of the bundle
acting on the Farey graph; they are an early special case of Agol’s veering triangulations. The fact that the
monodromy ideal triangulation of each hyperbolic once-punctured torus bundle is canonical, and hence also
geometric, is due to Akiyoshi [2], Lackenby [25] and Guéritaud [11].

Such a triangulation may contain edges of arbitrarily high degree, hence arbitrarily many ideal hyperbolic
tetrahedra of arbitrarily small volume, a fact which is also highlighted by explicit upper bounds on the volume
of torus bundles in [12, Theorem B.1] and in [1, Corollary 2.4]. Thus, our family contains explicit minimal
triangulations where the gap between complexity and volume can be arbitrarily large.

The monodromy ideal triangulation T of a hyperbolic once-punctured torus bundle M with the property that
H2(M,Z) contains a Klein 4–group H satisfies the equality

|T |= ∑
06=c∈H

|| c ||.

There are other once-cusped hyperbolic 3–manifolds, for which this equality is achieved. These are not fibred,
and are described in §5.4. It remains an open problem to classify all triangulations for which the lower bound
in Theorem 1 is achieved. Such a classification is given in [20] for our lower bound on the complexity for
closed atoroidal 3–manifolds.

1.3 Other classes of hyperbolic 3–manifolds

We remark that for closed hyperbolic 3–manifolds, currently no infinite families of minimal triangulations are
known. In the case of compact manifolds with non-empty boundary, lower bounds on complexity are known
through work of [4] and [16], where it is independently shown that they are attained by Sg× [0,1], where Sg is
a closed orientable surface of genus g≥ 1.

There are infinite families of minimal triangulations of manifolds with a totally geodesic boundary component
of genus g≥ 2 and some cusps due to Frigerio, Martelli and Petronio [10]. These triangulations can be thought
of as subdivisions into partially truncated tetrahedra; or alternatively as ideal triangulations with one ideal
vertex having link a surface of genus g and all others having link a torus. We remark that our methods and
results do not generalise to this setting of higher genus vertex links. The main reason is that there is less control
over the anatomy of these triangulations (cf. Remark 7).

Acknowledgements. The authors thank the anonymous referee for an excellent job, pointing out many addi-
tional sources and inaccuracies in our original arguments. Their comments helped us to significantly improve
this article.
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2 The anatomy of a minimal ideal triangulation

2.1 Triangulations and pseudo-manifolds

Let ∆̃ be a finite union of pairwise disjoint Euclidean 3–simplices with the standard simplicial structure. Every
k–simplex τ in ∆̃ is contained in a unique 3–simplex στ . A 2–simplex in ∆̃ is termed a face.

Let Φ be a family of affine isomorphisms pairing the faces in ∆̃, with the properties that ϕ ∈ Φ if and only if
ϕ−1 ∈Φ, and every face is the domain of a unique element of Φ. The elements of Φ are termed face pairings.

Consider the quotient space M̂ = ∆̃/Φ with the quotient topology, and denote the quotient map p : ∆̃→ M̂.
We make the additional assumption on Φ that for every k–simplex τ in ∆̃ the restriction of p to the interior of
τ is injective. Then the set of non-manifold points of M̂ is contained in the 0–skeleton, and in this case M̂ is
called a closed 3–dimensional pseudo-manifold. (See Seifert-Threfall [33].) We also always assume that M̂ is
connected. The triple T = (∆̃,Φ, p) is called a (singular) triangulation of M̂.

Let M̂(k) = {p(τk) | τk ⊆ ∆̃} denote the set of images of the k–simplices of ∆̃ under the projection map. Then
the elements of M̂(k) are precisely the equivalence classes of k–simplices in ∆̃. The elements of M̂(0) are
termed the vertices of M̂ and the elements of M̂(1) are the edges. The triangulation is a k–vertex triangulation
if M̂(0) has size k.

2.2 Edge paths and edge loops

To each edge e in M̂(1) we associate a continuous path γe : [0,1]→ M̂ with endpoints in M̂(0) via the compo-
sition of maps [0,1]→ ∆̃→ M̂, where the first map is an affine map onto a 1–simplex in the equivalence class
and the second is the quotient map. We call γe an edge path. An edge path is termed an edge loop if its ends
coincide. For instance, in a 1–vertex triangulation every edge path is an edge loop.

We often abbreviate “edge path” or “edge loop” to “edge”, and we denote the edge path γe with reversed
orientation by −γe. The notions of interest in this paper are independent of the parametrisation.

2.3 Ideal triangulations

Let M = M̂ \ M̂(0). Then M is a topologically finite, non-compact 3–manifold, and the pseudo-manifold M̂ is
referred to as the end-compactification of M, the elements of M̂(0) as the ideal vertices of M and the elements
of M̂(1) as the ideal edges of M. We also refer to the triangulation T = (∆̃,Φ, p) of M̂ as an ideal (singular)
triangulation of M.

The adjective singular is usually omitted: we do not need to distinguish between simplicial and singular tri-
angulations. If M̂ is a closed 3–manifold, we may write M = M̂, and hope this does not cause any confusion.
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We suppress the notation T = (∆̃,Φ, p) and simply say that M̂ is triangulated or M = M̂ \ M̂(0) is ideally
triangulated.

The following result is implicit in Matveev [27] and shows that every topologically finite 3–manifold arises
in this way from a closed pseudo-manifold. A stronger version for compact orientable irreducible an-annular
3–manifolds with ∂M a non-empty collection of incompressible tori, avoiding the use of spines can be found
in [24, Theorem 1].

Proposition 3 (Topologically finite manifolds have ideal triangulations) If M is the interior of a compact
3–manifold M with non-empty boundary, then M admits an ideal triangulation. The ideal vertices of the ideal
triangulation are in one-to-one correspondence with the boundary components of M.

Proof The statement is implied by the following results in [27]. Theorem 1.1.13 due to Casler asserts that M
possesses a special spine Σ; it has the property that M is homeomorphic to a regular neighbourhood of Σ in M.
Theorem 1.1.26 implies that Σ is dual to an ideal triangulation of M with the property that the ideal vertices
are in one-to-one correspondence with the boundary components of M.

2.4 Layered solid tori

A layered solid torus LST is a triangulation of a solid torus iteratively constructed in the following way: Start
with a one-triangle Möbius strip as shown in Figure 2(c). Then attach additional tetrahedra without a twist
along pairs of (unpaired) faces of the existing complex sharing an edge e. This operation is called a layering
on e, where the first layering onto the Möbius strip must always go on the interior edge of the Möbius strip, see
Figure 1. Layered solid tori are close cousins of the monodromy ideal triangulations of once-punctured torus
bundles defined in Section 5.1, since both types of triangulations are obtained from layering tetrahedra onto an
existing complex. See [18] for a comprehensive introduction into layered solid tori and, more generally, layered
triangulations. Here, we summarise material of [21, Section 2.3].

Figure 1: Layering tetrahedron ∆ to triangulation T on edge e . Identifications of the triangles are indicated
by the vertex labels.

By construction, the boundary of a layered solid torus containing at least one tetrahedron is always the standard
triangulation of a torus with one vertex, two triangles, and three edges. Layered solid tori are distinguished by
how often their meridional disc intersects their three boundary edges geometrically and we write LST(a,b,c)
for a layered solid torus with meridional disc intersecting the boundary edges a, b and c times respectively.
Assuming a ≤ b ≤ c it is straightforward to see that a+ b = c and that a layered solid torus LST(a,b,c) can
be turned into a layered solid torus of type LST(a,b,b−a), LST(a,c,a+c) or LST(b,c,b+c) by layering an
additional tetrahedron on the edge with label c, b, or a respectively.

There exists only one layered solid torus with one tetrahedron, LST(1,2,3). Hence, by construction, every
layered solid torus with at least one tetrahedron contains this layered solid torus, termed its core tetrahedron.

Let LST be a layered solid torus occurring as a subcomplex of some triangulation T of a 3-manifold. We say
that LST is maximal with respect to T if it is not strictly contained in any other layered solid torus subcomplex
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in T . By a layered ∂ –punctured solid torus, we mean a layered solid torus with its vertex removed. Whenever
we talk about the punctured version of a layered solid torus LST(a,b,c) we denote it by LST?(a,b,c) to
emphasise the difference. The notion of a layered ∂ –punctured solid torus is very convenient when discussing
the combinatorial structure of an ideal triangulation. For instance, they play a role in [13].

2.5 Properties of minimal triangulations

An ideal triangulation of a topologically finite 3–manifold M is minimal if it uses the smallest number of
simplices in an ideal triangulation of M. The number of ideal simplices in a minimal ideal triangulation of M
is denoted c(M) and termed the complexity of M.

We assume that the reader is familiar with normal surface theory. We refer to [36] for a thorough introduction,
but remark that we only need to study closed normal surfaces in ideal triangulations.

An ideal triangulation of M is 0–efficient if no normal surface is a 2–sphere. An ideal triangulation of M
is ∂ –efficient if it has the property that any closed normal surface that is isotopic to a vertex linking surface
is normally isotopic to that vertex-linking surface. A normal isotopy is an isotopy of M that preserves each
simplex of each dimension.

Theorem 4 Suppose M is the interior of a compact, irreducible, ∂ –irreducible anannular 3–manifold. Then
each minimal ideal triangulation of M is 0–efficient and ∂ –efficient.

Proof It is shown in [17, Corollary 7.3] that each minimal triangulation of M is 0–efficient. In [19, Theorem
4.7], the existence of a ∂ –efficient triangulation is proven by a crushing method. Since crushing reduces the
number of tetrahedra, this means that a triangulation that fails to be ∂ –efficient is not minimal.

We now give a definition of what we mean by an ideal edge to be homotopic or isotopic into the boundary.
The key is that intermediate paths in the homotopy are not allowed to pass through the ideal vertices, except for
their endpoints. The reader is reminded than an ideal edge of M is an edge of M̂. An expanded discussion of
the following material can be found in [14].

A path homotopy (resp. isotopy)1 H : [0,1]× [0,1]→ M̂ between two edge paths is admissible if H( (0,1)×
[0,1] ) ⊂ M, where the first factor parametrises the paths. The edge path γ is admissibly null-homotopic
(resp. null-isotopic) if there is a path homotopy (resp. isotopy) H : [0,1]× [0,1]→ M̂ with H(x,0) = γ(x),
H(x,1) = γ(0) for all x ∈ [0,1] and H( (0,1)× [0,1) )⊂M.

We say that an ideal edge e of M is homotopic (resp. isotopic) into the boundary if it is admissibly null-
homotopic (resp. null-isotopic) in M̂.

Corollary 5 Suppose M is the interior of a compact, irreducible, ∂ –irreducible anannular 3–manifold other
than a 3–ball, and T is a minimal ideal triangulation of M. Then no ideal edge is isotopic into the boundary.
In particular, no edge in M̂ bounds an embedded disc in M̂.

Proof Suppose the edge e is isotopic into the boundary. Choose a compact core Mc of M with the property
that each boundary component of Mc is a vertex linking surface. There exists an embedded disc D in Mc

whose boundary consists of e∩Mc and a subarc on a boundary component B of Mc. The boundary of a
regular neighbourhood of B∪D has two components; one is a vertex linking surface normally isotopic to B
and the other is a surface S isotopic to B and disjoint from e. Since S is incompressible and not a 2–sphere
and M is irreducible, it follows that there is a normal surface isotopic but not normally isotopic to B. Since
the triangulation is ∂ –efficient according to Theorem 4, it follows that M is homeomorphic with S× (0,1).
However, this contradicts our topological hypotheses on M.

1i.e. a homotopy (resp. isotopy) keeping endpoints fixed
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Note that the above result does not apply to the unique minimal ideal triangulation T of the 3–ball. This is
the 1–tetrahedron, 1–vertex triangulation of S3 with the vertex removed. The triangulation of S3 has precisely
two edges; one is a trefoil knot in S3 and the other the unknot in S3. The former gives an ideal edge in T that
is only homotopic into the boundary, whilst the latter is isotopic into the boundary. The above proofs breaks
down for the 3–ball because the surface S in the proof shrinks to a sphere contained in a tetrahedron.

We now specialise to the class of manifolds of interest, namely cusped hyperbolic 3–manifolds, where more
specific results can be shown about their minimal triangulations. In order to limit the cases to consider, we not
only assume that all vertex links are of Euler characteristic zero, but also that the manifolds are orientable.

2.6 Faces in minimal ideal triangulations of cusped hyperbolic 3–manifolds

(a) triangle (b) cone (c) Möbius (d) 3–fold (e) dunce

Figure 2: Types of faces. The Möbius, 3–fold and dunce faces only have one vertex due to the edge identifi-
cations. A cone face may have one or two vertices and a triangle face may have up to 3 vertices.

An ideal triangle in an ideal triangulation of a cusped hyperbolic 3–manifold M may have some of its edges
identified. There are eight possible types of triangular faces in the triangulation of the end-compactification M̂,
depending on how vertices or edges are identified (see Figure 1 in [17]). Ignoring possible identifications of
vertices as in [26], this reduces to five types in M based on edge identifications only (see Figure 2). We name
the faces in M according to their topology in M̂. A face with no edge-identifications is termed a triangle face;
it is a 2–simplex, possibly with some or all of its vertices identified. If a pair of edges is identified, the face is
either a cone (possibly with the tip identified with the vertex on the boundary) and called a cone face or it is a
Möbius band and called a Möbius face. In a Möbius face, we distinguish the boundary edge and the core edge.
If all three edges are identified, the face is either a 3–fold or a dunce hat, and called a 3–fold face or dunce face
respectively.

For minimal ideal triangulations, we can prove the following statement.

Theorem 6 Let T be a minimal ideal triangulation of a cusped hyperbolic 3–manifold M. Then there is no
3–fold face and there is no dunce face.

Proof Choose a compact core Mc of M with the property that each boundary component of Mc is a vertex
linking surface. Let t be a triangle of T .

Case 1: t is a 3–fold face. Refer to Figure 3. Let e be the edge of t, N(e) a small regular neighbourhood of
e in M and Nc(e) = N(e)∩Mc. The frontier of Nc(e) in Mc is an annulus; we call this the exchange annulus
around e. Let N(t) be a regular neighbourhood of t in M. Then the boundary of Nc(t) = N(t)∩Mc has a
natural cell decomposition into two hexagons corresponding to the two sides of t and three quadrilaterals that
are subsurfaces of the exchange annulus around e. The edges of the hexagons through the interior of Mc are
termed the long edges. Seen with respect to (t ∩Mc) \N(e) the long edges of the hexagons have a natural
labelling 1,2,3 in cyclic order. See Figure 3 on the right for a drawing of Nc(t), in particular the two hexagons
and their long edges.
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Give t a transverse orientation. This allows us to refer to one of the hexagons as the top hexagon and to the
other as the bottom hexagon. The intersection t ∩Nc(e) is a tripod times [0,1]. Figure 3 on the left depicts a
cross-section of the tripod times [0,1] at some x∈ (0,1). The transverse orientation of t is in the same direction
at the legs of the tripod (either all clockwise or all anti-clockwise around the vertex of the tripod). It follows
that the quadrilaterals join each long edge of the top hexagon to a long edge of the bottom hexagon. Moreover,
on the labels this induces a 3–cycle. Thus, modulo orientation, the identification must be as shown in Figure 3
(both on the left and on the right).

After collapsing the sections of the exchange annulus to the long edges of the hexagons, we obtain a connected,
orientable, bounded surface S decomposed into two hexagons, nine edges and six vertices – and thus of Euler
characteristic −1. As can be deduced from the vertex labels, the surface has three boundary components and
thus must be a 3–punctured sphere.

Figure 3: Left: Cross-section through the neighbourhood Nc(t) of an ideal 3–fold t near its boundary edge
e. The cross-section through the top and bottom hexagon of the right picture appear as green and purple
lines respectively. Their endpoints mark the cross-section through the long edges of the respective hexagons.
Labels coincide with the ones on the right. Right: Truncated boundary Nc(t) of regular neighbourhood of
the 3–fold face t (drawn in the centre in black). Its boundary surface is connected, of Euler characteristic
−1 with three boundary components (each containing two edges, as indicated by the edge labels) and thus a
3–punctured sphere. The dotted blue lines with labels represent the intersection of t with the boundary torus
T0 – a triple arc between nodes 1 and 2, or the Θ–graph.

Because t is a 3–fold, the intersection of t with a boundary torus T0 ⊂ ∂Mc consists of two nodes and three
(normal) arcs, all running between the two nodes, also known as the Θ–graph, see the dotted arcs in Figure 3.
Since S has three boundary components meeting T0 along the boundary of a neighbourhood of t ∩ T0, the
complement of the embedding of the Θ–graph into T0 must have three boundary components.

If no two arcs form a separating (i.e., inessential) curve on T0, then the Θ–graph forms a spine of T0. In
particular, its complement is a disc with a single boundary component, a contradiction. Hence, two arcs must
bound a disc in T0. The remaining arc now either runs parallel to the first two, or completes each of the other two
to an essential curve on T0. In both cases the complement has three boundary components. Both embeddings
are shown in Figure 4.

Assume that we are in the latter situation and the Θ–graph contains an essential curve on T0 . Since the embed-
ding features two parallel arcs, one of the boundary curves of S bounds a disc in T0 . Pasting in this disc and
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pushing it into the interior of the manifold yields a properly embedded annulus which, because M is hyperbolic,
must be compressible or boundary parallel. If it is compressible, then T0 is compressible. We conclude that S
must be boundary parallel.

Hence assume that the Θ–graph consists of three parallel arcs and is thus contained in a disc of T0 . This time
two of the boundary curves of S bound discs in T0 and pasting them in and pushing them into the manifold
yields a properly embedded disc, and we conclude again that S must be boundary parallel.

In both cases, uniting S with the complement of N(t ∩T0) in T0 thus produces a torus

T0 \N(t ∩T0)∪S

boundary parallel to T0 and disjoint from e (which is itself incident to T0 ). It follows that normalising this
boundary parallel torus cannot result in a surface normally isotopic to T0 and thus T cannot be boundary
efficient. This is impossible since we assume that T is minimal and thus boundary efficient by Theorem 4.

Figure 4: Two embeddings of the intersection of the 3–fold face t with torus boundary component T0. Left:
trivial embedding contained in a disc of T0; in this case the boundary parallel torus is made up of a once-
punctured torus and two discs that are subsurfaces of T0 and the 3–punctured sphere S . Right: two parallel
essential loops; in this case the boundary parallel torus is made of a disc and an annulus that are subsurfaces
of T0 and the 3–punctured sphere S .

Case 2: t is a dunce face. Refer to Figure 5. Let e be the edge of t. We use the notation and set-up as in
the previous case. The intersection of t with Nc(e) is again a tripod times an interval (see Figure 5 on the left
for a cross-section). However, now the transverse orientations do not all agree: two are in one direction and
the last is in the opposite direction. In particular, this implies that each of the hexagons has two of its long
edges connected by a quadrilateral on the exchange annulus, and exactly one long edge of the top hexagon is
joined to a long edge of the bottom hexagon (and these edges do not share the same label). It follows that, up
to symmetry, there is only a single way to identify the long edges of the hexagons, shown in Figure 5 (both on
the left and on the right).

The two hexagons again form a properly embedded 3–punctured sphere S ⊂ Mc. The dunce hat t itself
meets ∂Mc in two nodes and three normal arcs: two loops, one at each node, and one arc connecting the
two nodes – also known as the barbell graph. Up to the action of the mapping class group, there are four
possibilities of embedding the barbell graph into a torus boundary component T0 ⊂ ∂Mc, producing three
boundary components in a regular neighbourhood of the graph: One where both loops are essential in T0 and
thus necessarily parallel; one where one loop is inessential and the other one is an arbitrary essential curve
in T0; and two where both loops are inessential. See Figure 6 for a picture of all four cases. Using the
same pasting argument as in Case 1 we can conclude that S is boundary parallel. Again, uniting S with
the complement of N(t ∩T0) produces a torus boundary parallel to T0 and disjoint from e. Thus, Theorem 4
produces a contradiction.

Remark 7 The preconditions of Theorem 6 are necessary: the minimal triangulation of the Gieseking man-
ifold has dunce faces, and there exists a minimal 2-tetrahedron triangulation of a 3–manifold with two Klein-
bottle cusps, in which one of the four faces is a 3–fold face.
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Figure 5: Left: Cross-section through the neighbourhood Nc(t) of an ideal dunce hat t near its boundary edge
e. Labels coincide with the ones on the right. Right: Truncated boundary Nc(t) of regular neighbourhood of
the dunce hat t (drawn in the centre in black). The boundary surface is connected, of Euler characteristic −1
with three boundary components (one containing four edges and two containing a single edge, as indicated by
the edge labels) and thus a 3–punctured sphere. The dotted lines with vertex labels represent the intersection
of t with the boundary torus T0, two disjoint loops and a connecting arc.

Moreover, Frigerio, Martelli and Petronio describe classes of orientable hyperbolic manifolds Mg,k with k
torus cusps and one end of type an orientable surface of genus g [10]. They show, that these manifolds admit
minimal (g+ k)–tetrahedra ideal triangulations if and only if g > k, or g = k and g even, see [10, Proposition
1.4]. Such triangulations must necessarily have 3k cone faces, and (2g− k) dunce- or 3–fold faces, see [10,
Lemma 2.1]. Hence, for g large enough, there exist minimal ideal triangulations of orientable hyperbolic
3–manifolds with all but an arbitrarily small portion of faces being dunce- or 3–fold-faces.

2.7 Low degree edges in minimal ideal triangulations

We now show that there are no edges of degree one or two in a minimal triangulation of a cusped hyperbolic
3–manifold, and that edges of degree three must be contained in layered ∂ –punctured solid tori.

Lemma 8 If T is a minimal ideal triangulation of a cusped hyperbolic 3–manifold M, then T has no edge
of degree one.

Proof Suppose e1 is an edge of T of degree 1. Let ∆̃1 be the single tetrahedron containing e1. Then ∆̃1 = e1∗
e is the join of e1 and the edge e opposite e1. The edge e of T bounds a disc. This contradicts Corollary 5.

Lemma 9 If T is a minimal ideal triangulation of a cusped hyperbolic 3–manifold M, then T has no edge
of degree two.

Proof The figure-eight knot complement m0042 and its sister m003 are the only cusped hyperbolic 3–manifold
having an ideal triangulation with two ideal tetrahedra. Neither of these triangulations has an edge of degree

2We include the names of manifolds from the cusped hyperbolic manifold census of SnapPea.
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Figure 6: Four embeddings of the intersection of the dunce hat t with torus boundary component T0. Top
left: two inessential loops, not nested. Bottom left: two inessential loops, nested. Top right: two parallel
essential loops. Bottom right: one essential loop and one inessential loop.

two. Hence, we may assume T has at least three tetrahedra and that the preimage of an edge e of degree two
consists of two edges e′ and e′′ in two distinct tetrahedra, ∆̃′ and ∆̃′′, respectively (note that an edge of degree
two cannot be contained in a single tetrahedron).

We fix the following notation. The vertices of ∆̃′ are denoted by A′,B′,C′, and D′ with e′ = A′D′. The vertices
of ∆̃′′ are denoted by A′′,B′′,C′′, and D′′ with e′′ = A′′D′′. The face identifications are (A′B′D′)↔ (A′′B′′D′′)
and (A′C′D′)↔ (A′′C′′D′′), with (A′D′) = (A′′D′′) = e.

Figure 7: Edge of degree two.

Typically, in such a case of an edge of degree two, one can discard the two tetrahedra ∆̃′ and ∆̃′′ and make new
identifications (A′B′C′)↔ (A′′B′′C′′) and (B′C′D′)↔ (B′′C′′D′′).

If this is possible, then there is a triangulation of M having fewer tetrahedra than T , contradicting that T is
minimal. It follows that under the assumption of T minimal and e an edge of degree two, there must be an
obstruction to such a re-identification, that is, some of the faces to be identified must already be identical. This
can happen on the level of edges (Obstruction 1 below), or on the level of triangles (Obstruction 2 below). We
consider both obstructions and show that each leads to a contradiction, establishing that there are no edges of
degree two.

Obstruction 1. The edges B′C′ and B′′C′′ are identified, preventing the collapse, see Figure 8. In this situation
we have two subcases:

(1) Edges are identified with opposite orientation (i.e., B′C′ is identified with C′′B′′ ). If this is the case, then
in the truncated 3–manifold Mc of M with an open neighbourhood of the vertices removed, we have a
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properly embedded Möbius band N ⊂ Mc. If ∂N is an inessential curve on the vertex linking torus
T0 ⊂ ∂Mc , M admits an embedded projective plane and we have a connected summand of RP3 in M,
contradiction to M being hyperbolic. Hence, assume that ∂N is an essential curve on T0 . From this
situation we can construct a Seifert fibred space properly embedded in M which is impossible since our
manifold is hyperbolic. To see this, note that the boundary of a small regular neighbourhood of T0∪N
is a torus. Since our manifold is hyperbolic this torus must be inessential, and thus it must bound a solid
torus outside T0∪N . Hence the Seifert structure on T0∪N extends to a Seifert fibering over this solid
torus with at most two exceptional fibres, one at the centre line of the Möbius band N .

(2) Edges are identified with coinciding orientation (i.e., B′C′ is identified with B′′C′′ ). In this case we have
a properly embedded annulus A ⊂Mc. Note that, since M is hyperbolic, A must be either compressible
or boundary-parallel. Hence, if one boundary component of A is an essential curve, the other one is,
too, and both are parallel curves on the same torus boundary component T0 ⊂ ∂Mc. In this case the
annulus A runs parallel to T0 with either AB and AC or BD and CD contained in the region between
A and T0 . Now consider a torus running parallel to T0 and bounding a collar neighbourhood of T0 in
Mc containing A . Normalising this torus cannot result in a surface normally isotopic to T0 because A
acts as a barrier. Accordingly, the triangulation is not boundary efficient. This gives a contradiction to
the triangulation being minimal due to Theorem 4.
If the boundary components are inessential, colour the bounding discs in the respective torus boundary
components. More precisely, colour the disc near vertex B purple, and the one near vertex C green.
W.l.o.g, edges AB and AC (truncated to run inside Mc ) run inside the solid torus bounded by A . By
construction, the endpoint near B is purple and the endpoint near C is green. Moreover, the endpoints
near A must either both be purple or both be green (note that A must be compressible). It follows that
one of the edges AB and AC has endpoints with equal colours. It thus follows that this edge must be
in the neighbourhood of the respective torus boundary components of Mc, see Figure 9. Again, we use
Theorem 4 to produce a contradiction to the fact that the triangulation is minimal.

It follows that Obstruction 1. cannot occur.

Figure 8: Obstruction 1 (1). Edge B′C′ identified with edge C′′B′′ forming a punctured RP2, or Möbius
strip N (left). Obstruction 1 (2). Edge B′C′ identified with edge B′′C′′ forming an annulus A (right).

Obstruction 2. Faces from the front are identified with faces of the back (cf. Figure 7). As a result of such a
face identification, the two edges B′C′ and B′′C′′ may become identified. If this the case we fall back onto the
cases dealt with in Obstruction 1. Again, we have two subcases:

(1) Face (A′B′C′) is identified with the face (B′′C′′D′′) or (A′′B′′C′′) is identified with the face (B′C′D′).
These situations are symmetric. As explained above we may assume that B′C′ and B′′C′′ are not identi-
fied. Suppose we flatten the two tetrahedra so that (A′B′C′) is identified with (A′′B′′C′′) and (B′C′D′) is
identified with (B′′C′′D′′). Since the interiors of B′C′ and B′′C′′ were initially disjoint, the preimage of a
point under this operation is either a point or an interval. In particular this flattening operation is cell-like
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Figure 9: Obstruction 1 (2). Both boundary components of A are inessential ∂Mc .

and hence preserves the homeomorphism type of the manifold M. This gives a new triangulation of M
with fewer tetrahedra which contradicts our assumption that the triangulation T is minimal.

(2) The face (A′B′C′) is identified with the face (A′′B′′C′′) or the face (B′C′D′) is identified with the face
(B′′C′′D′′). Again, these situations are symmetric. However, if face (A′B′C′) is glued to face (A′′B′′C′′)
without a twist, B′C′ is glued to B′′C′′ and we are done (alternatively, if (A′B′C′)↔ (A′′B′′C′′), then the
vertex at A′ = A′′ is a manifold point and T is not an ideal triangulation). If the two faces are identified
with a twist, all edges of the two triangles become identified. In particular B′C′ and B′′C′′ are identified
and, again, we are done.

Since we have that T contains at least three tetrahedra, and that all possibilities of having an edge of degree
two lead to a contradiction, there are no edges of degree two.

Lemma 10 Let T be a minimal ideal triangulation of a cusped hyperbolic 3–manifold M. Suppose LST? is
a layered ∂ –punctured solid torus and there is a combinatorial map ϕ : LST?→M. Then ϕ is an embedding.

Proof We need to show that no identifications of the boundary faces of LST? are possible in T . If the two
triangles of ∂ LST? are identified, then M is a punctured lens space, contrary to the assumption that M is
hyperbolic.

Hence, identifications can occur at most at the edges of ∂ LST? . But it follows from Theorem 6 that not all
three edges of ∂ LST? can be identified, and thus we only need to consider the case that two edges of ∂ LST?

are glued together.

A priori there are a total of six choices of how two boundary edges of ∂ LST? can be identified (three pairs of
edges and two possible orientations each). Ignoring the third edge, all of them result in a quadrilateral with all
of its edges identified in the pattern shown in Figure 10 in the centre and the third boundary edge is one of he
two diagonals of the quadrilateral. Denote the unique boundary edge of the quadrilateral by e.

We now pass to a small regular neighbourhood N = Nhd(LST?∩Mc) of LST? in the compact core Mc of M .
By construction, its boundary ∂N must be a surface with boundary properly embedded in Mc . We can think
of ∂N as the surface consisting of the octagon lying in the interior of the quadrilateral of ∂ LST? , and two
quadrilaterals from the annulus that is the regular neighbourhood of the ideal edge e in Mc, see Figure 10
on the right. The surface is obtained by gluing the dotted edges of the octagon to the dotted edges of the
quadrilateral. The solid edges then denote the boundary of ∂N .
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Figure 10: Left: Boundary of LST? . Centre: Boundary of LST? after disregarding the third boundary edge
with two boundary edges identified. Right: Octagon and two quadrilaterals making up the boundary ∂N of a
regular neighbourhood of LST? in Mc . Dotted edges are identified, solid edges denote the boundary of ∂N .

Up to symmetry, there are three ways two perform these gluings (notice that the red edges of the octagon can
be paired with the red edges of the two quadrilaterals arbitrarily, but the orientation of the gluings is fixed).
All of them are shown in Figure 11. The first set of gluings results in a once-punctured torus. This type of
identification implies that the only identifications of e are the ones from inside LST? , a contradiction to the
assumption that a pair of boundary edges of LST? are identified in T . The second results in ∂N a once-
punctured Klein bottle, and the third results in ∂N a thrice-punctured sphere.

Figure 11: Three possible ways to obtain ∂N . Left: a once-punctured solid torus. Centre: a once-punctured
Klein bottle. Right: a thrice-punctured sphere.

Since ∂N is separating it cannot be a once-punctured Klein bottle. Hence, it is a separating thrice-punctured
sphere with all boundary components on the same boundary component T0 of Mc . A parity argument shows
that the number of essential boundary components of ∂N must be even. Moreover, note that, by construction,
T0∩N is the neighbourhood of a pinched disc in T0 and thus connected.

It follows that T0∩N must fall into one of two categories.

(1) Two boundary components of ∂N are essential and hence T0∩N must be equal to an annulus with a disc
removed. Since N is separating, this disc must be outside N and thus disjoint from e. Hence, pasting
this disc into T0∩N yields a necessarily boundary-parallel annulus.

(2) No boundary component of ∂N is essential and hence T0∩N must be equal to a subsurface of T0 with
two discs removed. Again, these discs must be outside N and thus disjoint from e. Pasting the discs into
T0∩N results in a necessarily boundary-parallel disc.

Now, as in earlier arguments, consider a torus running parallel to T0 and bounding a collar neighbourhood of
T0 in Mc containing the annulus or disc. Normalising this torus cannot result in a surface normally isotopic
to T0 because it must be disjoint from e. Accordingly, the triangulation is not boundary efficient. This gives
a contradiction to the triangulation being minimal due to Theorem 4 and thus ϕ : LST? → M must be an
embedding.
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Lemma 11 Let T be a minimal ideal triangulation of a cusped hyperbolic 3–manifold M and e be an ideal
edge of degree three. Then e is contained in an embedded two tetrahedron subcomplex of T combinatorially
equivalent to the layered ∂ –punctured solid torus LST?(1,3,4). In particular, e is contained in a maximal
layered ∂ –punctured solid torus LST? , twice in its core tetrahedron and once in the tetrahedron adjacent to the
core, and no other edge in LST? is of degree three.

Moreover, T contains at least three ideal tetrahedra and each ideal edge of degree three is contained in its own
subcomplex of this type.

Proof We may and will work with the pseudo-manifold M̂. Let e ∈T be an edge of degree 3. If e is incident
with three distinct tetrahedra, then a 3-2–move produces a triangulation with fewer tetrahedra, contradicting
minimality of the triangulation. If e is incident with exactly one tetrahedron, it cannot be of degree 3. Hence, e
is incident with exactly two tetrahedra. A brute-force enumeration shows that there exists only one 2–tetrahedra
complex with an edge of degree 3 in its interior – the layered solid torus LST(1,3,4) (see case |∆̃e| = 2 in
the proof of [21, Proposition 9] for details). Moreover, LST(1,3,4) has exactly one such degree 3 edge in its
interior. This edge occurs twice in its core tetrahedron and once in the other tetrahedron (i.e., the tetrahedron
adjacent to the core tetrahedron).

It follows from Lemma 10 that no identifications between the faces of this layered solid torus are possible,
hence the subcomplex is embedded, contained in a maximal layered ∂ –punctured solid torus and, in particular,
the triangulation contains at least three tetrahedra.

We remark that an analysis of edges of degree four and five can be carried out following [21], but this is not
needed for the main applications of this paper and hence omitted.

2.8 Layered punctured solid tori in ideal triangulations

The argument for closed 3–manifolds in [22] hinged on an understanding of the intersections of maximal
layered solid tori. We now carry such an analysis out in the case of cusped hyperbolic 3–manifolds. This
requires a different approach due to the fact that the combinatorics of minimal ideal triangulations is less
restricted than the combinatorics of minimal and 0–efficient (material) triangulations.

As in [22] we focus on subcomplexes in triangulations that are maximal layered ∂ –punctured solid tori (see
Section 2.4 for a brief introduction).

Lemma 12 Let T be a minimal ideal triangulation of a cusped hyperbolic 3–manifold M. Then the inter-
section of any two maximal layered ∂ –punctured solid tori is either empty, an ideal vertex, or an ideal edge
of T .

Proof Let LSTa,LSTb ⊂ T be two maximal ∂ –layered solid tori. If their boundaries ∂ LSTa and ∂ LSTb
meet in two faces, T must be homeomorphic to a punctured lens space. A contradiction. If LSTa and LSTb
share a common tetrahedron, remove the tetrahedra in the intersection from one of them and observe, that they
now meet in two faces. Again, a contradiction. Hence, we can assume that two maximal ∂ –layered solid tori
meet along a single face, three edges, or two edges.

(1) Assume that ∂ LSTa and ∂ LSTb meet along exactly two edges. It follows, that they must be identified
along a spine of each of ∂ LSTa and ∂ LSTb, referred to as their common spine. Let Da and Db be the
discs obtained by taking the interior of ∂ LSTa and ∂ LSTb after truncating their vertex and removing
their common spine. Da and Db can be glued together along sections of the exchange annuli in a
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neighbourhood of the common spine yielding a 4–punctured sphere S properly embedded in Mc (the
truncated compact core of M ) and disjoint from the two edges of the common spine.
By construction, the four boundary components of S in one of the torus boundary components T0 ⊂
∂Mc bound a regular neighbourhood of the intersection of the maximal layered solid tori LSTa and
LSTb with T0 – a regular neighbourhood of two discs pinched along four points (the four points being
the intersection of the common spine with T0 ). Since this regular neighbourhood is connected, of Euler
characteristic −2, and with four boundary components, it must be a 4–punctured sphere contained in T0.
There are two cases: either all components of ∂S are trivial in T0 (that is, S equals a disc of T0 with
three points removed), or two components of ∂S are non-trivial (that is, S equals an annulus of T0
with two points removed).
First suppose (LSTa∪LSTb)∩T0 is contained in a disc on T0 and hence three of its boundary compo-
nents bound discs in the complement of the intersection. Pasting these three discs of T0 into S and
pushing them slightly off T0 yields a disc properly embedded in Mc. This disc can be extended to a torus
parallel to boundary component T0 of Mc . Moreover, this torus is disjoint from the two edges of T
of the common spine, which both are incident to T0 . It follows that a normalised version of this torus
cannot be equal to the vertex linking torus T0 and thus T cannot be boundary efficient. A contradiction
to Theorem 4.
Hence suppose (LSTa∪LSTb)∩ T0 is contained in an annulus on T0 and hence two of its boundary
components bound discs in the complement of the intersection. Pasting these two discs of T0 into S and
pushing them slightly off T0 yields an annulus properly embedded in Mc and disjoint from the two edges
of T of the common spine (which are both incident to T0 ). This annulus together with the annulus in
T0 complementary to (LSTa∪LSTb)∩T0 extends to a boundary parallel torus since otherwise M would
contain a non-trivial Seifert fibred space. Again, this boundary parallel torus leads to a contradiction to
the assumption that T is boundary efficient (cf. Theorem 4).

(2) Assume that ∂ LSTa and ∂ LSTb meet along exactly three edges. Following an analogous procedure as in
the previous case, we arrive at two 3–punctured spheres S1 and S2 (instead of one 4–punctured sphere
S ), both properly embedded in Mc, both meeting the same boundary component T0 ⊂ ∂Mc. Again,
it follows that a regular neighbourhood of (LSTa∪LSTb)∩T0 is connected, of Euler characteristic −4
with six boundary components and thus a 6–punctured sphere.
Pasting in some of the boundary discs of this 6–punctured sphere, analogously to the procedure carried
out in the previous case, yields a torus parallel to boundary component T0 and disjoint from three edges
of the triangulation which are all incident to T0 – and we conclude as before by using Theorem 4.

(3) Assume that ∂ LSTa and ∂ LSTb meet along a single face. Again, we argue as in the previous cases.
Here, we end up with one 3–punctured sphere S (the other one being filled in as a result of the face
identification). A regular neighbourhood of (LSTa∪LSTb)∩T0 now is connected, of Euler characteristic
−1, has three boundary components, and thus is contained in a disc or an annulus on T0. We again obtain
a disc or an annulus that can be extended to a torus running parallel to T0 which is disjoint of three edges
of the triangulation incident to T0 and we use Theorem 4 once again to finish the proof.

This completes the proof of the lemma.

3 Normal surfaces representing Z2–homology classes

Normal surfaces in 1–vertex triangulations of closed 3–manifolds that are dual to non-trivial first cohomology
classes were used in [21, 22] in order to obtain lower bounds on the complexity of 3–manifolds. This section
develops a similar theory for ideal triangulations. In this section, M is a compact, irreducible 3–manifold with
non-empty boundary a finite union of tori, and M is its interior.
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We consider surfaces representing elements of H2(M;Z2). We wish to emphasise that we do not work with
H2(M,∂M;Z2). We recall the following definitions from the introduction. If S is connected, let χ−(S) =
max{0,−χ(S)}, and otherwise let

χ−(S) = ∑
Si⊂S

max{0,−χ(Si)},

where the sum is taken over all connected components of S. Note that Si is not necessarily orientable. Define:

|| c ||= min{χ−(S) | [S] = c}.

Then the surface S representing the class c ∈ H2(M;Z2) is Z2 –taut if no component of S is a sphere, real
projective plane, Klein bottle or torus and χ(S) =−|| c ||. As in [35], one observes that every component of a
Z2 –taut surface is non-separating and geometrically incompressible.

3.1 Rank-1 colouring of edges and the canonical surface

We have M = M̂ \ M̂(0), and thus Lefschetz duality gives a natural isomorphism

DM : H2(M;Z2)∼= H1(M̂,M̂(0);Z2).

An element ϕ ∈ H1(M̂,M̂(0);Z2) can be viewed as an assignment of values 0 or 1 to each edge in the triangu-
lation such that in each triangle the sum of all values at its edges equals zero modulo two. We say that the edge
e is ϕ –even if ϕ(e) = 0 and ϕ –odd if ϕ(e) = 1. It follows that a tetrahedron falls into one of the following
categories, which are illustrated in Figure 12:

Type ∆q : A pair of opposite edges are ϕ –even, all others are ϕ –odd.

Type ∆t : The three edges incident to a vertex are ϕ –odd, all others are ϕ –even.

Type ∆ /0 : All edges are ϕ –even.

Figure 12: Tetrahedra of type ∆q, ∆t and ∆ /0. Grey and dashed edges are ϕ –even.

If ϕ is non-trivial, one obtains a unique normal surface, Sϕ = Sϕ(T ), with respect to T by introducing
a single vertex on each ϕ –odd edge. This surface is disjoint from the tetrahedra of type ∆ /0; it meets each
tetrahedron of type ∆t in a single triangle meeting all ϕ –odd edges; and each tetrahedron of type ∆q in a single
quadrilateral dual to the ϕ –even edges. Moreover, Sϕ is Lefschetz dual to ϕ and is termed the canonical
(normal) surface dual to ϕ. Given 0 6= c ∈ H2(M;Z2) we also write Sc = SDM(c) and call Sc the canonical
(normal) representative of c.

Lemma 13 Let M be a cusped hyperbolic 3–manifold with ideal triangulation T and 0 6= c ∈ H2(M;Z2).
Then || c || ≤ χ−(Sc) =−χ(Sc).

Proof It follows from the construction and definitions that [Sc] = c and we need to prove the equality in the
statement. For this, it suffices to show that no component of Sϕ is a sphere or a projective plane. Since M is
irreducible and not RP3, no component can be a projective plane. Since each component of Sϕ meets some
edge, and it meets each edge in at most one point, no component can be a sphere.
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3.2 Rank-2 colouring of edges

Given the subgroup H = 〈ϕ1,ϕ2〉 ∼= Z2⊕Z2 of H1(M̂,M̂(0);Z2), we now introduce a refinement of the above
colouring. Since ϕ1 +ϕ2 = ϕ3, there are four types of edges:

edge e is called H –even or 0–even if ϕi[e] = 0 for each i ∈ {1,2,3}; and

edge e is called i–even if ϕi[e] = 0 for a unique i ∈ {1,2,3}.

Let {i, j,k} = {1,2,3}. The normal corners of the normal surface Sϕi(T ) are precisely on the j–even and
k–even edges. Edge e is ϕi –even if it is i–even or 0–even. It follows that a face of a tetrahedron either has all
of its edges 0–even; or it has two 1–even (or 2-even or 3-even respectively) and one 0–even edge; or it has one
1–even, one 2–even and one 3–even edge. Whence a tetrahedron falls into one of the following categories:

Type ∆qtt : One edge is 0–even, the opposite edge is i–even, and one vertex of the latter is incident
with two j–even edges, and the other with two k–even edges, where {i, j,k}= {1,2,3}. (There are six
distinct colourings of such a tetrahedron, in the following referred to as sub-types.)

Type ∆qq : A pair of opposite edges are 0–even, all others are i–even for a unique i ∈ {1,2,3}. (There
are hence three distinct sub-types.)

Type ∆tt : The three edges incident to a vertex are i–even for a fixed i ∈ {1,2,3}, and all others are
0–even. (There are hence three distinct sub-types.)

Type ∆ /0 : All edges are 0–even.

Type ∆qqq : Each vertex is incident to an i–even edge for each i ∈ {1,2,3}. (In particular, no edge is
0–even, opposite edges are of the same type, and there are two distinct sub-types of tetrahedra.)

For each type, one sub-type is shown in Figure 13; the dashed grey edges correspond to 0–even edges and
the normal discs in Sϕi have the same colour as the i–even edges. The remaining sub-types are obtained by
permuting the colours.

Figure 13: Tetrahedra of type ∆qtt, ∆qq, ∆tt, ∆ /0 and ∆qqq. Dashed grey edges are 0–even.

3.3 Combinatorial bounds for triangulations

The set-up and notation of the previous subsection is continued. Let

nqtt(T ) = number of tetrahedra of type ∆qtt,

nqq(T ) = number of tetrahedra of type ∆qq,

ntt(T ) = number of tetrahedra of type ∆tt,

n /0(T ) = number of tetrahedra of type ∆ /0,

nqqq(T ) = number of tetrahedra of type ∆qqq,

e(T ) = number of 0–even edges,

ẽ(T ) = number of preimages of 0–even edges in ∆̃.
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The number of tetrahedra in T is

|T |= nqtt(T )+nqq(T )+ntt(T )+n /0(T )+nqqq(T ).

For the remainder of this subsection, we write nqtt = nqtt(T ), etc.

Let K̂ be the complex in T spanned by all 0–even edges (i.e., the complex of all edges, faces and tetrahedra
of T containing only 0–even edges) and let K be the ideal complex obtained from K̂ by removing its vertices.

Let N be a small regular neighbourhood of K. Then ∂N is a normal surface; it meets each tetrahedron in
the same number and types of normal discs as Sϕ1 ∪ Sϕ2 ∪ Sϕ3 except for the tetrahedra of type ∆qqq, which
it meets in four distinct normal triangle types instead of three distinct normal quadrilateral types. The normal
coordinate of ∂N is thus obtained by taking the sum of the normal coordinates of Sϕ1 , Sϕ2 , and Sϕ3 , and adding
to this the tetrahedral solution of each tetrahedron of type ∆qqq. (The tetrahedral solution is obtained by adding
all triangle coordinates of a tetrahedron and subtracting all quadrilateral coordinates; see, for instance, [23,
Section], or [36, Section 2.8]. Each tetrahedral solution has both positive and negative coordinates.) Hence

χ(Sϕ1)+χ(Sϕ2)+χ(Sϕ3)+nqqq = χ(∂N) = 2χ(N) = 2χ(K) =−2e+ntt+2n /0,

where the rightmost equality is a consequence of the following computation: By definition, the Euler charac-
teristic of K equals minus the number of 0–even edges plus the number of triangles with only 0–even edges
minus the number of tetrahedra of type ∆ /0 (note that K is ideal and hence has no vertices). Since every triangle
occurs in exactly two tetrahedra, every tetrahedron of type ∆tt accounts for one half of a triangle with 0–even
edges and every tetrahedron of type ∆ /0 accounts for two triangles of 0–even edges. Hence, in total we have

χ(K) =−e+ 1
2

ntt+2n /0−n /0 =−e+
1
2

ntt+n /0.

In particular, χ(Sϕ1)+χ(Sϕ2)+χ(Sϕ3)+nqqq is even. Rearranging the above equality gives

ntt+2n /0−nqqq = 2e+χ(Sϕ1)+χ(Sϕ2)+χ(Sϕ3), (3.1)

and hence:

ẽ= nqtt+2nqq+3ntt+6n /0

= 2|T |−nqtt+ntt+4n /0−2nqqq
= 2|T |−nqtt−ntt+4e+2(χ(Sϕ1)+χ(Sϕ2)+χ(Sϕ3)). (3.2)

Lemma 14 Let M be a cusped hyperbolic 3–manifold of finite volume, and suppose that ϕ1,ϕ2 ∈H1(M̂,M̂(0);Z2)
are non–trivial classes with ϕ1 +ϕ2 = ϕ3 6= 0. Let T be a minimal triangulation, Sϕi be the canonical surface
dual to ϕi, and let ed denote the number of 0–even edges of degree d. Then

e3 = nqtt+ntt−2(|T |+χ(Sϕ1)+χ(Sϕ2)+χ(Sϕ3))+
∞

∑
d=5

(d−4)ed . (3.3)

Proof Lemmata 8 and 9 imply that the smallest degree of an edge in T is three. One has ẽ = ∑ded and
e= ∑ed . Inserting this into Equation (3.2) yields the desired equality.

4 Quadrilateral surfaces and minimal ideal triangulations

In this section we prove the following result, first stated in the introduction. The essence of the proof is a
counting argument taking into account even edges, compression discs for the canonical normal representatives,
and types of tetrahedra. This is modelled on the blueprint for closed 3–manifolds [20, 21, 22, 28].
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Theorem 1 Let T be an ideal triangulation of a cusped hyperbolic 3–manifold M and let H ≤ H2(M,Z2)
be a rank 2 subgroup. Then

|T | ≥ ∑
06=c∈H

|| c ||.

Moreover, in the case of equality the triangulation is minimal, each canonical normal representative of a non-
zero element in H ≤ H2(M,Z2) is taut and meets each tetrahedron in a quadrilateral disc, and the number of
tetrahedra in the triangulation is even.

Note that the conclusion that each canonical normal representative meets each tetrahedron in a quadrilateral
disc is equivalent to saying that all tetrahedra are of type ∆qqq .

Proof It suffices to work with a minimal ideal triangulation. For if we can show any such a triangulation
satisfies the desired inequality, then clearly an arbitrary ideal one does also. Moreover, if any ideal triangulation
admits equality, then it clearly must be minimal.

Let T ′ be a minimal ideal triangulation of a cusped hyperbolic 3–manifold M. Fix a subgroup H < H2(M,Z2)
of rank 2, and let Si, i = 1,2,3, be the canonical normal representatives of the non-zero classes 0 6= ϕi ∈ H.
Let T be the minimal triangulation that has the smallest number of tetrahedra of type ∆ /0 amongst all minimal
triangulations of M that can be obtained from T ′ by a sequence of 4-4-moves.

Following the notation used in Section 3, the union of the normal surfaces Si, i= 1,2,3, intersects the tetrahedra
of T in nqtt tetrahedra of type ∆qtt, nqq tetrahedra of type ∆qq, and so on.

Let di be the maximal number of pairwise disjoint compression discs for Si , whose union does not separate
any component of Si. We have ||ci|| ≤ −χ(Si) due to Lemma 13. Moreover, in the presence of compression
discs, we obtain the stronger bound

3

∑
i=1
|| ci || ≤ −

3

∑
i=1

(χ(Si)+2di)

since compressions do not change the homology class and do not introduce components that are spheres or
projective planes. To simplify the expression, and with a view towards the second part of the theorem, we write

3

∑
i=1
|| ci ||=−D−∑χ(Si),

where D≥ 0. Here, we take care of the possibility that the canonical surfaces are incompressible but not norm
minimising, and we note that each independent compression disc contributes 2 to D.

For the sake of contradiction, assume

|T |<
3

∑
i=1
|| ci ||.

Lemma 14 now implies the strict inequality

ntt+nqtt+2D+
∞

∑
d=5

(d−4)ed < e3. (4.1)

Hence, proving the first part of Theorem 1 is equivalent to showing that this is impossible. That is, we need to
prove that the left hand side of inequality (4.1) must be at least as large as the right hand side.

The idea of the proof is to counter-balance each contribution to the right hand side with a contribution to the
left hand side of (4.1) of equal or larger size. A contribution to the right hand side only arises from a degree
three edge, and we have already shown that each such edge is contained in a layered ∂ –punctured solid torus
subcomplex. Any such complex contains at most one edge of degree three. The organising principles for the
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counting argument are as follows. We identify sets of degree three edges that can be associated with an H –even
edge f such that d( f )−4 is as least as large as the size of the associated set of degree three edges (see Claim
2 and the paragraph directly after the proof of Claim 2). In doing so, we may double count some of the degree
three edges, but we make sure not to double count any of edges f . For the remaining degree three edges,
there are only a small number of special cases, in which we need to also take into account the remaining terms
ntt+nqtt+2D. Here we need to make sure that such contributions to the left hand side are only counted at most
once. Moreover, in these special cases the contribution to the left hand side of (4.1) is strictly greater than the
contribution to the right hand side.

The following terminology helps organise the counting argument. A deficit in (4.1) is when the contribution
to the left is bigger than to the right, a balance in (4.1) is when they are equal, and otherwise we have a gain
in (4.1). Thus, for proving the first part of Theorem 1 it is sufficient to disregard all deficits and balances and
show that it is impossible to construct a triangulation exhibiting a gain. For the second part of Theorem 1 we
also need to keep track of balances.

Recall that the core tetrahedron of any layered ∂ –punctured solid torus LST is a standard one-tetrahedron
layered ∂ –punctured solid torus LST?(1,2,3). A canonical normal representative of a class of H2(M,Z2)
necessarily intersects LST?(1,2,3) in one particular quadrilateral type, or not at all. This can be seen by
enumerating all 0/1-colourings of edges in LST?(1,2,3) such that every face of LST?(1,2,3) has zero or two
edges of colour 1. Accordingly, the intersection of LST?(1,2,3) with all three canonical normal representatives
of non-trivial classes of H must result in a tetrahedron of type ∆qq or ∆ /0 .

It follows that either all tetrahedra in LST are of type ∆qq or of type ∆ /0 (this follows directly from looking at
the pattern of H –odd edges in the boundary). Accordingly we say that LST is of type ∆qq or ∆ /0. A layered
∂ –punctured solid torus LST of type ∆qq has one H –even boundary edge and the other two boundary edges
are H –odd.

Claim 0: All edges of degree 3 in T are H –even.

Proof of Claim 0: Due to Lemma 11, every edge e∈T of degree three can be associated to a maximal layered
∂ –punctured solid torus LSTe ⊂ T containing e in its interior. More precisely, e occurs twice in the core
tetrahedron of LSTe and once in the tetrahedron adjacent to the core. If LSTe is of type ∆ /0, then naturally e
must be H –even. Hence, let LSTe be of type ∆qq. Since e occurs twice in the core tetrahedron and the other
two edges in the core tetrahedron occur in it one and three times respectively, they only way the core tetrahedron
of LSTe can be of type ∆qq is for e to be H –even.

A layered ∂ –punctured solid torus LST has exactly one boundary edge of degree 1 with respect to LST . We
call the other two boundary edges non-unital.

Claim 1: A maximal layered ∂ –punctured solid torus LST of type ∆ /0 containing an H –even edge of degree
three either has an interior H –even edge of degree ≥ 6, or non-unital boundary edges g and f with dLST(g) = 3
and dLST( f )≥ 5.

Proof of Claim 1: In a layered solid torus of type ∆ /0 every edge is necessarily H –even. We can thus ignore
the edge-coulourings.

Every layered ∂ –punctured solid torus LST in a minimal triangulation T and containing a degree three edge
is obtained from a layered ∂ –punctured solid torus of type LST?(1,3,4) by iteratively layering onto one of the
non-unital boundary edges. In LST?(1,3,4), the non-unital boundary edges g and f have degrees dLST(g) = 3
and dLST( f ) = 5. If we layer on f we create an interior edge of degree six and we are done. If we layer on g we
create an interior edge of degree four, the formerly unital boundary edge is now of degree three, and the degree
of g – still being in the boundary – is increased by two. Layering on the unital edge contradicts minimality,
since it creates an edge of degree two. Iterating this procedure proves the claim.
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Claim 2: Let LST⊂T be a maximal layered ∂ –punctured solid torus that contains an interior edge e ∈T of
degree three. Then LST is incident with an H –even edge f such that if m is the number of degree three edges
of all maximal layered ∂ –punctured solid tori incident with f , then d( f )−4≥m (i.e. contributing a deficit or
balance in (4.1)), unless the following three conditions are satisfied for LST:

(1) all interior H –even edges distinct from e are of degree four,

(2) the solid torus is of type ∆qq , and

(3) the unique H –even boundary edge f is of degree one with respect to LST .

We call a maximal layered ∂ –punctured solid torus that contains an interior edge e of degree three and satisfies
the conditions (1)–(3) internally unbalanced.

Proof of Claim 2: No interior edge of LST distinct from e can be of degree less than four (see Lemma 11). If
LST contains an interior H –even edge of degree > 4, then we choose f to be this edge. It follows that m = 1,
and thus d( f )−4≥ m holds. Hence assume that all interior H –even edges distinct from e are of degree four.

Suppose that LST is of type ∆ /0 . All edges of LST are H –even and, by the above, all its interior edges apart
from e are of degree four. But then, by Claim 1, there exists a boundary edge f ∈ ∂ LST satisfying dLST( f )≥ 5.
Now m−1 additional maximal layered solid tori containing degree three edges meet f in one of their H –even
boundary edges. By Lemma 12, f is of degree at least 4+2m. Thus d( f )−4≥ 2m > m and we have a deficit
in (4.1).

The last case is that LST is of type ∆qq . Since LST is of type ∆qq it has a unique H -even boundary edge
f ∈ ∂ LST. If dLST( f ) > 1, then dLST( f ) ≥ 3. Again m− 1 additional maximal layered solid tori containing
degree three edges are incident with f . By Lemma 12, f is of degree at least 2+2m. Thus d( f )−4≥ 2m−2.
So if m≥ 2, then d( f )−4≥ m. If m = 1, then we claim that the degree of f is at least five. Suppose it is not.
Then the neighbourhood of f is modelled on a layered ∂ –punctured solid torus having one more tetrahedron
than LST but extra identifications between the boundary edges. This is not possible due to maximality and
Lemma 10. Hence no identifications are possible amongst the edges and so d( f )≥ 5.

The set of internally unbalanced maximal layered ∂ –punctured solid tori can now be canonically partitioned, by
grouping together those which meet along their unique H –even boundary edge. Fix one such set of m internally
unbalanced maximal layered ∂ –punctured solid tori around a common H –even edge f . Its contribution to the
right hand side of (4.1) is m. But f must be of degree at least 2m by Lemma 12, and its contribution to the left
hand side of (4.1) is ≥ 2m−4. Hence, there is a deficit if m > 4. We therefore consider the cases where m≤ 4.
If m = 4 and d( f )> 8, we also obtain a deficit.

Special cases: Since the degree d = deg( f ) of f is bounded below by four, we obtain at most a balance if:

(m,d) ∈ {(4,8),(3,7),(2,6),(1,5)},

and we obtain at most a gain if:
(m,d) ∈ {(3,6),(2,5),(2,4),(1,4)}.

We call the edges in the above collections the balancing edges and the gaining edges, respectively.

The maximal potential gain is 2 in the case (2,4) and it is 1 in all other cases. Our strategy now is to visit
each edge f that gives a potential gain, show that it either achieves a deficit, or (even stronger) that it achieves
a deficit for itself and all H –even edges in its star.

Before taking a closer look at these cases, we first prove an auxiliary statement. For this and for the remainder
of this proof, we denote the tetrahedra around f by ∆1, . . . ,∆d (labelled in cyclic order such that ∆i shares a
triangle with ∆i+1; some tetrahedron may appear in this sequence multiple times). Moreover, without loss of
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generality and following Lemma 12, the internally unbalanced maximal layered ∂ –punctured solid torus LSTi

incident to f can be assumed to contain ∆2i−1, 1≤ i≤ m.

Claim 3: In all four cases (m,d)∈ {(3,6),(2,5),(2,4),(1,4)}, the edge f is surrounded by d pairwise distinct
tetrahedra.

Proof of Claim 3: Tetrahedra contained in distinct internally unbalanced maximal layered ∂ –punctured solid
tori must be pairwise distinct. Hence the tetrahedra ∆2i−1, 1 ≤ i ≤ m, are pairwise distinct since ∆2i−1 is
contained in LSTi .

A tetrahedron of type ∆qtt cannot occur twice around f because it has only one H –even edge and, of course,
there can be no tetrahedron of type ∆qqq. Moreover, only ∆3 in case (1,4) can be of type ∆ /0, and hence a
tetrahedron of type ∆ /0 cannot occur more than once around f .

If f occurs more than once in a tetrahedron ∆ of type ∆tt, then we must be in (2,5) or (1,4) since f is
contained in a face only having H –even edges. In case (2,5) we have ∆=∆4 =∆5; in case (1,4) we either have
∆ = ∆2 = ∆3, or ∆ = ∆3 = ∆4, or ∆ = ∆2 = ∆4. Assume we have one of the three cases where ∆ = ∆i = ∆i+1.
Then two faces of ∆ are identified. However, there is only one way to identify two faces of a tetrahedron of type
∆tt in an orientation preserving manner, and this creates an edge of degree one, which is not possible. Hence
we are in case (1,4) and ∆ = ∆2 = ∆4. Then ∆3 is necessarily of type ∆ /0. But ∆ /0 cannot share two distinct
faces with ∆2 = ∆4 because a tetrahedron of type ∆tt only has one triangle of H –even edges.

The remaining tetrahedron type ∆qq can occur in all cases and in all places around f . To start suppose ∆2 is of
type ∆qq; one of the H –even edges of ∆2 is f and we denote the other f ′. If ∆2 appears more than once around
f , then f = f ′. In particular the two faces of ∆2 containing f ′ meet ∆1 in at least two edges and hence cannot
be identified with a tetrahedron ∆2i−1, 2 ≤ i ≤ m. This shows that in the cases (3,6) and (2,4) all tetrahedra
must be pairwise distinct by the symmetry of the situation.

In the case (2,5) this implies that ∆2 cannot equal ∆4. However, ∆2 also meets a face of ∆3 and by the same
reasoning cannot equal ∆5. The only remaining possibility in this case is that ∆4 equals ∆5. Here again, ∆5
meets ∆1 in a face, and hence if ∆4 equals ∆5, then ∆1 and ∆3 share two edges, which is not possible.

It remains to consider the case (1,4). First suppose that ∆2 and ∆3 are the same tetrahedron. There are two
possibilities that are combinatorially equivalent. Taking all the face pairings into account, we conclude that
∆2 is a 1–tetrahedron LST?(1,2,3). But this meets ∆1, and hence LST1, in three edges, a contradiction. See
Figure 14 for an illustration of this case.

Figure 14: Identifying ∆2 and ∆3 in case (1,4) yields a one-tetrahedron layered solid torus meeting LST1
in three edges.

Hence suppose without loss of generality that ∆2 and ∆4 are the same tetrahedron. Analysing the two different
gluings that arise, we see that ∆2 is layered on one of the two H -odd boundary edges of ∆1. But this either
contradicts maximality of LST1 or it contradicts Lemma 10, see Figure 15.
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Figure 15: Identifying ∆2 and ∆4 in case (1,4) yields a layering on the boundary of LST1 .

This completes the proof of the claim.

The case m = 2 and d = 4: Since f is H –even of degree four, we have to find a contribution to the left hand
side of (4.1) of 2 to obtain a balance and > 2 to obtain a deficit.

By Claim 3 and by the preliminary observations above, we can assume that all four tetrahedra surrounding f
are distinct and tetrahedra ∆1 and ∆3 are of both of type ∆qq. If the quadrilaterals in ∆1 and ∆3 are of distinct
colours, ∆2 and ∆4 must both be of type ∆qtt. Hence, they contribute 2 to the left hand side of (4.1). Moreover,
since these two tetrahedra then do not have any H –even edges other than f , they cannot contribute to any other
set of maximal layered solid tori united along an H –even edge, and their contribution to (4.1) is global. In
particular, there is at most a balance and not a gain. Now one of the surfaces, Si, links the edge f in an annulus.
We can perform a compression of this annulus, using a disc transverse to f . This is indeed a compression
disc since the resulting surface is still connected, due to its intersection with the H -odd boundary edges of the
layered ∂ –punctured solid tori. Whence in total, we have a deficit of 4. We also note that this compression
disc is confined to a neighbourhood of f and that the tetrahedra ∆2 and ∆4 have a unique H –even edge. Thus,
the quadrilateral discs of Si affected by this compression allow no other compressions of this kind and we may
associate the total deficit with f .

We can thus assume that ∆1 and ∆3 are coloured the same. This implies that ∆2 and ∆4 must both be of type
∆qq with the same colours as well. In particular, the octahedron that is the boundary of the star of f has eight
H -odd edges, all of degree two inside the star of f , and a 4–cycle of H –even edges, all of degree 1 inside
the star of f . In this case we can perform compressions of two of the surfaces as above. Whence in total we
have a contribution of 8 to the left hand side and a contribution of 2 to the right hand side. We now allocate a
contribution of 3 to f so that in total we have a deficit of 1 associated with f . We then associate a contribution
of 2.5 to each of the other two H –even edges of ∆2 and ∆4. Hence each of these (if it is in our collection
of gaining or balancing edges) now has a deficit associated with it and is not visited again. In particular, any
further compression discs we find in the star of an H –even edge is disjoint from the ones we just found.

This completes the case of gaining edges of type (2,4) showing that they all contribute a deficit. We may thus
assume that the maximal potential gain of an edge we have not yet considered is 1.

The case m = 3 and d = 6: Since f is H –even of degree six, it contributes 2 to the left hand side of (4.1).
Hence, we have to find an additional contribution of 1 to obtain a balance and > 1 to obtain a deficit.

Since LST1, LST2 and LST3 are internally unbalanced, ∆1, ∆3 and ∆5 are all of type ∆qq. If not all of them
are coloured the same, at least two of ∆2, ∆4 and ∆6 must be of type ∆qtt, contributing 2 to the left hand side
of (4.1) and we are done (again, note that the two tetrahedra of type ∆qtt do not have any other H –even edges,
and their contribution to the star of f is global).

24



Hence all tetrahedra ∆i, 1≤ i≤ 6, are of type ∆qq, all with the same colours. This implies that one can perform
a compression of two of the surfaces Si, i ∈ {1,2,3}, by cutting along the two tubes around the H –even edge
f , and pasting two discs, each intersecting f once (see Figure 16 for an illustration of this process). The
compressed surfaces are still embedded.

Moreover, note that three of the quadrilaterals in the tubes linking edge f are contained in layered solid tori
LST j , 1 ≤ j ≤ 3. Hence, each such quadrilateral has its vertices identified in diagonally opposed pairs. In
particular, the compressed surfaces still have the same number of connected components, and their compo-
nents still have non-positive Euler characteristic and Lemma 13 applies. Altogether, the possibility of such
compressions yields a contribution of 8 to the term 2D≥ 4∑

3
i=1 di of the left hand side of (4.1).

Figure 16: Compression along an H –even edge surrounded by tetrahedra of type ∆qq. The picture only
shows one of the two parallel surfaces.

We distribute this contribution onto f and the three remaining H –even edges of ∆2, ∆4 and ∆6 equally. Thus,
all of the four edges receive a sufficient contribution to give a deficit in (4.1), and are not visited again (except
that they may receive additional deficit from other edges). In particular, any other compression discs we find
do not intersect the tetrahedra in the star of f .

This completes the case of gaining edges of type (3,6) showing that they all contribute a deficit.

The case m = 2 and d = 5: Since f is H –even of degree five, it contributes 1 to the left hand side of (4.1).
Hence, we have to find an additional contribution of 1 to achieve a balance and > 1 to achieve a deficit.

Again, ∆1 and ∆3 can be assumed to be of type ∆qq. If ∆1 and ∆3 are of distinct colours, ∆2 must be of type
∆qtt. If there is at least one other tetrahedron of type ∆qtt incident with f , then there is a contribution to the
left hand side of 4.1 of 2 and we have a deficit. Otherwise there are two distinct tetrahedra of type ∆tt also
incident with f . We obtain a contribution of 2 to the left hand side of (4.1) from these tetrahedra which needs
to be shared with the two other H –even edges, g and h of the triangle shared by ∆4 and ∆5. We can distribute
a contribution of 2

3 from these tetrahedra to the (possibly not pairwise distinct edges) f , g and h. This yields a
total contribution of 5

3 > 1 to f and hence a deficit.

Hence, assume that ∆1 and ∆3 are equally coloured and thus ∆2 must be of type ∆qq with matching colours.
If any of ∆4 or ∆5 is of type ∆qtt, the other one must be as well, we obtain a contribution of 2, and we have a
deficit.

If one of ∆4 and ∆5 is of type ∆qq the other one must be as well. As before, this implies that one can perform a
compression of two of the surfaces Si, i ∈ {1,2,3}, by cutting along the two tubes around the H –even edge f .
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Again, there is an additional contribution to the left hand side of 8, distributed equally over the four H –even
edges of ∆2, ∆4 and ∆5 (see Figure 16). In particular, each of these edges has an associated deficit.

Hence, we can assume that both ∆4 and ∆5 are of type ∆tt, both with the same colouring. We obtain a
contribution of 2 to the left hand side of (4.1) which needs to be shared with the two other H –even edges,
g and h of the triangle shared by ∆4 and ∆5. However, for this contribution to be insufficient globally, both
g and h must be surrounded by some internally unbalanced maximal layered solid tori, with the tetrahedra
surrounding g and h and distinct from ∆4 and ∆5 all being of type ∆qq and of matching colours. This implies
that one can perform two compressions of two of the surfaces Si, i ∈ {1,2,3}, by cutting along the three times
two incomplete tubes around the edges f , g and h. This process replaces the two parallel triangles inside ∆4
and ∆5 by pairs of parallel normal triangles of all three other types. Again, quadrilaterals in the tubes linking
edges which are contained in a layered solid torus have their vertices identified in diagonally opposed pairs.
Hence this operation does not produce any new connected components. See Figure 17 for an illustration of this
process in the case of one surface (rather than two parallel ones).

Figure 17: Double compression along a triangle of H –even edges. Only one of the two parallel copies of
surfaces is drawn.

This double compression of two surfaces contributes a total of 16 to the left hand side of (4.1). We distribute
two to each of f , g and h, as well as to the at most three other H –even edges in the neighbourhoods of f , g
and h. The extra contribution of at least 4 is a surplus and not needed. We therefore again have a deficit.

This completes the case of gaining edges of type (2,5) showing that they all contribute a deficit.

The case m = 1 and d = 4: In this case, f does not contribute to the left hand side of (4.1) and we have to find
a total contribution of 1 for a balance and > 1 for a deficit.

Again, ∆1 can be assumed to be of type ∆qq. If any of ∆2, ∆3 and ∆4 is of type ∆qtt then we again have two
cases. Either at least two of these are of type ∆qtt and we obtain a contribution of at least 2 to the left hand
side of (4.1) and we are done, or one of them is of type ∆qtt and two are of type ∆tt. In this case we distribute
the contribution of 2 to the tetrahedra of type ∆tt evenly over their three H –even edges and obtain a total
contribution > 1 for f . If all ∆i, 1 ≤ i ≤ 4 are of type ∆qq, there exist compressions for two of the surfaces
Si, i ∈ {1,2,3}, with a total contribution of 8, which can be distributed equally over the four H –even edges
contained in ∆2, ∆3 and ∆4. This again gives a deficit for all H –even edges involved.

26



There are two cases remaining (up to symmetry). In the first case we have (without loss of generality) ∆2 of
type ∆qq and ∆3 and ∆4 of type ∆tt. Here, we fall back onto the double compression case along a triangle of
H –even edges, as done in the case m = 2, d = 5 (see Figure 17). This again gives a deficit for all H –even
edges involved.

In the second case we have ∆2 and ∆4 of type ∆tt and ∆3 of type ∆ /0. In this case, we obtain another minimal
triangulation of M by performing a 4-4-move on f . This results in two tetrahedra of type ∆tt and two of type
∆qq. But this contradicts our hypothesis that T locally has the smallest number of tetrahedra of type ∆ /0. In
particular, this case does not happen.

This completes the case of gaining edges, showing that they all contribute a deficit.

To sum up, it is not possible to achieve a gain, and hence we have proved the first part of the theorem, estab-
lishing the basic lower bound on the number of tetrahedra.

To prove the second part, we make some additional observations regarding the balancing edges.

If the balancing edge f received a contribution > 0 as a member of the star of a gaining edge, then it has an
associated deficit. Hence assume that f has not received such a contribution. If f is incident with a tetrahedron
of type ∆qtt then there is a deficit. If f is incident with a tetrahedron of type ∆tt, then this tetrahedron has not
been counted yet since otherwise f would have received a contribution. We can therefore allocate 1/3 to each
edge incident with this tetrahedron and hence f has a deficit.

In particular, this shows that associated to the subcomplex that is the union of all internally unbalanced tori
and all tetrahedra of type ∆qtt or ∆tt we have an overall deficit.

These observations regarding the balancing edges suffice to analyse the case of equality. Hence suppose |T |=
∑

06=c∈H
|| c || and so

ntt+nqtt+2D+
∞

∑
d=5

(d−4)ed = e3.

The above analysis shows that this equality is only possible if there is no deficit since otherwise the right hand
side is smaller than the left hand side. In particular, the subcomplex that is the union of all internally unbalanced
tori and all tetrahedra of type ∆qtt or ∆tt must be empty. Whence ntt = nqtt = 0. From the possible face pairings
between tetrahedra of the different types, this implies that either all tetrahedra in T are of type ∆ /0 (but then H
has rank 0); or all tetrahedra are of type ∆qq (but then H has rank 1); or all are of type ∆qqq. Hence we have
the last case and each canonical surface is a quadrilateral surface. Since all tetrahedra are of type ∆qqq, there
are no H –even edges. Whence e3 = 0, which implies D = 0 and the three surfaces therefore are taut.

It remains to show that in every minimal triangulations of M the canonical normal representatives of non-trivial
classes in H are taut and all tetrahedra are of type ∆qqq . Recall that T was obtained from an arbitrary minimal
triangulation T ′ by 4-4 moves.

We first note that every edge e of T is contained in at most d(e)−1 distinct tetrahedra. Otherwise the unique
canonical representative S disjoint from e can be altered by cutting out the tube around e and pasting in two
discs orthogonal to e. Since S is taut, this operation cannot be a compression of S and thus it must produce
two connected components – one of which must be a normal 2-sphere. This contradicts the fact that T is 0-
efficient due to Theorem 4. But if no edge e of T is contained in d(e) distinct tetrahedra, it is in particular true
that T does not admit 4-4-moves. Hence T ′ = T . In particular, the minimality assumption on the number of
tetrahedra of type ∆ /0 is true for all minimal triangulations of M .
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We now show that if all tetrahedra are of type ∆qqq , then the total number of tetrahedra in T is even. For this
we use the fact that M is orientable and we assume that all tetrahedra are coherently oriented. In a tetrahedron
of type ∆qqq , every boundary triangle has one 1-even, one 2-even and one 3-even edge and the orientation on
the triangle induced by the orientation of the tetrahedron determines a cyclic order of the labels 1, 2, and 3. This
is the same cyclic order for all boundary triangles of the same oriented tetrahedron. Hence there are two types
of oriented tetrahedra of type ∆qqq . Tetrahedra meeting in a triangle must induce opposite cyclic orders on this
triangle, see Figure 18. Hence, they are of different orientation types. It follows that the number of tetrahedra
is even.

Figure 18: The two orientation types of a tetrahedron of type ∆qqq .

5 The monodromy ideal triangulations of once-punctured torus bundles

In this section we apply Theorem 1 to a nice class of examples known as the (canonical) monodromy ideal
triangulations of once-punctured torus bundles over the circle. In particular, we show that these are minimal.
In the last subsection we describe an infinite family of triangulations of semi-bundles that we conjecture to be
minimal.

5.1 Definition of the triangulation

Monodromy ideal triangulations were studied in Lackenby [25] and Gueritaud [12], and we refer the reader to
these references for details.

The monodromy ideal triangulations all have the property that they are ideal triangulations for which all edges
are of even degree and there is a single ideal vertex. As we are only interested in the case of hyperbolic 3-
manifolds amongst once punctured torus bundles, we restrict to monodromy as a map A ∈ SL(2,Z) having
trace different from 0,±1,±2.

Each tetrahedron in the monodromy ideal triangulation is layered on a once punctured triangulated torus with
two ideal triangles. In particular, two sets of opposite edges of each tetrahedron are identified in pairs so that the
top and bottom pairs of faces form such triangulated once punctured tori. Each tetrahedron induces a diagonal
flip on the triangulation of the once punctured torus, and tracing the sequence of flips gives rise to a conjugate
of ±A. Indeed, each flip corresponds to one of the standard transvection matrices

R =

(
1 1
0 1

)
and L =

(
1 0
1 1

)
,

and hence one obtains a factorisation of a conjugate of ±A in terms of positive powers of L and R.
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A key property of these triangulations is that the normal quadrilateral discs are of two types—called horizontal
and vertical. A horizontal quadrilateral has vertices on the two pairs of opposite edges which are glued together.
A vertical quadrilateral has two vertices on such a pair of edges and two vertices on the two edges which are
not glued together.

A crucial fact about normal surfaces in these triangulations is that the Euler characteristic is exactly the negative
of the total number of horizontal quadrilaterals, see Lemma 15. In particular no normal triangle and no vertical
quadrilateral contributes to the Euler characteristic.

In Sections 5.2 and 5.3 we prove the following result, first stated in the introduction.

Theorem 2 Monodromy ideal triangulations of once-punctured torus bundles are minimal.

5.2 Reduction using coverings

Monodromy ideal triangulations of once punctured torus bundles M have the nice property that any cyclic
covering induced by the bundle structure is again a once punctured torus bundle and the triangulation lifts to
the monodromy ideal triangulation. Throughout this section, we assume that the monodromy has trace different
from 0,±1,±2. Hence there is a unique Z–summand of H1(M,Z). The cyclic coverings we are using in this
section come from the kernels of maps π1(M)→ H1(M,Z)→ Z→ Zk.

We claim that either H1(M,Z2) has rank 3 or there is a 2– or 3–fold cyclic covering M̃ of M with the property
that H1(M̃,Z2) has rank 3. The natural presentation of the fundamental group of M is of the form

〈 t,a,b | t−1at = α(a), t−1bt = α(b) 〉,

where α is the automorphism of the free group 〈a,b〉 induced by the monodromy A. It follows that the map
induced by A on Z2⊕Z2 is precisely its image A ∈ SL(2,2)∼= Sym(3). Whence the rank of H1(M,Z2) is 3 if
A is the identity. Let k ∈ {1,2,3} be the order of A. Since the monodromy of the k–fold cyclic covering of M
corresponding to the kernel of the map π1(M)→ Z→ Zk gives rise to the map Ak ∈ SL(2,2), it follows that
we obtain rank 3 after passing to a k–fold cyclic covering.

It now suffices to show that a monodromy ideal triangulation is minimal for a once punctured torus bundle M
with H1(M,Z2) of rank 3. For if the rank is not three, we can pass to a 2– or 3–fold cyclic covering M̃ with
H1(M̃,Z2) of rank 3 as in the previous paragraph. If we can prove that the lifted monodromy ideal triangulation
of M̃ is minimal then the monodromy ideal triangulation of M must also be minimal.

5.3 Closed one-sided incompressible surfaces

In what follows, the weight of a normal surface S in a triangulation T is defined to be the overall number of
intersection points of S with the edges of T .

Lemma 15 Let M be a once-punctured hyperbolic torus bundle and let T be a monodromy ideal triangulation
of M. Furthermore, let S ⊂ T be a normal surface of T which is a taut least weight representative of an
even torsion class of H2(M,Z). Then S meets each tetrahedron of T in a single quadrilateral. Moreover,
χ(S) =−(# horizontal quads).

Proof Let S ⊂ T be a normal surface of T which is a taut representative of a fixed even torsion class
c ∈ H2(M,Z). We assume that S is of least weight amongst all taut representatives. The monodromy ideal
triangulation T naturally endows M with a circular Morse type function: The layering defines a cyclic ordering
of pairs of faces forming a once-punctured torus fibre. Let T be such a two-triangle fibre.
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Consider the intersection S∩T. This is a family of embedded disjoint normal simple closed curves in the two-
triangle structure on T. A well-known elementary fact is that any such curve is either non separating or vertex
linking. Next, note that S∩T cannot contain two parallel curves, since otherwise we can perform an annular
compression using an innermost fibre 0 weight annulus A and find a new homologous normal surface of less
weight or less genus or both.

To be more specific, consider N(A), where N(A) is a small regular neighbourhood of A. Then S ∩N(A)
contains two annuli and these are replaced by two annuli in ∂N(A) to form a new surface with the same weight
and Euler characteristic as S and representing the same class c. If this surface is disconnected, it is easy to
see one component is one-sided and the other is two-sided, as c is a torsion class. Hence we can discard the
two-sided component (it must bound in M ) and the resulting surface still represents c. As this new surface is
not normal, it can be isotoped to a normal surface of less weight, giving a contradiction.

Hence, from now on, we can assume that each fibre meets S in one or two curves. Note that in the latter case
exactly one curve links the ideal vertex in the fibre and the other curve is non separating. Let γ denote the non
separating curve in S∩T.

The curve γ ⊂ T is determined by how often it intersects the three edges of T. Since γ is connected, these three
intersection numbers are pairwise coprime. This can be seen by the fact that, given two intersection numbers,
the third one must either be the sum or the non-negative difference of the first two.

A key observation is that S propagates across the tetrahedron ∆∈T layered on top of T in a very well-behaved
way. In what follows, we denote the edge of ∆ opposite T by e, and the new fibre opposite T (i.e., the two
triangles of ∆ containing e) by T ′.

Assume that S∩T contains a vertex linking curve α. α intersects T in six normal arcs (one of each type).
Four of them necessarily yield two normal triangles in ∆ and two normal arcs in T ′. For the remaining two
arcs, three cases need to be considered.

1) They are in the boundary of a quadrilateral normal disc in ∆. In this case, the two normal triangles and
the normal quadrilateral containing α intersect both triangles of T ′ in two parallel normal arcs. Moreover, all
other normal arcs of S∩T ′ must be of the same type (otherwise S self-intersects inside ∆). In particular, S∩T ′

has parallel curves, which contradicts our assumption that S is least weight, using the annular compression
argument from above. See Figure 19 on the left.

2) One of them yields a normal triangle t, and the other one is in the boundary of a normal quadrilateral in ∆

together with a normal arc of γ. In this case, S∩T ′, again consists of one type of normal arc per triangle of T ′,
with two exceptional normal arcs coming from t. Let one triangle of T ′ contain k and the other one contain `
copies of parallel normal arcs. Hence, one edge of T ′ intersects S once, the second one k+1 = ` times and the
third k times, hence, `+1 = k, a contradiction. See Figure 19 on the right.

3) All of the six normal arcs of α are in the boundaries of normal triangles in ∆. Since 1) and 2) are not
possible, this must be the case for all tetrahedra of T and S contains a boundary parallel torus. This contradicts
the assumption that S is a least weight taut representative of c.

Hence, for the rest of the proof we can assume that S∩T is connected for each fibre T. Consequently, it follows
that S∩T has only one or two normal arc types in each triangle of T, since otherwise S∩T contains a vertex
linking component.

We claim that ∆ can only contain vertical normal discs of S, unless ∆∩S consists of a single horizontal quad
and S intersects two edges of T exactly once, and is disjoint from e.

More precisely, there are two cases we have to consider:
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Figure 19: Left: The normal arcs of α are in two normal triangles and one normal quadrilateral. Right: The
normal arcs of α are in three normal triangles and one normal quadrilateral.

(1) The intersection of S with T is disjoint from one of the edges of T. In this case the other two edges must
intersect S exactly once. If we layer on the edge disjoint from S then there is a single horizontal quadri-
lateral in the tetrahedron, if we layer on one of the other edges, there is a single vertical quadrilateral.
See Figure 20 on the right.

(2) The surface S intersects T in two normal arc types per triangle. In this case all normal discs of S in ∆

must necessarily be vertical. To see this note that a horizontal normal quadrilateral can only have two
normal arcs of S∩T in its boundary. Since by the assumption, at least one other normal disc must exist
in ∆, this must be a vertical normal triangle. Arguing as in case 1) and 2) above we can then follow that
all three normal arc types must be present per triangle, a contradiction. See Figure 20 on the left.

It is now easy to verify that the Euler characteristic of S is the negative of the number of horizontal quadrilateral
discs, using the circular Morse type function induced by the layering. For each horizontal quadrilateral disc
induces a simple saddle type singularity of Morse index one, whereas there are no critical points on vertical
triangles or quadrilaterals.

Figure 20: Left: S∩T has two normal arc types per triangle of T. Right: S∩T is disjoint from one edge of
T.

Since S is taut, no component can be a torus or Klein bottle. Hence there must be at least one horizontal
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quadrilateral. We can cut M open along a corresponding fibre T to form a product of the form T × I where T
is a once punctured torus. This product admits an induced ideal triangulation which is minimal layered.

There are two steps to complete the proof. The first is to follow the argument in [30, Theorem 12] which shows
that there is a unique isotopy class of incompressible surfaces in a lens space with even fundamental group. We
want to apply a similar argument to an incompressible surface S∗ in a product of a once punctured torus and an
interval.

Consider a product X = T × I where T is a once punctured torus and there are two essential boundary curves
C,C′ in T ×{0},T ×{1} respectively and the intersection number of C,C′ is even when projected to a copy of
T. We claim there is a unique incompressible surface S∗ up to isotopy with ∂S∗ =C∪C′.

Pick an annulus A in the product structure of X with boundary curve on T ×{1} parallel to C′. We can assume
without loss of generality that A is transverse to S∗ and the intersection A∩ S∗ contains only arcs which are
essential on S∗ and have both ends on T ×{0}. An innermost such an arc on A cuts off a bigon which can be
used to perform a boundary compression of S∗ across T ×{0}. Exactly as in [30], this boundary compression
must change the boundary curve C of ∂S∗ to a new curve which has smaller intersection number with C′. It
is now easy to show as in [30] that this process produces a unique family of bands attached to a collar about C
forming S∗ which is therefore unique up to isotopy.

The second step is to observe that the canonical quadrilateral surface in the induced ideal layered triangulation
of the product is incompressible. The proof again follows [30]. The key idea is to use induction and the
recursion formula for the genus of the incompressible surface. By removing the tetrahedra up to the first
containing a horizontal quadrilateral, we obtain a new product with an induced minimal layered triangulation.
The recursion formula for the change in boundary slope and the genus matches the formula in [30] and this
shows that the canonical quadrilateral surface must be incompressible as it is a minimal genus cobordism
surface connecting C and C′. This completes the proof.

Corollary 16 Let M be a once-punctured hyperbolic torus bundle and let T be a monodromy ideal triangu-
lation of M. Suppose that H2(M,Z) contains a Klein 4-group H. Then

|T |= ∑
06=c∈H

|| c ||,

and in particular T is a minimal triangulation.

Proof For each of the three non-trivial classes in H we have least weight taut normal representatives. We
know from the first part of Lemma 15 that each of them meets each tetrahedron of T in exactly one normal
quadrilateral. Moreover, since H is a Klein 4-group, the sum of all three representatives must have edge weight
zero mod two. It follows that every tetrahedron contains all three quadrilateral types exactly once. In particular,
in each tetrahedron exactly one of the three representatives has a single horizontal normal quadrilateral.

Hence, by the second part of Lemma 15 the negative of the sum of Euler characteristics of these three repre-
sentatives must equal the number of tetrahedra of T . It now follows from Theorem 1 that T is minimal.

Combining Corollary 16 with the covering argument provided in §5.2 proves Theorem 2.

5.4 Further examples

The orientable cusped hyperbolic census up to nine tetrahedra, described and verified in [5] and partially
shipped with Regina [6], contains 162182 minimal triangulations of 61911 cusped hyperbolic 3-manifolds.
There are exactly 26 triangulations for which the lower bound in Theorem 1 is attained. Of these, 22 are
triangulations of once-punctured torus bundles, but the remaining four are not. Their isomorphism signatures
are
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• gLLMQbeefffehhqxhqq of manifold s781,

• iLLLQPcbefgffhhhxxhaqxxqh of manifold t05624,

• iLLLQPcbefgffhhhhhqaxhhxq of manifold t06056,

• iLLwQPcbeefgehhhhhqhhqhqx of manifold t12546.

These examples, as well as infinite families of minimal triangulations they are contained in, will be described
in detail in a separate note.
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