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It is well-known that the Pachner graph of n-vertex triangulated 2-spheres is connected, i.e.,
each pair of n-vertex triangulated 2-spheres can be turned into each other by a sequence of edge flips
for each n ≥ 4. In this article, we study various induced subgraphs of this graph. In particular, we
prove that the subgraph of n-vertex flag 2-spheres distinct from the double cone is still connected.
In contrast, we show that the subgraph of n-vertex stacked 2-spheres has at least as many connected
components as there are trees on ⌊n−5

3
⌋ nodes with maximum node-degree at most four.
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1 Introduction
The Pachner graph of triangulated 2-spheres is the graph, whose nodes are triangulated 2-spheres
(also known as planar triangulations), and two nodes are connected by an arc if and only if their
corresponding triangulations can be transformed into each other by a single bistellar move, i.e.,
an edge flip, a stellar subdivision of a triangle or its inverse, see Figure 2.1.

The Pachner graph of triangulated 2-spheres is connected. More precisely, starting from an
arbitrary node representing an n-vertex 2-sphere, a path of length O(n) can be found in the
Pachner graph ending at the node representing the boundary of the tetrahedron. Conversely, it is
not difficult to see that Ω(n) arcs are also necessary for the length of such a path.

The Pachner graph has a natural graded structure into induced subgraphs on the sets of nodes
representing n-vertex triangulated 2-spheres, n fixed: The arcs within a level correspond to edge
flips, the arcs corresponding to stellar subdivisions (and their inverses) connect different levels of
the grading. It is well-known that each such level, sometimes called the flip graph (of n-vertex
triangulated 2-spheres), is connected [21]. Moreover, its diameter is bounded from above by 5n−23
due to work by Cardinal, Hoffmann, Kusters, Tóth and Wettstein [6] and bounded from below by
7n/3− 34 due to work by Frati [10]. These two results are the most recent additions to a series of
papers aimed at reducing the gap between upper bounds and lower bounds for the diameter of the
flip graph. One of the current open problems in this area is to find an upper bound and a lower
bound which are apart by a factor of two (the optimum achievable by bounding the diameter as
twice the distance of a particular pair of triangulations). See [4] for a survey on previous attempts
to bound the diameter of the flip graph of the 2-sphere.

In [20], Sulanke and Lutz show that there are exactly 59 twelve-vertex triangulations of the
orientable surface of genus six. Since they all must be neighbourly, none of them allows any edge
flips. Thus, the Pachner graph of twelve-vertex triangulated orientable surfaces of genus six is the
discrete graph on 59 nodes.

See various chapters of [8] for further and closely related research concerning the flip graph
and similar objects.

Structural results for, as well as bounds on flip distances in Pachner graphs (of spheres or, more
general, triangulated manifolds) which are as precise as the ones mentioned above, are unlikely
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to be provable in dimensions greater than two. For instance, the best upper bound for distances
in the Pachner graph of generalised triangulations of the 3-sphere is given by O(t22ct

2) for the
number of moves between a t-tetrahedron triangulation of S3 and the boundary of the 4-simplex,
see Mijatović [15]. Naturally, the corresponding upper bound in the simplicial setting must be
at least as large. Moreover, the n-th level of the Pachner graph of simplicial triangulations of
the 3-sphere is not even connected (in contrast to the generalised setting, see [14]): Consider an
n-vertex triangulation of the 3-sphere containing (i) no edge of degree three and (ii) the complete
graph with n vertices as edges. Such a triangulation only admits stellar subdivisions as bistellar
moves and is thus isolated in the Pachner graph of n-vertex triangulated 3-spheres. See [9, 18] for
a number of examples of such triangulated 3-spheres.

Even more, in dimensions greater than three, no such general upper bounds can exist at all
due to the undecidability of the homeomorphism problem.

In this paper we focus on the connectedness of certain subgraphs of the Pachner graph of n-
vertex triangulated 2-spheres. Namely, we consider what are called stacked and flag 2-spheres (see
Sections 2.2 and 2.3 for details). In many ways, flag 2-spheres are the counterpart to stacked 2-
spheres. While stacked 2-spheres contain the maximum number of induced 3-cycles, flag 2-spheres
do not contain any such cycle. Moreover, every triangulated 2-sphere can be decomposed into
a collection of flag 2-spheres and boundaries of the tetrahedron (called standard 2-spheres) by
iteratively cutting along its induced 3-cycles and pasting the missing triangles. For a flag 2-sphere
this decomposition is the 2-sphere itself. For stacked 2-spheres it yields the maximum number of
connected components, each isomorphic to the standard 2-sphere.

In [16, Theorem 2.6] the authors give upper bounds for the number of edge flips connecting two
flag 2-spheres within the class of Hamiltonian triangulations. Our main result states that such a
sequence of edge flips exists even within the class of flag 2-spheres – as long as both triangulations
are distinct from the double cone Γn over the (n−2)-gon (Figure 3.4(a)), see Theorem 3.1. Observe
that excluding the n-vertex double cone Γn, n ≥ 6, from Theorem 3.1 is necessary: Γn is a flag
2-sphere in which every edge contains a degree four vertex. Thus every edge flip on Γn produces a
vertex of degree three and the resulting complex is not flag. In particular, Γn cannot be connected
to any other flag 2-sphere by an edge flip.

This theorem complements a result by Lutz and Nevo stating that every pair of d-dimensional
flag complexes, d ≥ 3, is connected by a sequence of edge subdivisions, and edge contractions [13].

In contrast, the subgraph of the Pachner graph of n-vertex stacked 2-spheres has much less
uniform properties. In Section 4 we give a precise condition on when exactly an edge flip of a
stacked 2-sphere produces another stacked 2-sphere (Theorem 4.1). Using this result, we prove
that the Pachner graph of n-vertex stacked 2-spheres is not connected, and that there are at least
as many connected components as there are trees on ⌊n−5

3
⌋ nodes and with degrees of nodes at

most four. In particular, the number of connected components of the Pachner graph of n-vertex
stacked 2-spheres is exponential in n (Corollary 4.7). Furthermore, we show that a pair of n-vertex
stacked 2-spheres can be connected by a sequence of n-vertex stacked 2-spheres, each related to
the previous one by an edge flip, if their associated stacked 3-balls have a dual graph without
degree four vertices (Theorem 4.9). These results are complemented by additional experimental
data for n ≤ 14 vertices (Table 1).

Altogether, the results contained in this paper together with existing results on the flip graph
discussed above allow us to draw a relatively precise map of the flip graph of n-vertex triangulated
2-spheres. Having more knowledge about the structural properties of the flip graph might be one
key for challenging future endeavours such as sampling triangulated 2-spheres or even generating
triangulated 2-spheres with certain properties under some conditions of randomness.

For a graphical summary of what is known about the flip graph at present see Figure 1.1.
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2 Preliminaries

2.1 Triangulations of 2-spheres
A triangulation of the 2-sphere, sometimes also referred to as a planar triangulation, is an n-vertex
graph embedded in the 2-sphere with 3n−6 edges for some n ≥ 4. As a direct result, the embedding
decomposes the 2-sphere into 2n − 4 triangles. This graph together with the triangles is called a
triangulated 2-sphere. The graph is also called the edge graph of the triangulated 2-sphere. The
simplest example of a triangulated 2-sphere is the boundary of the tetrahedron, called the standard
2-sphere.

Every n-vertex triangulated 2-sphere can be identified with an abstract simplicial complex, that
is, a set of subsets of a finite ground set V , called faces, closed under taking subsets. For this,
label its vertices with the elements of V = {1, . . . , n} and represent triangles, edges and vertices
by subsets of V of cardinality three, two and one respectively. Note that, for the purpose of
this article, we sometimes do not make the distinction between vertices of an abstract simplicial
complex and elements of its ground set.

We say that two triangulated 2-spheres are combinatorially isomorphic, or just isomorphic
for short, if their respective abstract simplicial complexes are equal possibly after relabeling the
elements of the ground set. In this article, whenever we talk about triangulated 2-spheres we
mean their corresponding isomorphism classes of abstract simplicial complexes. By a theorem of
Steinitz [19], isomorphism types of triangulated 2-spheres are in one-to-one correspondence with
isomorphism types of simplicial 3-polytopes. A fact which does not generalise to higher dimensions
[2, 11].

Given a triangulated 2-sphere S, we usually denote its set of vertices, edges and triangles by
V (S), E(S) and F (S) respectively. Analogous notation is used for arbitrary abstract simplicial
complexes. For v ∈ V (S), its star stS(v) is the simplicial complex generated by all triangles
in F (S) containing v. The edges and vertices of stS(v) not containing v (i.e., the boundary of
stS(v)) constitute the link of v in S, written lkS(v). The star and the link of an arbitrary face of
an arbitrary abstract simplicial complex are defined analogously. The number of edges containing
v is called the degree of v, written degS(v).

For a triangulated 2-sphere S on ground set V and W ⊆ V , the subcomplex induced by W ,
denoted S[W ], is the simplicial complex of all triangles, edges and vertices of S entirely contained
in W . Induced subcomplexes on arbitrary abstract simplicial complexes are defined analogously.
In the special case of a graph G = (V,E) and one of its vertices v ∈ V , the induced subgraph
G[V ∖ {v}] is referred to as the vertex-deleted subgraph G − v.

2.2 Flag and Hamiltonian 2-spheres
There are several special types of triangulated 2-spheres which are relevant for this article. The
most important ones are introduced in this section and in Section 2.3.

Definition 2.1 (Flag 2-sphere). A flag 2-sphere is a triangulated 2-sphere in which all minimal
non-faces of the underlying simplicial complex are of size two. Equivalently, a flag 2-sphere is a
triangulated 2-sphere distinct from the standard 2-sphere, in which every 3-cycle (i.e., cycle of
three edges) bounds a triangle.
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Every triangulated 2-sphere S can be decomposed into a collection of flag 2-spheres and stan-
dard 2-spheres: Simply cut along a 3-cycle not bounding a triangle, and fill in the missing triangle
in both parts. Iterating this procedure results in a set of spheres called the primitive components
of S. Identifying each one of them by a node, and the 3-cycles by arcs between nodes this de-
fines a tree. If the tree is a single vertex, S is called primitive. A triangulated 2-sphere is called
4-connected if its edge graph is 4-connected. A triangulated 2-sphere distinct from the standard
2-sphere is 4-connected if and only if it is primitive if and only if it is flag.

Definition 2.2 (Hamiltonian 2-sphere). A Hamiltonian 2-sphere is a triangulated 2-sphere con-
taining a Hamiltonian cycle in its edge graph.

Hamiltonian 2-spheres play an important role in the proofs of upper bounds for the diameter
of the Pachner graph of n-vertex triangulated 2-spheres for a fixed n, see [4] for an overview. This
is due to (i) the well-behaved structure of the Pachner graph of n-vertex Hamiltonian 2-spheres
which admits relatively precise bounds on its diameter, see Theorem 2.6, and (ii) the fact that a
flag 2-sphere is necessarily Hamiltonian [22]. The converse of (ii) is not true.

2.3 Stacked 3-balls and stacked 2-spheres
A triangulated 3-ball is a collection of tetrahedra (together with their faces) whose union is a
topological 3-ball. If B is a triangulated 3-ball then its boundary BB is the complex generated by
all triangles of B contained in only one tetrahedron of B. By the standard 3-ball we mean a single
tetrahedron together with its faces. The boundary of the standard 3-ball is the standard 2-sphere.

A triangulated 3-ball B is called a stacked 3-ball if there is a sequence B1, . . . ,Bm of triangulated
3-balls such that B1 is the standard 3-ball, Bm = B and, for 2 ≤ i ≤m, Bi is constructed from Bi−1

by gluing (or stacking) a standard 3-ball onto a single triangle of Bi−1. Note that, by construction,
all edges and vertices of B are contained in BB.

Conversely, let B be a triangulated 3-ball with all of its edges and vertices in BB. If t is an
interior triangle in B then the boundary of t is a 3-cycle in BB (i.e., an induced 3-cycle in BB).
Since B is a union of tetrahedra, by Lemma 2.3 below, B is the union of two smaller 3-balls B1 and
B2 glued together along t and all the edges and vertices of Bi are in BBi for i = 1,2. Inductively,
this shows that B is a stacked 3-ball. (See [7, Theorem 4.5] for a more general result with a
rigorous proof.) A stacked 2-sphere is a triangulated 2-sphere isomorphic to the boundary of a
stacked 3-ball. It follows from the definition of a stacked ball that an n-vertex stacked 2-sphere
contains exactly n − 4 induced 3-cycles.

For an abstract simplicial complex C whose faces consist of tetrahedra and their subfaces, the
graph whose nodes correspond to the tetrahedra of C and two nodes are connected by an arc if
and only if their corresponding tetrahedra share a triangle is called the dual graph of C, denoted
by Λ(C). If B is a stacked 3-ball then Λ(B) is a tree, and every node of Λ(B) corresponds to a
primitive component of the bounding stacked 2-sphere BB. It follows that a triangulated 2-sphere
is stacked if and only if all of its primitive components are standard 2-spheres.

The following lemma is a corollary of [7, Lemma 3.4] which is proved for arbitrary dimension
and in the more general setting of homology balls.

Lemma 2.3. Let B be a stacked 3-ball. If t is an interior triangle of B then the induced complex
B[V (B) ∖ t] has exactly two connected components. Moreover, if u and v are the two apices of
tetrahedra of B containing t, then u and v are in different components of B[V (B) ∖ t].

From [1, Lemma 4.6 and Remark 4.1] we know the following statement.

Lemma 2.4 (Bagchi, Datta [1]). Let S be a stacked 2-sphere with edge graph G. Let S denote
the simplicial complex whose faces are all the cliques of G. Then S is a stacked 3-ball and S = BS.
Moreover, up to isomorphism, S is the unique stacked 3-ball such that S = BS.
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2.4 Bistellar moves
Bistellar moves are local combinatorial alterations of a simplicial complex which, in general, change
the isomorphism type of the complex, but not the topology of the underlying space. For a trian-
gulated 2-sphere S there are the following two bistellar moves to consider (see also Figure 2.1).

• Replace a triangle of S by three triangles joined around a new vertex. Such a stellar sub-
division of a triangle is also called a 0-move (because a 0-dimensional face is inserted) or
1-3-move (because one triangle is replaced by three triangles). For its inverse operation, a
so-called 2-move (a 2-dimensional face is inserted) or 3-1-move (three triangles are replaced
by one), remove the vertex star of a vertex of degree three and replace it by a single trian-
gle. This inverse operation is only possible if the new triangle is not already present in the
triangulation. In particular, the standard 2-sphere does not allow any 2-moves.

• Replace two triangles of S which are joined along a common edge, say abx and aby, and
replace them with triangles axy, bxy. This operation is possible if and only if xy is not an
edge of S. This move is called a 1-move, 2-2-move, or, for obvious reasons, an edge flip.
Throughout this article we denote it by ab↦ xy. The inverse of an edge flip is again an edge
flip.

0-move

2-move

1-move

Figure 2.1: The bistellar moves in dimension two.

Definition 2.5. The Pachner graph P of triangulated 2-spheres is the graph whose nodes are
triangulated 2-spheres up to combinatorial isomorphism, with arcs between all pairs of triangulated
2-spheres that can be transformed into isomorphic copies of each other by a single bistellar move.

Note that it is a fundamental and well-known fact that the Pachner graph P of triangulated
2-spheres is connected (see for example [17] for a much more general statement due to Pachner).

We denote the Pachner graph of all triangulated 2-spheres with n vertices by Pn. Note that
all edges in Pn correspond to edge flips.

The Pachner graph of n-vertex flag 2-spheres is denoted by Fn, the Pachner graph of n-vertex
Hamiltonian 2-spheres by Hn, and the Pachner graph of n-vertex stacked 2-spheres by Sn. Note
that, naturally, all of these graphs are induced subgraphs in the Pachner graph Pn of n-vertex
2-spheres. In particular, a priori it is not clear, whether or not any of them is connected. The
following statement is due to work by Mori, Nakamoto and Ota.

Theorem 2.6 (Theorem 5 of [12], Theorem 1 of [16]). For n ≥ 5, the Pachner graph Hn is
connected and of diameter at least 2n − 15 and at most 4n − 20.

In this article, we focus on structural properties of Fn and Sn.

3 The Pachner graph Fn of n-vertex flag 2-spheres
In this section we prove that, for n ≥ 8, the Pachner graph Fn of n-vertex flag 2-spheres contains
exactly two components, one of them consisting of the double cone Γn, the other one containing
all other n-vertex flag 2-spheres. Throughout this section we write T ∼ T ′ for two n-vertex flag
2-spheres meaning that there exists a sequence of edge flips connecting T and T ′ preserving the
flagness property at each step. We prove the following statement.
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Figure 3.1: The Pachner graph F8 of 8-vertex flag 2-spheres.
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Figure 3.2: The Pachner graph F9 arranged left to right by decreasing separation indices, see [5].
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Figure 3.3: The Pachner graph F10 arranged left to right by decreasing separation indices, see [5].

Theorem 3.1. If T and T ′ are two n-vertex flag 2-spheres distinct from Γn, then T ∼ T ′.

See Figures 3.1 to 3.3 for illustrations of the Pachner graph Fn for n ∈ {8,9,10}.
The proof of Theorem 3.1 relies on a number of lengthy and technical lemmas (Lemmas 3.4

to 3.8). We thus start by introducing all necessary terminology and a sketch of the proof, before
proving all lemmas in detail.

Definition 3.2. Let T be a flag 2-sphere. A subcomplex Q of T is called a quadrilateral if it is a
triangulated disc and its boundary is a 4-cycle. A quadrilateral Q in T with boundary a-b-c-d-a
is called proper, if a-b-c-d-a is an induced cycle in T and degT (a),degT (b),degT (c),degT (d) ≥ 5.
Since the boundary is an induced cycle, a proper quadrilateral contains at least one interior vertex.
A quadrilateral Q in T is called ordered, if it contains an interior vertex, and all of its interior
vertices are of degree four. Since an ordered quadrilateral is a subcomplex of a flag 2-sphere, it
follows that all the interior vertices lie on a path connecting diagonally opposite vertices of Q. We
call this path a diagonal path, or just a diagonal of Q.

Definition 3.3. For n ≥ 7, let An in Fn be as in Figure 3.4(b). Note that A7 = Γ7, An ≠ Γn for
n ≥ 8, and that An is a vertex of degree one in Fn for n ≥ 9.

For k ≥ 3, let Qk be the triangulated quadrilateral with k interior vertices shown in Fig-
ure 3.4(c). The path a0-a1-⋯-ak is said to be the diagonal path of Qk.

We prove Theorem 3.1 by showing that T ∼ An, for any n-vertex flag 2-sphere T distinct from
the double cone. For this, we split T (or a slight variation thereof) along an induced 4-cycle
into two triangulated quadrilaterals Q and R using Lemma 3.7. We then use Lemma 3.8 to turn
all interior vertices of both Q and R into vertices of degree four. Finally, we use Lemma 3.4 to
transport excess internal vertices from R to Q (or vice versa), until we obtain An.

The main difficulty in the above procedure is to prove Lemma 3.8. For this we need Lemma 3.6,
which allows us to merge two smaller triangulated quadrilaterals, and Lemma 3.5, which allows
us to resolve a pathological class of triangulations of the quadrilateral (triangulation Qk, shown in
Figure 3.4(c)). In addition, all of Lemmas 3.5, 3.6 and 3.8 need Lemma 3.4 to transport internal
vertices from one quadrilateral to another.

For a more precise but less descriptive outline, see the proof of Theorem 3.1 at the end of this
section.
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c

a

b b

(a)

c

a

bb

(b)

b

a

aka0

c

a1 a2 ak−1

(c)

Figure 3.4: (a) Double cone Γn over the (n − 2)-gon. (b) Target n-vertex flag 2-sphere An. (c)
Quadrilateral Qk with boundary vertices a0, a, ak, b and interior vertices c, a1, . . . , ak−1.

Lemma 3.4 (Transport Lemma). Let T be a flag 2-sphere containing two ordered quadrilaterals
α and β with disjoint interiors, but a common boundary edge vw. Furthermore, let k ≥ 2 (` ≥ 1)
be the number of interior vertices of α (resp., β), and let v and w satisfy one of the following
conditions:

(1) degT (w) ≥ 5, and the diagonal paths of α and β intersect in w;

(2) degT (v) ≥ 5, degT (w) ≥ 6, the diagonal path of α intersects v, and the diagonal path of β
intersects w.

Then there exists a flag 2-sphere T ′ such that (i) T ∼ T ′, (ii) T ′ contains two ordered quadri-
laterals α′ and β′, (iii) T ′ = (T ∖ {α,β}) ∪ {α′, β′}, (iv) vw is a common edge of α′ and β′ in T ′,
and (v) the number of interior vertices of α′ is k − 1, and the number of interior vertices of β′ is
` + 1.

Lemma 3.4 gives precise conditions on when exactly we can “transport” an interior vertex of
an ordered quadrilateral of T into an adjacent ordered quadrilateral without changing anything
else in T . Both Condition (1) and (2) for Lemma 3.4 are necessarily fulfilled as soon as α and β
only share one edge. If α and β share two edges, the situation is different: In Condition (1) we
can then have degT (w) = 4, in Condition (2) and for k = 2 and ` = 1 we can have both degT (v) = 4
and degT (w) = 5.

Proof. Each ordered quadrilateral of T must be subdivided by a diagonal path containing all of its
interior vertices all of which are of degree four. Hence, up to exchanging the roles of v and w, there
are two possible initial configurations to consider: The diagonal paths of α and β either meet, or
one ends in v and the other in w. The former corresponds to Condition (1) of the Lemma, the
latter one to Condition (2)
Condition (1) The diagonal paths of α and β meet in w. In this case, the sequence of flips
transforming T to T ′ is shown in Figure 3.5 on the left hand side (top to bottom). The dotted
edge denotes the edge to be flipped next, the dashed line denotes the newly inserted edge. The
integer next to a vertex indicates the change of the respective vertex degree with respect to the
initial vertex degree.

Throughout this edge flip sequence the degrees of w, v and the upper left vertex of α are,
at some point, decreased to the initial degree minus one. The degrees of all other boundary
vertices are never decreased below the initial degree. Since all three vertices of the former group
are initially of degree at least five (w by assumption and the other two by the flagness of T ), the
flagness condition is preserved in each step. The preconditions of the lemma ensure that no 3-cycle
is introduced in the first flip, the edges introduced by flip two and three end in the interior of α∪β
and hence cannot introduce a new 3-cycle, and the last flip re-introduces the edge removed by the
first flip.
Condition (2) α and β have diagonal paths ending in v and w respectively. To comply with the
labelling of the statement of the lemma, let the diagonal of α intersect with v and the diagonal

8



w

v

β α00 0

00 0

−10 0

−10 0

00 −1

−10 0

−1+1 −1

−10 0

0+1 −1

00 0β′
α′

w

v

β α00 0

00 0

−10 0

−10 0

−10 0

00 −1

-2+1 1

00 −1

−1+1 0

+10 −1β′
α′

Figure 3.5: Transport Lemma. Left: sequence of edge flips for intersecting diagonal paths (Cond.
(1)). Right: sequence of edge flips for diagonal paths ending in v and w respectively (Cond. (2)).

of β intersect with w. The sequence of edge flips transforming T to T ′ in this case is shown in
Figure 3.5 on the right hand side (top to bottom). Meaning of dotted and dashed lines as well as
integers next to vertices as in Condition (1)

Note that, in this procedure, only the degree of w is, at one stage, decreased to the initial
degree minus two. In addition, v and the lower left vertex of α are, at some point, decreased
to the initial degree minus one. The degrees of all other boundary vertices are never decreased
below the initial degree. By assumption, w is of initial degree at least six and v is of initial degree
five. Again, the other vertex of α not containing the diagonal must be of initial degree at least
five by the flagness of T . It follows that the flagness condition is preserved in each step. Again,
no 3-cycle is introduced by the flip sequence for reasons analogous to the ones described in the
previous case.

Lemma 3.5. Let T be an n-vertex flag 2-sphere, n ≥ 8, with induced 4-cycle a-a0-b-ak-a bounding
Qk. Then either T = Γn, T ∼ An, or there exists an n-vertex flag 2-sphere T ′ with T ∼ T ′, such
that (i) a-a0-b-ak-a is an induced 4-cycle in T ′ bounding an ordered quadrilateral Q, and (ii)
T ∖Qk = T ′ ∖Q.
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Proof. We use the notation for Qk as introduced in Figure 3.4(c) and in accordance with the
vertex labels of the induced 4-cycle a-a0-b-ak-a bounding Qk.

Case k = 3: Refer to Figure 3.6(a). Consider the two triangles a0ax1, a3ax
′
1 ∈ F (T ) outside but

adjacent to Q3. If x1 = x′1 (i.e., degT (a) = 5) consider triangles a0xixi+1, a3xix
′
i+1 ∈ F (T ), i ≥ 1,

until either x`+1 ≠ x′`+1, that is, degT (x`) ≥ 5, or x′` = x` = b.
The case x′1 = x1 = b is not possible because a-a0-b-ak-a is induced (and because n ≥ 8). If

x′` = x` = b, ` ≥ 2, T must be isomorphic to A`+6 and we are done. Otherwise, consider the two
triangles a0x`x`+1 and a3x`x

′
`+1, x

′
`+1 ≠ x`+1. Neither a0x

′
`+1 nor a3x`+1 can be edges of T since

otherwise there are induced 3-cycles a0-x′`+1-x`-a0 or a3-x`+1-x`-a3.
Keeping these observations in mind, we perform edge flip a0x` ↦ x`+1x`−1 (see Figure 3.6(b)),

followed by edge flips a0x`−1 ↦ x`+1x`−2, etc. all the way down to a0a↦ x`+1a1 (see Figure 3.6(c)).
For each of them we have that, since a3x`+1 is not an edge, a3-xi-x`+1-a3 is not a 3-cycle of T .

It follows that we can perform flips a1c↦ a0a2 (Figure 3.6(d)) and aa2 ↦ a1a3 (Figure 3.6(e)),
followed by the initial sequence of edge flips in reverse, i.e., x`+1a1 ↦ a0a, x`+1a↦ a0x1, x`+1x1 ↦
a0x2, all the way up to x`+1x`−1 ↦ a0x` (Figure 3.6(f)). Observe that now all vertices inside Q3

are of degree four and outside Q3 the triangulation is unchanged. This proves the result for k = 3.

b
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xℓ+1 x
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ℓ+1

(a)
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a1 a2
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xℓ+1 x
′

ℓ+1

(b)

b

a

a3a0

a1 a2
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x1
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xℓ+1 x
′
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(c)
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a2
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x1

xℓ−1

xℓ

xℓ+1 x
′

ℓ+1

(d)

b

a

a3a0

a1

a2

c

x1

xℓ−1

xℓ

xℓ+1 x
′

ℓ+1

(e)

b

a

a3a0

a1

a2

c

x1

xℓ−1

xℓ

xℓ+1 x
′

ℓ+1

(f)

Figure 3.6: Resolving Q3 into a quadrilateral with three interior vertices of degree four.

Case k = 4: Refer to Figure 3.7(a). The case k = 4 is very similar to the case k = 3. Again,
the case x′1 = x1 = b is not possible because a-a0-b-ak-a is induced. If x′` = x` = b for ` ≥ 2, T
decomposes into two ordered proper quadrilaterals along induced 4-cycle a0-a-a4-c-a0 to which we
can apply Lemma 3.4: The ordered proper quadrilateral contained in Q4, the rest of T , a and a0

take the roles of α, β, w and v. The diagonals are disjoint, degT (a) = 6 and degT (a0) ≥ 5. In
particular, Condition (2) is satisfied with k = 3 and ` ≥ 1 and we can transport a1 or a3 away from
its quadrilateral to conclude that T ∼ An, n ≥ 8.

If x`+1 ≠ x′`+1 for some ` ≥ 0 we perform a sequence of edge flips similar to the one in the
case k = 3 above. More precisely, the initial set of flips (Figure 3.7(b)) and the final set of flips
(Figure 3.7(e)) are identical with the initial two and the final two steps of case k = 3. Once flip
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b
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a4a0 a1 a2 a3

c

x1

xℓ−1

xℓ

xℓ+1 x
′

ℓ+1
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a3

c

x1
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xℓ
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Figure 3.7: Resolving Q4 into a quadrilateral with four interior vertices of degree four.

a0a ↦ x`+1a1 is performed, we can perform a1c ↦ a0a2 and a2c ↦ a0a3 (Figure 3.7(c)), followed
by a3a↦ a2a4 and a2a↦ a1a4 (Figure 3.7(d)).
Case k > 4: Refer to Figure 3.8(a). From k > 4 it follows that n ≥ 10. Moreover, a0 ≠ ak, and
a0ak is a non-edge of T since a0-a-ak-b-a0 is an induced 4-cycle. We start by performing flips
a0c↦ ba1, a1c↦ ba2, all the way to ak−4c↦ bak−3 (see Figure 3.8(b)). The resulting quadrilateral
splits into two parts. One with only degree four interior vertices (at least one), the other one being
isomorphic to Q3 with diagonal path going from ak−3 to ak (see Figure 3.8(c) for a re-arranged
version of the top centre quadrilateral emphasizing this fact).

Use the case k = 3 to turn Q3 into a quadrilateral containing only interior vertices of degree four
with the diagonal path running from a to b (see Figure 3.8(d)). Since k > 4, the overall quadrilateral
again splits into two parts, one with only degree four interior vertices (possibly none), the other
one being isomorphic to Q4 with diagonal path going from a to b (see Figure 3.8(e) for a re-
arranged version of the bottom left quadrilateral emphasizing this fact). Use the case k = 4 to
either conclude that T ∼ An, or to turn Q4 into a quadrilateral containing only degree four interior
vertices and diagonal running from ak−4 to ak. In the latter case the overall quadrilateral now
only has interior vertices of degree four which proves the lemma (see Figure 3.8(f)).

Lemma 3.6 (Merge Lemma). Let T be an n-vertex flag 2-sphere containing two ordered quadri-
laterals α and β with disjoint interiors, but common outer edges uv and uw. Then either
T = Γn, T ∼ An, or T ∼ T ′ where T ′ has an ordered quadrilateral γ with boundary B(α ∪ β)
and T ′ = (T ∖ {α,β}) ∪ {γ}.

Proof. We have four cases for the initial configuration of α and β emerging from the different
possible relative orientations of the diagonal paths of α and β, see Figure 3.9.

Case 1: If a = b then α ∪ β = T . In this case, T = Γn with cone apices v and w and we are done.
If a ≠ b we can merge α and β into one larger ordered quadrilateral with boundary B(α ∪ β).
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b
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aka0
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ak−1ak−2ak−3

(a)

b

a

aka0

c

ak−1ak−2ak−3
=

(b)

b
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(c)

b
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c
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=

(d)

b
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c
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ak−2
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(e)

Q4

k = 4

b

a

aka0
ak−4 ak−3 c ak−1 ak−2

(f)

Figure 3.8: Resolving Qk, k > 4, into a quadrilateral with k interior vertices of degree four.

Case 2: Refer to Figure 3.10. As before, if a = b then α ∪ β = T . If, in this case, β contains only
one interior vertex, then we have Γn with cone apices v and w and we are done. If α contains only
one interior vertex, both v and w are of degree four, and we have Γn with cone apices u and a = b.

Thus, we can assume both α and β have at least two interior vertices. In this case, we iteratively
apply Lemma 3.4 to transport interior vertices from β to α across edge uw until u is of degree five
(Figure 3.10(b)) and we obtain An (Figure 3.10(c)).

If a ≠ b, we, again, apply Lemma 3.4 to transport interior vertices from β to α across edge
uw until u is of degree five (Figure 3.10(b)). The quadrilateral β together with the two rightmost
triangles of α now form a quadrilateral isomorphic to Q3 with diagonal path from v to w (see
Figure 3.10(d)). This can be resolved into a quadrilateral with interior vertices all of degree four
and diagonal intersecting b (note that a is of degree greater than four and thus (i) the preconditions
of Lemma 3.5 are satisfied and (ii) we can always resolve Q3 in this case) and we are back to Case 1.

Case 3: This is completely analogous to Case 2.

Case 4: Again, if a = b then α ∪ β = T , and T is equal to Γn with cone apices u and a = b.
Hence, let a ≠ b. If α contains only a single interior vertex we fall back to Case 2, if β contains

only a single vertex we fall back to Case 3. Thus we can assume both α and β have at least two
interior vertices. In this case, degT (u) ≥ 6, degT (v),degT (w) ≥ 5, and we apply Lemma 3.4 to
transport vertices from α to β until α contains only a single interior vertex. Then we proceed with
Case 2.

Case 1
v

u

w

a b

α β

Case 2
v

u

w

a b

α β

Case 3
v

u

w

a b

α β

Case 4
v

u

w

a b

α β

Figure 3.9: The four initial configurations for α and β in the proof of Lemma 3.6.
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Case 2
v

u

w

a b

α β

=

u

w ba

v v

α β

Lem. 3.4

(a)

u

w ba

v v

α β

a = b

a 6= b

=
=

(b)

An

v

u

w

a a

(c)

v

u

w

a b

Q3

(d)

Lem. 3.5

Case 1
v

u

w

a b

Figure 3.10: Transporting vertices in Case 2: (a) Case 2 redrawn after cutting along edge uv. (b)
After transporting interior vertices away from β (Lemma 3.4). (c) Case a = b yields An. (d) Case
a ≠ b yields Q3. In the latter case apply Lemma 3.5 to fall back to Case 1.

Lemma 3.7. For n ≥ 8, let T ∈ Fn ∖ {Γn}. Then there exists T ′ ∈ Fn ∖ {Γn} with T ∼ T ′,
and a, b, c, d ∈ V (T ′) such that (i) a-b-c-d-a is an induced 4-cycle, and (ii) degT ′(a), degT ′(b),
degT ′(c), degT ′(d) ≥ 5. In particular, T ′ splits into two proper quadrilaterals Q and R both
bounded by a-b-c-d-a.

Proof. If T contains a vertex v of degree four, then, by the flagness of T , the link of v is an
induced 4-cycle, say a-b-c-d-a. If any of these vertices, say a, is of degree four, then, since n ≥ 8,
the boundary of the union of the stars v and a is an induced 4-cycle. Moreover, b and d are
of degree at least five. Iterating this process either yields an induced 4-cycle x-b-c-d-x, for some
vertex x of T of degree at least five, or x = c, and T is isomorphic to Γn, a contradiction. Hence,
assume degT (x) ≥ 5, and thus x ≠ c. If the degree of c is 4, consider the union of the quadrilateral
containing v and bounded by x-b-c-d-x and the star of vertex c. As before, iterate this procedure
until we obtain an induced 4-cycle x-b-y-d-x in T (possibly y = c) with x and y necessarily distinct
and both of degree at least five (note that x = y implies T isomorphic to Γn and thus degT (x) = 4,
a contradiction).

Since T is flag, it cannot contain a vertex of degree three. If, in addition, T does not contain
a vertex of degree four, then T must contain a vertex w of degree five (this is a consequence of
Euler’s formula which implies that the average vertex degree of a triangulated 2-sphere must be
less than six). Let auw and buw be two adjacent triangles in the star of w. If a and b have a
common neighbour x distinct from w and u, then x-a-w-b-x is an induced 4-cycle, and we are done
since T has no vertex of degree four. Otherwise the flip uw ↦ ab yields a flag 2-sphere in which w
has degree four. Now the link of w is an induced 4-cycle with all four vertices being of degree at
least five.

Lemma 3.8. Let T be an n-vertex flag 2-sphere which splits into two proper quadrilaterals Q and
R along an induced 4-cycle a-c-b-d-a. Then there exists an n-vertex flag 2-sphere T ′ with T ∼ T ′,
such that T ′ = Q′ ∪R, and the interior of Q′ contains only degree four vertices.

Note that, in T ′, neither Q′ nor R need to be proper quadrilaterals. However, both Q′ and R
contain interior vertices. In particular, each of a, b, c, and d is contained in at least two triangles
of both Q′ and R. We deal with this issue separately whenever we need to, namely in the proof
of Theorem 3.1.

Proof. We prove this statement by induction on the number k of interior vertices in Q. First note
that k > 0, and that the statement is true for k ≤ 2.
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Let a-c-b-d-a be the boundary of a quadrilateral Q in T with k ≥ 3 interior vertices, such that
degT (a),degT (b),degT (c),degT (d) ≥ 5. Since a-c-b-d-a is induced, ab and cd cannot be edges of T .

Claim: There exist a triangulation T ′ with T ∼ T ′, such that T ′ = Q′ ∪R, and in the interior of
Q′ either a and b or c and d have at least one common neighbour.

We first complete the proof of the lemma assuming the claim is true. This is then followed by
a proof of the claim. We can thus assume that we have an n-vertex flag 2-sphere T ′, T ∼ T ′, such
that either a and b or c and d have at least one common neighbour in Q′.

Assume that there exist at least one common neighbour of a and b (the case that c and d have
at least one common neighbour is completely analogous). If all such neighbours are of degree four,
all interior vertices must be neighbours of a and b of degree four and we are done. Otherwise,
choose a common neighbour e of degree at least five, and split Q′ into two smaller quadrilaterals
Q1 and Q2 with boundaries e-a-c-b-e and e-a-d-b-e respectively. Without loss of generality, let Q2

be the quadrilateral with at least three triangles containing e.
If Q1 has interior vertices, use the induction hypothesis to obtain a 2-sphere T ′′, T ′ ∼ T ′′, in

which Q1 is transformed into a quadrilateral Q′
1 with boundary e-a-c-b-e, T ′ ∖Q1 = T ′′ ∖Q′

1, and
in which all interior vertices of Q′

1 have degree four. In T ′′ vertex d is still of degree at least five,
vertices a and b must be of degree at least six, and vertex e must be of degree at least five since at
least three triangles containing e are outside Q′

1. In particular, Q2 is proper and we can apply the
induction hypothesis to Q2 to obtain a triangulated 2-sphere T ′′′ with two ordered quadrilaterals
Q′

1 and Q′
2 joined along two adjacent edges. Use Lemma 3.6 to merge both quadrilaterals, or

conclude that T ∼ An. We have that T /∼ Γn, since Γn does not split into to proper quadrilaterals,
as required by the statement of Lemma 3.8.

Hence, without loss of generality let Q1 be without interior vertices. Use the induction hy-
pothesis to transform Q2 into Q′

2 with only degree four vertices inside. Now either e is of degree
four, all interior vertices of Q′ = Q1 ∪Q′

2 are of degree four, and we are done. Or Q′ is isomorphic
to Qk and, by Lemma 3.5, can be transformed into a quadrilateral containing only degree four
vertices (or T ∼ An), and again we are done.

Proof of the claim: Refer to Figure 3.11. In the following procedure we always denote the flag
2-sphere by T and the quadrilateral enclosed by a-c-b-d-a by Q, although both objects are altered
in the process.

1. Denote all neighbours of a in Q from left to right by c = a0, a1, . . . , am = d.

2. If a0 and am have a common neighbour in Q other than a and b we are done.

3. If no such neighbour exists, let 1 ≤ j ≤ m − 1 be the largest index for which a0 and aj have
common neighbours outside the star of a.

By the planarity of Q, there exist an outermost neighbour x1 in Q, bounding a quadrilateral
x1-a0-a-aj-x1 that contains all other common neighbours of a0 and aj . Note that, in this
case, aj must be of degree at least five. If x1 = b, a and b have a common neighbour and
we are done. If x1 ≠ b, then there is at least one triangle inside Q containing a0 but not
contained in the quadrilateral inside Q and bounded by x1-a0-a-aj-x1. In particular, a0 is
of degree at least five in T (however T might have changed during this proof).

4. If the quadrilateral inside Q and bounded by x1-a0-a-aj-x1 does not contain interior vertices,
we must have j = 1 and the quadrilateral consists of the two triangles a0a1a and a0a1x1.
Note that x1 ≠ ai by the flagness of the triangulation, and x1ai is a non-edge for 2 ≤ i ≤ m
by construction of the procedure.

As explained in detail above, both a0 and a1 are of degree at least five, and a and x1 do
not have common neighbours other than a0 and a1. Hence, we can perform flip a0a1 ↦ ax1

which strictly increases the degree of a inside Q. We then start over at step 1 with a′0 =
a0, a

′
1 = x1, a

′
2 = a1, . . . a

′
m+1 = am.
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5. If the quadrilateral inside Q and bounded by x1-a0-a-aj-x1, say Q1, contains interior vertices,
we have degT (x1) ≥ 5. Moreover, as explained above degT (a0),degT (aj) ≥ 5, and degT (a) ≥
5 by assumption. In particular, Q1 is a proper quadrilateral with fewer interior vertices than
Q. We can thus use the induction hypothesis to rearrange the interior of Q1 to contain
only interior vertices of degree four. Note that, in the new triangulation, all of x1, a0, a
and aj still have degree at least five (i.e., the rearranged quadrilateral is an ordered proper
quadrilateral). This is important later on in the proof.

6. After rearranging Q1, bounded by x1-a0-a-aj-x1, into an ordered proper quadrilateral, repeat
steps 3 to 5 by looking for the largest index j < ` ≤m − 1 for which aj and a` have common
neighbours outside the star of a. Note that, whenever we flip an edge in step 4 we start over
at step 1 with a strictly larger degree of vertex a in Q.

This process either yields the desired result, or it terminates with Q having a sequence of
smaller ordered quadrilaterals Q1, . . . ,Qp around vertex a, p > 1, see Figure 3.11.

Call the “peaks” of the quadrilaterals x1, . . . , xp, and the “valleys” between quadrilaterals a0 =
y0, . . . , yp = am (cf. Figure 3.11). By construction, all xi, 1 ≤ i ≤ p, and yj , 0 ≤ j ≤ p are of degree
at least five (see step 5 above). That is, the quadrilaterals Qi, 1 ≤ i ≤ p, are ordered and proper.

b

a

am = yp = dc = y0 = a0 a1 y1 yp−1

x1
xp

y1
1

y
rp−1−1

p−1

am−1

Q1 Qp

Figure 3.11: The quadrilateral Q after performing steps 1-6, and after reorganising the interior
vertices of quadrilaterals Qi, 1 ≤ i ≤ p.

Recall that all quadrilaterals Qi, 1 ≤ i ≤ p, contain only degree four interior vertices. We want
all of the diagonal paths of Qi, 1 ≤ i ≤ p, to run from yi−1 to yi. If Qi only has one interior vertex,
this is automatically the case. Thus, assume that there exist a pair of quadrilaterals Qi and Qi+1,
1 ≤ i ≤ p − 1, sharing common edge ayi, and, without loss of generality, assume that Qi has a
diagonal path from a to xi of length at least two.

Observe that in this particular situation, both a and yi must be of degree at least six. Hence
we can apply Lemma 3.4 to “transport” all but one interior vertices of Qi to the diagonal path
of Qi+1, and declare the diagonal path in Qi to run from yi−1 to yi. If the diagonal path of Qi+1

connects yi with yi+1 we are done. If not, note that, again, both a and yi must be of degree at least
six. We proceed by transporting all but one interior vertices of Qi+1 onto the new diagonal path
from yi−1 to yi of Qi, and declare the diagonal path in Qi+1 to run from yi to yi+1. Repeating this
with all pairs of quadrilaterals containing at least one diagonal intersecting a yields the desired
result. Note that this procedure terminates with the degree of a being at least as large as it was
before starting the process at step 1 (that is, the degree of a in Q is at least m + 1).
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In Figure 3.11, denote the vertices in the upper link of yj by xj = y0
j , y

1
j , y

2
j , . . . y

rj
j = xj+1. By

construction we have rj > 0 for all j.
Refer to Figure 3.12(a). Since p > 1, x1, y1 = aj , and x2 are in the interior of Q. Moreover,

both aj = y1, j > 1, and x2 are of degree at least five and, by design of the procedure, y0y
`
1,

1 ≤ ` ≤ r1, is a non-edge (otherwise y`1 is a better choice for x1). It follows that we can perform the
flips x1aj ↦ aj−1y

1
1 , x1aj−1 ↦ aj−2y

1
1 , etc., all the way down to x1a2 ↦ a1y

1
1 (see Figure 3.12(b)).

Note that y1 and x1 are now both of degree at least four, the degree of y1
1 is larger than before,

a1 is of degree five, and all other degrees have not changed. Since x1ai, 2 ≤ i ≤ m, must be
non-edges, a and x1 do not have common neighbours. We can thus perform the flip a0a1 ↦ ax1,
see Figure 3.12(c).

b

a

ym
=

ap

y0
=

a0 a1 aj−1 y1 = aj

x1

y1
1

(a)

b

a

ym
=

ap

y0
=

a0 a1 aj−1 y1 = aj

x1

y1
1

(b)

b

a

ym
=

ap

y0
=

a0 a1 aj−1 y1 = aj

x1

y1
1

(c)

Figure 3.12: Increasing the size of the link of a.

This strictly increases the degree of a. We now start over with our procedure at step 1.
Since there are only finitely many vertices inside Q, this procedure must terminate with Q

containing a common neighbour of a and b. This proves the claim and completes the proof of the
lemma.

Proof of Theorem 3.1. To prove the theorem it suffices to show that T ∼ An for all T ∈ Fn ∖{Γn}.
Apply Lemma 3.7 to split T into two proper quadrilaterals T = Q ∪R. This is always possible

since T ≠ Γn. Use Lemma 3.8 to turn all interior vertices of both Q and R into vertices of degree
four.

If, after the first or second application of Lemma 3.8, any of the boundary vertices of Q (or R)
are of degree four, we grow Q (or R) such that eventually it is bounded by vertices of degree at
least five, or T ∼ Γn. However, since all edge flips on Γn produce a non-flag 2-sphere triangulation,
the latter case implies T = Γn, a contradiction.

Thus, T can be transformed into a triangulation T ′′ of the 2-sphere which splits into two
ordered proper quadrilaterals. This corresponds to the cases a = b in the proof of Lemma 3.4.
In particular, either T ′′ = Γn, which is impossible, T ′′ = An, or the degrees of all vertices of
the separating induced 4-cycle satisfy the preconditions of Lemma 3.4, and we can conclude that
T ∼ An.

4 The Pachner graph Sn of n-vertex stacked 2-spheres
Every pair of n-vertex stacked 2-spheres is, by definition, connected in the Pachner graph of stacked
2-spheres by a sequence of (n − 4) 2-moves, followed by a sequence of (n − 4) 0-moves. However,
if we look at the Pachner graph Sn of n-vertex stacked 2-spheres, the situation is different.

In this section we show that the structure of Sn is very special. More precisely, we prove that
Sn is not connected for n ≥ 7 (Corollary 4.6), and that the number of connected components
rapidly increases with the number of vertices (Corollary 4.7). More precisely, for n fixed, the
number of connected components is at least as large as the number of isomorphism classes of trees
of maximum degree at most four on ⌊n−5

3
⌋ vertices. See Table 1 for the number and cardinalities

of connected components of Sn for n ≤ 14.
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n #(Sn) # cc size of connected components
4 1 1 1
5 1 1 1
6 1 1 1
7 3 1 3
8 7 2 1,6
9 24 2 1,23

10 93 3 3,4,86
11 434 5 1,7,10,19,397
12 2110 8 1,2,6,43,46,57,82,1873
13 11002 15 1,2,2,3,4,6,6,7,57,222

223,246,326,394,9503
14 58713 33 1,1,3,4,4,4,5,6,6,6,6,7,7,9,9,9,12,

15,19,27,28,36,36,246,304,339,757,
1165,1182,1571,1944,1987,48958

Table 1: Number and cardinalities of the connected components of Sn for n ≤ 14.

For a stacked 2-sphere S, let S be the unique stacked 3-ball whose boundary is S, see
Lemma 2.4. If α is a triangle of S then α is a face of a unique tetrahedron of S (i.e., a clique of
size four in the edge graph of S). We denote this unique tetrahedron by α. Naturally, α is a node
in the dual graph Λ(S).

Theorem 4.1. Let S be a stacked 2-sphere. Let α = abc, β = abd be two triangles of S. Let α
(resp., β) be the unique tetrahedron in S containing α (resp., β). Then cd is not an edge of S and
the 2-sphere T obtained from S by the edge flip ab ↦ cd is stacked if and only if the nodes α and
β of Λ(S) are adjacent in Λ(S).

Proof. Suppose α and β are adjacent in the dual graph Λ(S), α ≠ β. Then there exists a vertex e
of S such that α = abce and β = abde (e /∈ {d, c} since α ≠ β). If cd is an edge of S then {a, b, c, d, e}
is a clique in the edge graph of S and hence, by Lemma 2.4, abcde is a simplex of S. This is not
possible since S is 3-dimensional.

Let B = S ∪ abcd. Since S ∩ abcd is a 2-disk, B is a triangulated 3-ball. The link lkB(ab) is
the induced 3-cycle c-d-e-c in B. Let D be obtained from B by the 3-dimensional bistellar 2-move
that replaces the three tetrahedra abcd, abce and abde around edge ab with the two tetrahedra
γ = acde and δ = bcde sharing triangle cde, denoted by ab↦ cde in short. By construction we have
(i) BD = T , where T is the 2-sphere obtained from S by the edge flip ab ↦ cd and (ii) all edges
of D are boundary edges (ab is the only edge of B not in the boundary which is removed by the
bistellar move ab↦ cde) and thus T is stacked (cf. Section 2.3).

Conversely, suppose cd is not an edge of S and the triangulated 2-sphere T obtained from the
stacked 2-sphere S by the edge flip ab ↦ cd is a stacked 2-sphere. Observe that both γ = acd and
δ = bcd are triangles of T .

Since ab, abc, abd ∈ S = BS, lkS(ab) is a path in E(S) from c to d. Let lkS(ab) = e0-e1-⋯-ek-ek+1

for some k ≥ 1, where e0 = c and ek+1 = d. We have that abce1 = abe0e1, abe1e2, . . . , abek−1ek,
abekek+1 = abdek are tetrahedra in S. Thus, abe1, . . . , abek are interior triangles of S. By
Lemma 2.3, S[V (S) ∖ {a, b, e1}] has two components, one contains e0 and the other contains
e2. Thus, the common neighbours of e0 and e2 in E(S) = E(S) are a, b and e1. Similarly, the
set of common neighbours of ei−1 and ei+1 is {a, b, ei} for 1 ≤ i ≤ k. This implies that the set of
common neighbours of c = e0 and d = ek+1 in E(T ) is {a, b, e1} ∩ {a, b, ek} (note that E(S) differs
from E(T ) = E(T ) only in edges ab and cd).

On the other hand the triangles γ = acd = ae0ek+1 and δ = bcd = be0ek+1 are contained in unique
tetrahedra γ = acdx and δ = bcdy of T and hence a, b, x and y are common neighbours of c and d.
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By the above this is only possible if e ∶= x = y = e1 = ek. In particular, lkS(ab) is a path from c to
d of length two, α = abce, β = abde, and in particular α and β are adjacent in Λ(S).

Remark 4.2. For an edge flip ab ↦ cd on a stacked 2-sphere S to be valid, we must have α =
abc, β = abd ∈ F (S) and cd /∈ E(S). We have seen that an n-vertex 2-sphere T can be obtained
from a stacked 2-sphere S by an edge flip ab↦ cd (that is, the edge flip is valid) and T is stacked
if and only if the nodes corresponding to tetrahedra α and β of S are adjacent in Λ(S).

Note that we can replace this latter condition in Theorem 4.1 by any of the following equivalent
conditions (some are immediate, some follow from Lemma 2.3):

• The path in the link of ab from c to d is of length exactly two.

• Edge ab is contained in exactly two tetrahedra of S.

• The vertices a and b have exactly three common neighbours in S.

• There exists a unique vertex e /∈ {c, d} such that ae and be are edges of S.

While some of these conditions are easier to grasp, others are more efficient for implementations.
It is thus useful to keep all of them in mind.

Remark 4.3. Let T be obtained from S by the edge flip ab ↦ cd and e, α = abc, β = abd, γ = acd,
δ = bcd as in the proof of Theorem 4.1. Then α = abce, β = abde ∈ S and γ = acde, δ = bcde ∈ T .
Moreover, let the (up to) two nodes adjacent to α in Λ(S) be acex and bcey, and let the (up to)
two nodes adjacent to β in Λ(S) be adez and bdew.

acex

bcey

α̃ = abce abde = β̃

adez

bdew

Λ(S̄)

acex

bcey

bcde = δ̃

γ̃ = acde

adez

bdew

Λ(T̄ )

Figure 4.1: Transformation of dual graph by edge flip ab↦ cd in the proof of Theorem 4.1.

Then the dual graph Λ(T ) is the tree build from Λ(S), with set of nodes U = {σ ∈ S ∣
σ is a tetrahedron }∖{α,β})∪{γ, δ} with all arcs in Λ(S) adjacent to α and β removed, and arcs
added between γ and δ (corresponding to triangle cde), γ and acex (corresponding to ace), δ and
bcey (bce), γ and adez (ade), and δ and bdew (bde), see Figure 4.1.

Corollary 4.4. Let S be a stacked 2-sphere, α = abc, β = abd two triangles of S, α (resp., β) the
unique tetrahedron of S containing α (resp., β), σ ∈ S correspond to a degree four node in Λ(S),
and let G1,G2,G3,G4 be the connected components of Λ(S) − σ. If the 2-sphere T obtained from
S by the edge flip ab↦ cd is also a stacked 2-sphere then

(i) σ is a tetrahedron of T ,

(ii) σ is a degree four node in Λ(T ),

(iii) both α and β are in one component of Λ(S) − σ, say in G4, and

(iv) the components of Λ(T ) − σ are G1,G2,G3,G
′
4 for some tree G′

4.

Proof. It follows from Theorem 4.1 that lkS(ab) is a path of the from c-e-d and α = abce, β = abde
for some vertex e. In particular, α and β are the only two tetrahedra in S containing ab. Since
all the 2-dimensional faces of σ are interior triangles, we have σ /∈ {α,β}. Thus, σ cannot contain

18



the edge ab. Since σ forms a clique in E(S), this implies that σ forms a clique in E(T ). Hence
σ ∈ T . This proves part (i).

Observe that {a, c, d, e} and {b, c, d, e} span cliques in E(T ). Therefore, γ ∶= acde, δ ∶= bcde ∈ T .
Let τ be a 2-dimensional face of σ. Then τ is an interior face in S. Let τ = σ ∩ µ for some
tetrahedron µ ∈ S. If ab /⊂ µ then µ forms a clique in E(T ) and hence µ ∈ T . Then τ = σ ∩ µ is
an interior triangle of T . If ab ⊂ µ then µ is α or β. Assume, without loss, that µ = α = abce.
Since ab /⊂ σ and µ ∩ σ is a face of µ, τ = µ ∩ σ = ace or bce. Assume, without loss, that τ = ace.
Then σ = acex for some vertex x and τ = σ ∩ γ. Thus, τ is an interior triangle of T . Thus, each
2-dimensional face of σ is an interior triangle of T . Part (ii) follows from this.

Part (iii) follows from the fact that α and β share a triangle in S which (necessarily) is not a
face of σ.

The four 2-dimensional faces of γ = acde are acd, ace, ade and cde. Since cd is a non-edge in S,
we have that acd, cde are not in S and ace = γ∩α, ade = γ∩β. Thus, by part (iii), γ is not adjacent
to any nodes of G1 ∪G2 ∪G3. Similarly, δ is not adjacent to any nodes of G1 ∪G2 ∪G3. Part (iv)
now follows since the set of nodes of Λ(T ) is ({τ ∶ τ is a tetrahedron in S} ∖ {α,β}) ∪ {γ, δ}.

Corollary 4.5. Let S be a stacked 2-sphere, T a stacked 2-sphere obtained from S by an edge flip,
and let VS (resp., VT ) be the set of degree four nodes in Λ(S) (resp., in Λ(T )). Then the induced
subgraphs Λ(S)[VS] and Λ(T )[VT ] are isomorphic.

Proof. By Corollary 4.4, VS = VT . For σ1, σ2 ∈ VS = VT , σ1 and σ2 are adjacent in Λ(S)[VS] if
and only if σ1 ∩ σ2 is an interior triangle of S if and only if σ1 ∩ σ2 contains three vertices if and
only if σ1 ∩ σ2 is an interior triangle of T if and only if σ1 and σ2 are adjacent in Λ(T )[VT ]. The
corollary follows from this observation.

Corollary 4.6. The Pachner graph Sn of n-vertex stacked 2-spheres is disconnected for n ≥ 8.

Proof. The stacked 3-ball associated to an n-vertex stacked 2-sphere, n ≥ 8, has a dual graph with
m = n − 3 ≥ 5 nodes, and every m-node tree (with degrees of nodes ≤ 4) is the dual graph of at
least one stacked 3-ball. Hence there exist a stacked 3-ball B1 with dual graph having one node
of degree four and m − 1 nodes of degree at most three, and there exist a stacked 3-ball B2 with
dual graph with all m nodes of degree at most two. Then, by Corollary 4.5, the n-vertex stacked
2-spheres BB1 and BB2 are in different connected components of Sn.

Corollary 4.7. For m ∈ Z+, let t(m) be the number of non-isomorphic m-node trees with degrees
of nodes at most four. Moreover, let n = 3m + 5. Then the Pachner graph Sn of n-vertex stacked
2-spheres has t(m) components each containing a single stacked 2-sphere.

Proof. Let H be an m-node tree in which degrees of all the nodes are at most four. Consider a
new graph G by connecting each node of H of degree i to (4−i) new nodes. Then G is a connected
acyclic graph and hence a tree. By construction, the number of new nodes in G equals the number
of new arcs in G which is ∑v∈V (H)(4−degH(v)) = 4m−∑v∈V (H) degH(v) = 4m−2(m−1) = 2m+2.
Therefore, G has (m− 1)+ (2m+ 2) = 3m+ 1 arcs, and thus 3m+ 2 nodes. It follows that G has m
nodes of degree four and 2m + 2 nodes of degree one, and each degree one node of G is adjacent
to a degree four node.

Let B be a stacked 3-ball whose dual graph Λ(B) is G. It follows from the definition that we can
always construct such a stacked 3-ball. Let S = BB. Since S is stacked it must have 3m+5 vertices.
Let α = abc, β = abd be two triangles of S, and let α (resp., β) be the unique tetrahedron of B
containing α (resp., β). Then degΛ(B)(α),degΛ(B)(β) < 4 and hence degΛ(B)(α) = 1 = degΛ(B)(β).
If α = β, then cd is an edge and hence we cannot perform the edge flip ab ↦ cd. If α ≠ β, then
α and β are not adjacent in Λ(B) (degree one nodes are only adjacent to degree four nodes in
Λ(B)) and hence, by Theorem 4.1, the 2-sphere T obtained from S by the edge flip ab↦ cd is not
stacked. Thus S is isolated in Sn.

If H1 and H2 are non-isomorphic trees on m nodes, then the above construction carried out
for both H1 and H2 leads to two non-isomorphic trees G1 and G2, leading to two non-isomorphic
stacked 3-balls B1 and B2 with, by Lemma 2.4, non-isomorphic boundaries S1 and S2. Since there
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exist at least t(m) non-isomorphic m-node trees with degree of nodes at most four, we have at
least t(m) singleton components in Sn.

Corollary 4.8. The number of connected components in Sn is bounded from below by Cn, for
some real number C > 1.

Proof. Let m = ⌊n−5
3

⌋. Let t(m) be the number of non-isomorphic m-node trees with degree of
nodes at most four as in Corollary 4.7.

Claim: The number of components in Sn is at least t(m).
Let T be the set of all m-node trees with node-degrees at most four. For each H ∈ T , we can

construct a (3m + 5)-nodes tree G whose degree four nodes are the nodes of H and all others are
of degree 1. By adding n − 3m − 5 (≤ 2) new nodes to the n − 3m − 2 degree one nodes of G we
obtain a new tree G′ having the same set of degree four nodes as in G. Let B be a stacked 3-ball
whose dual graph is G′ and let S = BB. By construction, S is a stacked 2-sphere with exactly n
vertices. Let VS be as in Corollary 4.5. Then G′[VS] = G[VS] = H. Therefore, by Corollary 4.5,
the n-vertex stacked 2-spheres obtained in this process corresponding to different graphs in T are
in different components of Sn. This proves the claim.

Since t(m) is exponential in m, the result follows from the claim.

Following arguments along the lines of Corollary 4.4 we can observe that, apart from a large
number of isolated singleton components in Sn, there are also larger connected components cor-
responding to dual graphs with no, or very few nodes of degree four. For instance, the largest
connected component in Sn, n ≤ 14, shown in Table 1, corresponds to boundaries S of stacked
balls S with dual graphs without nodes of degree four (i.e., VS = ∅). Let S0

n denote the Pachner
graph consisting of this class of stacked 2-spheres. We have the following result.

Theorem 4.9. The Pachner graph S0
n is connected.

We split the proof of Theorem 4.9 into two lemmas.

Lemma 4.10. Each stacked 2-sphere S ∈ S0
n is connected to a stacked 2-sphere T in the Pachner

graph S0
n, where the dual graph Λ(T ) of T is a path.

Proof. The idea of the proof is to show that, for every S ∈ S0
n with Λ(S) not a path, S is connected

in S0
n to a stacked 2-sphere T ∈ S0

n with the number of nodes of degree three in Λ(T ) less than
that in Λ(S).

For S ∈ S0
n and α, β nodes in Λ(S), let dS(α,β) be the length of the unique path from α to

β in the tree Λ(S). Moreover, if S has a degree three node in Λ(S), let `(S) = min{dS(α,β) ∣ α
leaf, β degree three in Λ(S)}.
Claim 1: Let S ∈ S0

n be a stacked 2-sphere such that Λ(S) is not a path. If `(S) ≥ 2 then there
exists a stacked 2-sphere T ∈ S0

n such that (i) S is connected to T in S0
n, (ii) the number of degree

three nodes in Λ(T ) is the same as in Λ(S) and (iii) `(T ) = `(S) − 1.
Let ` = `(S) = dS(γ, δ), where γ is a degree three node and δ is a leaf in Λ(S). Let γ0-γ1-⋯-γ`

be the path in Λ(S) from γ = γ0 to δ = γ`. Then degΛ(S)(γ0) = 3, degΛ(S)(γi) = 2 for 1 ≤ i ≤ ` − 1,
and degΛ(S)(γ`) = 1. Let the other nodes adjacent to γ be α and β. Assume, without loss, that
γ = 1234, α = 124a, β = 134b and γ1 = 123x1. Then, the link of 23 in S is of the form 4-1-x1-⋯-xk
for some k ≤ `.
Case 1. Let k = 1. It follows that 23x1 is a triangle of S = BS. By Theorem 4.1, the triangulated
2-sphere T obtained from S by the edge flip 23↦ 4x1 is stacked and hence, by Corollary 4.4, is in
S0
n. By Lemma 2.4, γ′ ∶= 134x1 and γ′1 ∶= 124x1 are tetrahedra in T .
Following the transformation of the dual graph of a stacked ball under an edge flip, as shown

in Figure 4.1, the dual graph Λ(T ) is obtained from Λ(S) by replacing the three edges adjacent
to γ with the path β-γ′-γ′1-α, and attaching the path γ2-⋯-γ` to either γ′ or γ′1. In either case,
the path from the new degree three node to γ` is of length ` − 1, and since the remaining part of
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Λ(T ) is equal to the remaining part of Λ(S), we have `(T ) = `(S) − 1 and Claim 1 is true in this
case.
Case 2. Let k ≥ 2. In this case we can assume that γi = 23xi−1xi for 2 ≤ i ≤ k, and that the
triangles 21x1, 2x1x2, . . . ,2xk−2xk−1, 31x1, 3x1x2, . . . ,3xk−2xk−1 ∈ S (i.e., are in the boundary of
S). Since degΛ(S)(γk) ≤ 2 (= 1 if k = ` and = 2 if k < `), at least two 2-dimensional faces of γk are
triangles of S. This implies that at least one of the triangles 2xk−1xk and 3xk−1xk is a triangle of
S.

2 3

4

xk

xk−1

xk−2

x1

1

a b

S

2 3

4

xk

xk−1

xk−2

x1

1

a b

Sk−1

Figure 4.2: Sequence of edge flips as performed in the proof of Lemma 4.10, Claim 1, Case 2.

Assume, without loss, that 2xk−1xk ∈ S. (In that case, γk+1 is of the form 3xk−1xkxk+1 for some
xk+1 ∈ V (S) when k < `.) Let S1 be obtained from S = S0 by the edge flip 2xk−1 ↦ xkxk−2. Since
lkS(2xk−1) = xk−2-3-xk, by Theorem 4.1, S1 is stacked. Observe that the path γk−2-γk−1-γk-γk+1

in Λ(S) is replaced by γk−2-(23xkxk−2)-(3xkxk−1xk−2)-γk+1 in Λ(S1) when k < `, and γk−2-γk−1-γk
is replaced by γk−2-(23xkxk−2)-(3xkxk−1xk−2) when k = `. Thus, Λ(S1) is isomorphic to Λ(S).

Inductively, for 1 ≤ i ≤ k − 1, lkS(2xk−i) = xk−i−1-3-xk and hence the sphere Si obtained from
Si−1 by the edge flip 2xk−i ↦ xkxk−i−1 is stacked. Then Λ(Si) is isomorphic to Λ(Si−1), see
Figure 4.2. (Note that Sk−1 is obtained by the sequence of edge flips 2xk−1 ↦ xkxk−2, 2xk−2 ↦
xkxk−3, . . . ,2x2 ↦ xkx1, 2x1 ↦ xk1.)

It follows that Sk−1 is stacked, S can be joined to Sk−1 in S0
n, Λ(Sk−1) is isomorphic to Λ(S),

and lkSk−1
(23) = 4-1-xk. In particular, Sk−1 satisfies the hypothesis of Case 1, `(Sk−1) = `(S) and

the number of degree three nodes in Λ(Sk−1) is the same as that in Λ(S). Consequently, by Case
1, Sk−1 is connected to some T in S0

n, such that the number of degree three nodes in Λ(T ) is the
same as that in Λ(Sk−1) (which is the same as that in Λ(S)) and `(T ) = `(Sk−1) − 1 = `(S) − 1.
This completes the proof of Claim 1.

Claim 2: For S ∈ S0
n, if Λ(S) has a leaf which is adjacent to a degree three node in Λ(S) (i.e.,

`(S) = 1) then there exists T ∈ S0
n which can be obtained from S by an edge flip and the number

of nodes of degree three in Λ(T ) is one less than that in Λ(S).
Let δ = 123d be a leaf node which is adjacent to a degree three node γ = 1234. Assume, as

above, that the adjacent nodes of γ are α = 124a and β = 134b. Then edge 23 is in two tetrahedra
and, by Theorem 4.1, the 2-sphere T obtained from S by the edge flip 23 ↦ 4d is stacked and
hence in S0

n by Corollary 4.4. Moreover, by Lemma 2.4, γ′ ∶= 124d and δ′ ∶= 134d are in T . Again,
by following the transformation shown in Figure 4.1, Λ(T ) contains the path α-γ′-δ′-β instead
of the three edges adjacent to γ in Λ(S). Since the remaining parts of Λ(S) and Λ(T ) coincide,
Claim 2 follows.

The result follows inductively using Claims 1 and 2.
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Lemma 4.11. Let B∆n be as shown in Figure 4.3 and let S ∈ S0
n. If Λ(S) is a path then S is

connected to B∆n in S0
n.

2

1

3

1

4

1

n

Figure 4.3: The canonical stacked 3-ball ∆n. Note that this complex is also used as a canonical
target in [3] to prove upper bounds on the diameter of the Pachner graph Pn of n-vertex 2-spheres.

Proof. Let Λ(S) = γ1-γ2-⋯-γn−3.

Claim: If γ1, . . . , γk have a common edge and γ1, . . . , γk+1 have no common edge, k ≤ n − 4, then
S can be joined to T ∈ S0

n, where Λ(T ) is a path of the form α1-α2-⋯-αn−3 such that α1, . . . , αk+1

have a common edge.

a b

x1

xk+1

xk+2

xk

xk−1

x2

S

a b

x1

xk+1

xk+2

xk

xk−1

x2

Sk−1

Figure 4.4: Sequence of edge flips as performed in the proof of Lemma 4.11.

Since γ1, . . . , γk+1 have no common edge, we can assume that k ≥ 3. Let γi = abxixi+1 for
1 ≤ i ≤ k. Assume without loss of generality that γk+1 = bxkxk+1xk+2. Then lkS(axk) = xk−1-b-xk+1.
Thus, by Theorem 4.1, the 2-sphere S1 obtained from S by the edge flip axk ↦ xk+1xk−1 is
stacked. Similarly, the 2-sphere S2 obtained from S1 by the edge flip axk−1 ↦ xk+1xk−2 is stacked.
Continuing this way, we obtain a stacked sphere T = Sk−1 from Sk−2 by the edge flip ax2 ↦ xk+1x1,
see Figure 4.4. Hence S can be joined to T in S0

n and Λ(T ) = α1-α2-⋯-αk+1-γk+2-⋯-γn−3, where
α1 = bxk+1ax1, αi = bxk+1xi−1xi, 2 ≤ i ≤ k, and αk+1 = bxk+1xkxk+2. This proves the claim.

The lemma follows by induction using the claim.

Proof of Theorem 4.9. The result follows from Lemmas 4.10 and 4.11.

22



References
[1] B. Bagchi and B. Datta. Lower bound theorem for normal pseudomanifolds. Expo. Math., 26(4):327–351,

2008.

[2] D. Barnette. The triangulations of the 3-sphere with up to 8 vertices. J. Combin. Theory Ser. A, 14:37–52,
1973.

[3] P. Bose, D. Jansens, A. van Renssen, M. Saumell, and S. Verdonschot. Making triangulations 4-connected
using flips. Comput. Geom., 47(2, part A):187–197, 2014.

[4] P. Bose and S. Verdonschot. A history of flips in combinatorial triangulations. In Computational geometry,
volume 7579 of Lecture Notes in Comput. Sci., pages 29–44. Springer, Cham, 2011.

[5] B. A. Burton, B. Datta, N. Singh, and J. Spreer. Separation index of graphs and stacked 2-spheres. J. Combin.
Theory Ser. A, 136:184–197, 2015.

[6] J. Cardinal, M. Hoffmann, V. Kusters, C. D. Tóth, and M. Wettstein. Arc Diagrams, Flip Distances, and
Hamiltonian Triangulations. In E. W. Mayr and N. Ollinger, editors, 32nd International Symposium on
Theoretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 197–210, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[7] B. Datta and S. Murai. On stacked triangulated manifolds. Electron. J. Comb., 24(4):Paper 4.12, 14 pp.,
2017.

[8] J. A. De Loera, J. Rambau, and F. Santos. Triangulations. Structures for algorithms and applications. Algo-
rithms and Computation in Mathematics, volume 25. Springer-Verlag, Berlin, 2010.

[9] R. Dougherty, V. Faber, and M. Murphy. Unflippable tetrahedral complexes. Discrete Comput. Geom.,
32(3):309–315, 2004.

[10] F. Frati. A Lower Bound on the Diameter of the Flip Graph. Electron. J. Comb., 24(1):Paper 1.43, 6 pp.,
2017.

[11] B. Grünbaum and V. P. Sreedharan. An enumeration of simplicial 4-polytopes with 8 vertices. J. Combin.
Theory, 2:437–465, 1967.

[12] H. Komuro. The diagonal flips of triangulations on the sphere. Yokohama Math. J., 44(2):115–122, 1997.

[13] F. H. Lutz and E. Nevo. Stellar theory for flag complexes. Math. Scand., 118(1):70–82, 2016.

[14] S. Matveev. Algorithmic topology and classification of 3-manifolds, volume 9 of Algorithms and Computation
in Mathematics. Springer, Berlin, second edition, 2007.

[15] A. Mijatović. Simplifying triangulations of S3. Pacific J. Math., 208(2):291–324, 2003.

[16] R. Mori, A. Nakamoto, and K. Ota. Diagonal flips in hamiltonian triangulations on the sphere. Graphs and
Combinatorics, 198:413–418, 2003.

[17] U. Pachner. Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulierungen
kompakter semilinearer Mannigfaltigkeiten. Abh. Math. Sem. Uni. Hamburg, 57:69–86, 1987.

[18] J. Spreer. Combinatorial 3-manifolds with transitive cyclic symmetry. Discrete Comput. Geom., 51(2):394–426,
2014.

[19] E. Steinitz. Polyeder und Raumeinteilungen. In Encyclopädie der mathematischen Wissenschaften, volume
III.1.2, pages 1–139. B. G. Teubner, Leipzig, 1922.

[20] T. Sulanke and F. H. Lutz. Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-
manifolds. European J. Combin., 30(8):1965–1979, 2009.

[21] K. Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung,
46:26–32, 1936.

[22] H. Whitney. A theorem on graphs. Ann. of Math., 32:378–390, 1931.

23


	1 Introduction
	2 Preliminaries
	2.1 Triangulations of 2-spheres
	2.2 Flag and Hamiltonian 2-spheres
	2.3 Stacked 3-balls and stacked 2-spheres
	2.4 Bistellar moves

	3 The Pachner graph Fn of n-vertex flag 2-spheres
	4 The Pachner graph Sn of n-vertex stacked 2-spheres

