WEAK MARTINGALE SOLUTIONS TO THE STOCHASTIC
LANDAU-LIFSHITZ-GILBERT EQUATION WITH
MULTI-DIMENSIONAL NOISE VIA A CONVERGENT
FINITE-ELEMENT SCHEME

BENIAMIN GOLDYS, JOSEPH GROTOWSKI, AND KIM-NGAN LE

ABSTRACT. We propose an unconditionally convergent linear finite element scheme for
the stochastic Landau-Lifshitz—Gilbert (LLG) equation with multi-dimensional noise. By
using the Doss-Sussmann technique, we first transform the stochastic LLG equation into
a partial differential equation that depends on the solution of the auxiliary equation for
the diffusion part. The resulting equation has solutions absolutely continuous with respect
to time. We then propose a convergent #-linear scheme for the numerical solution of
the reformulated equation. As a consequence, we are able to show the existence of weak
martingale solutions to the stochastic LLG equation.
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The deterministic Landau-Lifschitz-Gilbert (LLG) equation provides a basis for the the-
ory and applications of ferromagnetic materials and fabrication of magnetic memories in
particular, see for example [15, 9, 12, 17]. The setting is described as follows. Let D be a
bounded domain in R? with a smooth boundary D, occupied by a ferromagnetic material.
A configuration of magnetic moments across the domain D can be represented by a function
on D taking values in S?, the unit sphere in R3. According to the Landau and Lifschitz
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theory of ferrormagnetism [17], modified later by Gilbert [12], the time evolution of mag-
netic moments M (t,x) is described, in the simplest case, by the Landau-Lifschitz-Gilbert
(LLG) equation

%\f = MM x AM — oM x (M x AM) in (0,7) x D,
(1.1) 9M — 0 in (0,T) x OD,
M(0,-) = Mo(-) inD,

where A1 # 0 and Ao > 0 are constants, and n stands for the outward normal vector on
OD:; see e.g. [9]. Assuming that My € H? (D, 82), one can show that

(1.2) IM(t,z)| =1, t€[0,T], z€D

In this paper we are concerned with a stochastic version of the LLG equation. Randomly
fluctuating fields were originally introduced in physics by Néel in [?] as formal quantities
responsible for magnetization fluctuations. The necessity of being able to describe deviations
from the average magnetization trajectory in an ensemble of noninteracting nanoparticles
was later emphasised by Brown in [6, 7]. According to a non-rigorous argument of Brown,
the magnetisation M evolves randomly according to a stochastic version of (1.1) that takes
the form, (see [8] for more details about the physical background and derivation of this
equation)

.

dM = ()\1M X AM — MM x (M x AM))dt+ I (M x g;) o dW;(t),

OM
1.3 v _
(1.3) 5 =0 on (0,T)xdD,

| M(0,) =M, inD,

where g; € W2®(D), i =1,--- ,q, satisfy the homogeneous Neumann boundary conditions
and (W;)7_, is a g-dimensional Wiener process. In view of the property (1.2) for the
deterministic system, we require that M also satisfies (1.2). To this end, we are forced to use
the Stratonovich differential odW;(t) in equation (1.3). The mathematical theory of equation
(1.3) has been initiated only recently, in [8], where the existence of weak martingale solutions
to (1.3) was proved for the case ¢ = 1 using the Galerkin-Faedo approximations. We note
that the Galerkin-Faedo approximations do not usually provide a useful computational tool
for solving an equation exactly.

The aim of this paper is two-fold. We will prove the existence of solutions to the stochastic
LLG equation (1.3) and at the same time will provide an efficient and flexible algorithm
for solving numerically this equation. To this end we will use the finite element method
and a new transformation of the Stratonovich type equation (1.3) to a deterministic PDE
(4.2) with coefficients determined by a stochastic ODE (3.6) that can be solved separately.
The deterministic PDE we obtain has solutions that are absolutely continuous with respect
to time, and hence is suitable for the construction of a convergent finite element scheme.
Our approach is based on the Doss-Sussmann technique [11, 18]. This transformation
was introduced in [13] to study the stochastic LLG equation with a single Wiener process
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(¢ = 1), in which case the auxiliary ODE is deterministic. Since the vector fields u x g; are
non-commuting, the case of ¢ > 1 is more difficult and requires new arguments.

We apply the finite element method to the PDE resulting from this transformation and
prove the convergence of linear finite element scheme to a weak martingale solution to (1.3)
(after taking an inverse transformation). Our proof is simpler than the proof in [8] and
covers the case of ¢ > 1. We note here that under appropriate assumptions even the case
of infinite-dimensional noise (¢ = co) can be handled in exactly the same way.

Let us recall that the first convergent finite element scheme for the stochastic LLG equa-
tion was studied in [5] and is based on a Crank—Nicolson type time-marching evolution,
relying on a nonlinear iteration solved by a fixed point method. On the other hand, there
has been an intensive development of a new class of numerical methods for the LLG equa-
tion (1.1) based on a linear iterations, yielding unconditional convergence and stability [1, 3].
The ideas developed there are extended and generalized in [13, 2] in order to take into ac-
count the stochastic term. A fully linear discrete scheme for (1.3) is studied in [13] but
with one-dimensional noise. The method is based on the so—called Doss-Sussmann tech-
nique [11, 18], which allows one to replace the stochastic partial differential equation (PDE)
by an equivalent PDE with random coefficients. In contrast, [2] considers, for a more gen-
eral noise, a projection scheme applied directly to the original stochastic equation (1.3).
However, this approach requires a quite specific and complicated treatment of the stochas-
tic term. In the current paper, we propose a convergent f-linear scheme for the numerical
solution of the tranformed equation and prove unconditional stability and convergence for
the scheme when 6 > 1/2. To the best of our knowledge this is a new result for this problem.

The paper is organised as follows. In Section 2 we define the notion of weak martin-
gale solutions to (1.3) and state our main result. In Section 3, we introduce an auxiliary
stochastic ODE and prove some properties of solution necessary for the transformation of
equation (1.3) to a deterministic PDE with random coefficients. Details of this transforma-
tion are presented in Section 4. We also show in this section how a weak solution to (1.3)
can be obtained from a weak solution of the reformulated form. In Section 5 we introduce
our finite element scheme and present a proof for the stability of approximate solutions.
Section 6 is devoted to the proof of the main theorem, namely the convergence of finite
element solutions to a weak solution of the reformulated equation. Finally, in the Appendix
we collect, for the reader’s convenience, a number of facts that are used in the course of the
proof.

Throughout this paper, ¢ denotes a generic constant that may take different values at
different occurrences. In what follows we will also use the notation Dy = (0,7 x D.

2. DEFINITION OF A WEAK SOLUTION AND THE MAIN RESULT

In this section we state the definition of a weak solution to (1.3) and present our main
result. Before doing so, we introduce some suitable Sobolev spaces, and fix some notation.
The standing assumption for the rest of the paper is that D is a bounded open domain in
R? with a smooth boundary.

For any U C RY, d > 1, we denote by L?(U) the space of Lebesgue square-integrable
functions defined on U and taking values in R3. The function space H!(U) is defined as:

HY(U) = {u cLX(U): g; € L*(U) fori< d.}.
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Remark 2.1. For u,v € H(D) we denote

u X Vv = uxa—v uxa—v uxa—v
T 8:v1’ 81‘27 81’3
3
du Ov
Vu x Vv ‘_;E)xi X oz,
3
ov Ou .
(w x Vv, Vu)p2p) = Zl <w X P 396'z‘>L2(D) Vw e L>(D).

Definition 2.2. Given T € (0,00) and a family of functions {g; : i =1,...,q} C L*>(D),
a weak martingale solution (0, F, (Ft)ico,1), P, W, M) to (1.3), for the time interval [0,T],
consists of
(a) a filtered probability space (S, F, (Fi)iejo,r), P) with the filtration satisfying the usual
conditions,
(b) a g-dimensional (F;)-adapted Wiener process W = (Wi).ejo,1),
(c) a progressively measurable process M : [0,T] x  — L2(D)

such that

(1) M(,w) e C(0,T;H D)) for P-a.e. w € §;
2) E (ess SUPye(o,7] HVM(t)]]H%Q(D)) < 005
) |[M(t,x)| =1 for each t € [0,T], a.e. x € D, and P-a.s.;
)

(
(
( for every t € [0, T, for all ¢ € CF (D), P-a.s.:

3

4
t

(M(t), ¥)12(p) — (Mo, ¥)r2(py = —/\1/0 (M x VM, Vp)2p) ds

t
—M/"m4xmevm4x¢»pwﬂu
0

q t
(2.1) +3° [ (M X g1ty 0 AWils).
i=1"0

As the main result of this paper, we will establish a finite element scheme defined via
a sequence of functions which are piecewise linear in both the space and time variables.
We also prove that this sequence contains a subsequence converging to a weak martingale
solution in the sense of Definition 2.2. A precise statement will be given in Theorem 6.9.

3. THE AUXILIARY EQUATION FOR THE DIFFUSION PART

In this section we introduce the auxiliary equation (3.12) that will be used in the next
section to define a new variable from M, and establish some properties of its solution.
Let g4,...,9,€C (D,R3), be fixed. Fort=1,...,q, and x € D we define linear operators

Gi(z) : R? — R3 by Gi(z)u = u x g;(x). In what follows we suppress the argument z. It
is easy to check that

(3.1) Gr = -Gy,
(3.2) and (G?)* =G?.
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We will consider a stochastic Stratonovitch equation on the algebra £ (RS) of linear oper-
ators in R3:

4t
(3.3) Zt:I+Z/ GiZs0dWi(s), t>0.
=170

Lemma 3.1. Let gy,...,9,€C (ﬁ, ]R3). Then the following holds.

(a) For every x € D equation (3.3) has a unique strong solution, which has a t-continuous
version in L (R?).

(b) For everyt >0 and x € D

(3.4) |Ziu| = |u| P —a.s forevery u € R3

In particular, for every t > 0 the operator Z; is invertible and Zt_1 = 7.

(¢) If moreover gy, ...,g, € C* (ﬁ, ]R3) for a certain o € (0,1) then the mapping (t,z) —
Zi(x) has a continuous version in L (R3).

Proof. Equation (3.3) can be equivalently written as an It6 equation

1 q t q t
(3.5) Zt:I+2Z/ G%sts+2/ GiZsdWi(s), t>0.
=170 i=170

Since the coefficients of equation (3.5) are Lipschitz, the existence and uniqueness of strong
solutions to equation (3.5), and the existence of its continuous version is standard, see for
example Theorem 18.3 in [16]. Hence, the same result holds for (3.3).

To prove (b) we fix x € D, t > 0 and u € R3 and put Z% = Zu. Then equation (3.5) yields

t t

u 1 ! 2 7u ! u

(3.6) Z :u+2Z/GiZS ds+Z/GiZs dW;(s).
i=1 0 =1 0

|2

Applying the Itd formula to the process |Z}*|* and invoking (3.1) we obtain

q
d|ZF)? =2(Zp,dZ) + > |Gz dt
=1

q q q
S (2P, GRZE) dt+2) (22, Gz dWi(t) + ) |Gz dt
=1 =1 =1

0,

or equivalently
|ZM 2 = |ul?, forallt>0, P—a.s.
To prove (c), we begin by letting 0 < s <t < T and z,y € D. For any p > 1 we have
3.7 E|Zuy) — Zo(@)lP <27 'E|Zi(y) — Zs(y)IP + 2" B Zs(y) — Zs(x)" .
It is well known that there exists Cy > 0 such that
(3:8) E|Zu(y) ~ Zs(y)I" < Caft — 5|,
If there exists a € (0, 1] such that

‘gz<1’)—gz(y)‘§01‘l’—y’a7 x??/eﬁv Z:qu
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then for a certain C' > 0, for any h € R3 there holds
|Gi(z)h| < Clh],
(3.9) [(Gi(z) = Gi(y))h| < Clz —y|*|h],
|(Gi (@) = Gi(y)) h| < Cla —y[*|n].

Zuly) — Z/ Gy dr—i—Z/ Gil Wi(r)
2/ G2 (x er/ Gi( Wi(r)

Using (3.9) we obtain
B|Z.() - Z@)I < Cla— i+ C [ BIZ() - Z (@) dr.
0

Therefore, invoking the Gronwall Lemma we obtain

(3.10) E|Zy(y) — Zs(@)l" < Cela — /.
Combining (3.7), (3.8) and (3.10) we obtain
(3.11) E|Z:(y) — Zs(2)]P < 1]t — 8|2 + eolw — y[*P.
Let 6 >0and r=d+ 1+ B. Let p be chosen in such a way that

p

527“ and pa>r.

The set [0,7] x D can be covered by a finite number of open sets By with the property
|t —s|" + | — y|" < 1 on every set Bg. In each By, (3.11) then yields

E|Zi(y) — Zs(x)]" < (|t — 5" + ]z —y[") ,
and the result then follows by the Kolmogorv-Chentsov theorem, see p. 57 of [16]. O

Lemma 3.2. Assume that g; € C{ (D, R3). Then the following holds.
(a) For every t > 0 we have Zy € C}(D, L(R?)) P-a.s.

(b) For every x € D the process &(x) = VZi(x) is the unique solution of the linear Ito
equation

q
dé(x % Z GQ& )+ H; Z(x)) dt + Z (Gi&i(z) + L Zy(z)) dW;(t),

with &(z) = 0 and the operators H;, I; € L (R*) defined as
Liu=uxVg;, and Hyu=GuxVg;+G;(uxVg;).
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(¢) For every v < min (o, 3) the mapping (t,x) — VZ,(2) is v-Holder continuous.
(d) We have

Esup sup |VZ;|? < oc.
t<T zecD

Proof. (a) Let E denote the Banach space of continuous and adapted processes Z taking
values in the space of linear operators £ (]R3) and endowed with the norm

1/2
1Z]le = <Esup!Ztl2> :
t<T

For every « € D we define a mapping
4q t
K:DxE—DxE, K@ Z)t)— 1+Z/ Gi)Z 0 dWi(s).
i=1"0

It is easy to check that the assumptions of Lemma 9.2, p. 238 in [10] are satisfied and
therefore (a) holds.

(b) The proof is completely analogous to the proof of Theorem 9.8 in [10], and is hence
omitted.

(c) The proof is analogous to the proof of part (c¢) of Lemma 3.1.

(d) The estimate follows easily from (c). O

For every u € (D) we will consider the L?(D)-valued process Z;(u) defined by
[Zi(uw)](x) = Zy(x)u(x) x— a.e.

Clearly,
q t
(3.12) Z(u) :u+2/ Zs(u) x g; odWi(s), t>0,
i=1 70

where the equality holds in L?(D). The process Z; is now an operator-valued process taking
values £ (L?(D)) and it will still be denoted by Z;. The next lemmas follow immediately
from the properties of the matrix-valued process considered above.

Lemma 3.3. Assume that {g;: i=1,...,q} C CLT*(D). Then for every u € L2(D) the
stochastic differential equation (3.12) has a unique strong continuous solution in L2(D).
Moreover, there exists Qg C Q such that P (o) = 1 and for every w € Qg the following
holds.

(a) For allt > 0 and every u € L*(D),

| Z(w, w)| = [ul.

(b) For every t > 0 the mapping u — Zi(w,u) defines a linear bounded operator Zy(w) on
L2(D). In particular,

(3.13) Zi(w,u+v) = Z(w,u) + Zi(w,v).
Moreover, for every T > 0 there exists a constant C'r > 0 such that

(3.14) Eigg |Zt(u)|i2(D) < CT|’thiz(D) .
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(c) For every t > 0 the operator Z;(w) is invertible and the inverse operator is the unique
solution of the stochastic differential equation on 1L?(D):

(3.15) Z;7 ) =u — Zq: /t Z71Gi(u) 0o dWi(s), u€L*D).
=10

Finally,

(3.16) Z7 N w) = ZF (w).

Lemma 3.4. Assume that g; € C’;Jra (D,R3) fori=1,---,q. Then, for every u € H'(D)
Zy(u) € H! P-a.s. Furthermore, the process &(u) == VZ(u), is the unique solution of the
linear equation

(Gi&(u) + HiZy(w)) dt + Z(Gift(u) + 1;Z4(w)) dWi(t),
1 i—1

-

deu(uw) =

7

with &(u) = Vu.
Lemma 3.5. For any u,v € L%(D), there holds for all t > 0 and P-a.s.:
(3.17) Zi(u x v) = Zy(u) x Zy(v),

Proof. Let Z}* := Zy(u) and ZP := Zy(v) for all t > 0. We now prove (3.17); the prop-
erty (3.13) can be obtained in the same manner. Using the It6 formula for Z* x ZP and (3.6),
we obtain

q
Ad(ZP X ZP) = dZP < ZP + Z* x dZP + ) (Z¢ x g;) x (27 x g;) dt
i=1

(2 < (2} x g;) — ZP x (2" x g;))dWi(t)

M-

i=1
1
(3.18) + B (28 < (27 x g;) x g;) = ZF x (Z* x g;) x g;)) dt
i=1
q
+ Z(ZZL x g;) x (Z; x g;)dt.
=1

Using an elementary identity

(3.19) ax(bxc)={a,c)b—(a,byc, a,bcecR?,
we find that

(3.20) 22 % (20 % g)) — 20 X (72 % g;) = (Z2 % Z7) X g,
and

Zt“x((Zg’ X g;) X gi) — 7y x (Ztu X g;) X gi)
=(Z",9:) (Z{ < g;) —(Z{,9:) (Zi* x g;) — 2(Z}* x g;) x (Z{ x g;)
(3.21) = ((Z¢ x 20) x g;) x g; —2(Z{ x g;) X (Z % g;).
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Invoking (3.20) and (3.21), equation (3.18) we obtain

1
d(Z x Z}) 52 (Z* x Z7) xgl)xgldt+z (Z3 x Z7) x g;)dW(t).
=1 i=1

Therefore, the process V; := Z{* x Z is a solution of the following stochastic differential
equation:

AV = 53001 (Vi x g;) x g dt + 321, (Ve x g;)dWi(t)
Vo =u xv.

On the other hand, it follows from (3.6) that the process Z;(u x v) satisfies the same
equation. Hence, (3.17) follows from the uniqueness of solutions to (3.18).
([l

Lemma 3.6. For any u,v € H'(D), there holds for all t > 0 and P-a.s.:
(3.22) (VZi(u), VZi())12(p) = (Vu, VU)12py + F(t, u,v),

with

q

¢
F(t,u,v) := Z/F“suvds—FZ/Fglsuv)dW()
0

=1

where

Fl,i(tv u, ’U) = <VZt(u), (%Hz — GZIZ)Zt(’U)>
+ (LiZe(w), L;Z(v))12(py 5

LQ(D)—W( H; — GiI) Z(u >L2

and

Foi(t,w,v) := (VZi(u), [;Z(v))12(py — (VLiZe(w)), Zt(v)) 12y

Proof. Let &* := &(u) and & := & (v) for all t > 0. In addition, we consider a C*° function
o : (ILQ(D))2 — R defined by ¢(x,y) = (x, y)Lg(D). By using the 1t6 Lemma we obtain

d (&, & 2 (py = (A&, & Dz (py + (&6 A& Dz (py + (A&, dEE )12y
q
B Z <% <G’2£ZL + HiZ??fZ}>L2(D % <ft ’G2§t + H,Z} > 12(D)

+{Gi&* + L2, Gi&l + LiZy )12y > dt

(3.23) +) ((Gzﬂ‘ + 1z 60 e py + (&6 Gist + IiZZ]>IL2(D)> dWi(t).

i=1
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Using (3.1) and (3.2), we deduce from (3.23) that

q

d(&* & e py = Z <% (HiZi*, & h2(py + 3 (&' HiZ{ )r2py + (Gi&t"s LiZy )12y
i=1

+ (L2, Gi&) 2y + (L2, IiZtv>JL2(D)> dt

q
'y (mzzasmw) n <5r,fizz’>m)) awi ()

1

1
q
=1

_|_

(L2, Iz'Ztv>]L2(D)> dt

q
+ 3 ({6 B2y + U sy ) Wil
=1

Integrating by parts for the first and the last term in the right hand side of the above
equation and noting the homogeneous Neumann boundary condition of g;, we obtain

q
i=1
+{LiZ{ LiZ )12 p) ) dt
q
(3.24) +) <<§?,IiZf>L2(D) —(V(Lizy), ZZJ>]L2(D)> dW;(t).
i=1
Hence, the resutl follows from replacing ¢ by s and intergrating (3.24) over [0, ¢]. O

Remark 3.7. By using integration by parts and the homogeneous Neumann boundary con-
ditions of g; fori =1,---,q we obtain some symmetry properties of functions Fy ;, F»; and
F: for any u,v,v1,vy € H(D),

Fri(t,u,v) = Fi(t,v,u);  Fi(t,u,v) = Fo(t,v,u);
and hence, F(t,u,v) = F(t,v,u). Furthermore, it follows from (3.13) that
F(t,u,v1 +v3) = F(t,u,v1) + F(t,u,v2).
The following lemmas state some important properties of F' used throughout this paper.

Lemma 3.8. Assume that g; € W»(D) fori=1,--- ,q. Then for anyu,v € L?(Q;H' (D))
there exists a constant ¢ depending on T and {g;}i=1.... ¢ such that

(3.25) E sup [[VZi(w)|F2p) < CEllulfp),
te[0,7)

and for any € > 0,

(3.26) E sup |F(s,u,v)| < ceB|ullg py + ce 'E[v][f2 p)-
s€[0,t]
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Proof. 1t follows from (3.22) that
(3.27) E|IV Zy(w)l22 ) = EIVul2a ) + ELF(E w,w)

q t
gE||vU\|i2(D)+ZE/O |Foi(r, w, w)| dr
=1

(3.28) + E\Xq:/ot Fai(,u, u) dWy(T)].
i=1
For convenience, we next estimate |F'(7,u,v)|, which is a slightly more general version
of |F(7,u,u)|. By using the elementary inequality
(3.29) ab < fea® + Je b7,
the assumption g; € W2>°(D) and (3.3), there holds
| Fri(r,w, )| < [(VZ:-(u), (5H; = Gili) Z-(0)) 15 |
+ V(3 H; — GiL) Z,(u), ZT(U)>L2(D)\ + [(1iZr (w), [iZ7(0)) 2 ) |

< c(ellVZr (W) [f2(py + el Ze(w) 2oy + €1 Z- ()12 )

< c(elVZr (w)l[f2(py + ellulizipy + € HlvliEap))-
This implies that
(3.30)

t t
E/ ‘Fl,i(T,’U,, v)’ dr < cetIEHuHig(D) + ce_ltE||v||i2(D) + CEE/ ||VZT(u)Hi2(D) dr.
0 0

Then, by using the Burkholder-Davis-Gundy inequality, Holder inequality, (3.3) and (3.29),
we estimate

q

E sup ‘
s€[0,t] =

/Os Fyi(r,u, v) dWi(r)|< CIE’ZQ:/Ot(FN(T,u,U))?dT}l/Q
1 i=1
< 8] [ (192500 2000|2000 + 12000y 0z [
< cE\/Ot(\VZT(U)|!i2(D)!\v!!i2(D)  [ullZapy 101122 y) dr] 2
330 <[ lvlh( | 1920y )] + et 28 [luliaco oo
(3.32) < cet' PEl|uP2(py + ce (#2 + DE||v[[F2 ) + ceE /Ot IVZr (w)|f2(py dr.
We use (3.30) and (3.32) with v = w and € = 1 together with (3.27) to deduce

t
B[V Zi(w) |2 ) < BllullZs ) + B / 192, ()22

Hence, the result (3.25) follows immediately by using Gronwall’s inequality.
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To prove (3.26) we note that

4q t
E sup {F(s,u,v)‘ < ZE/ ‘FLZ’(T,U,’U)ldT
s€[0,t] .

(3.33) +E sup Z/ Foi(1,u,v) dW;(7)].
s€[0,t]

Hence, it follows from (3.30), (3.32) and (3.25) that

E sup \Z/ Foi(7,u,v) dWi(7)| < ceBllul[2 py + ce "El|v| 72 p
s€[0,¢] i=1

+ ceE/ IV Ze ()22 py dr
(GEH"”HI te IEHUH]LQ(D )
which completed the proof of the lemma. O

Lemma 3.9. For any u € L?((;L%(D)), v € L*(Q;HY (D)) and 0 < s < T, there exists a
constant ¢ depending on {g;}i=1,.. 4 such that

E|F(s,u,v)| < es(El|ul?2p)]) > BNVl ) 2
+ (52 + ) (Ell[ull22 py)) 7 (Elllv )22 p)]) 2.

Proof. From the definition of function F' in Lemma 3.6 and the triangle inequality, there
holds

q s q s

(3.34) E|F(s,u,v)| < ZE/ \Fl,i(T,u,v)|dT+E\Z/ Foi(1,u,v) dWi(7)|.
i=1 70 i=1"0

From Remark 3.7, we note that

FQ,i(Tv u, ’U) - FQ,i(Tv v, 'LL),
and therefore, by using (3.31), the last term of (3.34) can be estimated as follows:

E|§/O Foi(1,u,v) dWi(T)} :E}Z;/o Fz’i(T,v,u)dWi(T)‘

s 1/2
< cE [Huumm(/o 19202 dr)

(3.35) +cs'’E (w2 pylvllzpy] -

We now estimate ‘FM(T, u, U)‘ by integrating by parts and then using Holder’s inequality,
the assumption g; € W2>°(D) and (3.3) as follows:

‘FLZ'(T,’U,, v)‘ = !— (Z:(u), V((%Hz - Gi]i)ZT(”))>L2(D)
+((gHi = Gili) Z-(u), V Z7(v)) 12
+ ([ Z7(u), Iz’ZT(’U»]L?(D)‘
< cllullizp) (IVZrollizpy + 1vlem),
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and therefore,
S S
E/ |F1i(7,u,v)| dr < cE |:‘|U||L2(D) (/ IVZ:v||L2(py dT):|
0 0

(3.36) + esE [[|ulliz(py vz py] -
Hence, by using Hoélder inequality we obtain from (3.34)—(3.36) that there holds:

E|F (s, u,v)| < cE [\unwm ( /0 192l dT)}
+ ("2 + $)E [||ullrz(pylvllLz(p)]
c(Elllull?2py]) " (E[( /0 IV Zv|L2(py dr)?])

1/2 1/2
(3:37) +ofs"/? 4 ) (EllullZap) " El0l2(0))
Via the Minkowski inequality and (3.25), we observe that
(3.38

)
EI | IVZ0lizqoy ) < [ EIVZ01R ) V2 7 < cs(BIIT0IEs )

The required result follows from (3.37) and (3.38), which completes the proof of this lemma.
([l

4. EQUIVALENCE OF WEAK SOLUTIONS

In this section we use the process (Z;):>0 defined in the preceding section to define a new
process m from M. Let

(4.1) m(t,x) = Z;'M(t,x) Vt>0, a.ex € D.

We will show that this new variable m is differentiable with respect to ¢.
In the next lemma, we introduce the equation satisfied by m so that M is a solution
o (1.3) in the sense of (2.1).

Lemma 4.1. If m(-,w) € H'(0,T;L2(D)) N L?(0, T; H'(D)), for P-a.s. w € Q, satisfies
lm(t,z)| =1 Vt>0, ae.x € D, P—a.s
and for any ¢ € L*(0,T; Wh*°(D))

T
(Om, $)12(pyy + M / (Zsm x VZym, VZs)ia(p) ds
0

T
(4.2) + )\2/ (Zsm x VZ;m,VZs(m X ¥))12p) ds =0, P-a.s..
0

Then M = Zym satisfies (2.1) P-a.s..
Proof. Using It6’s formula for M = Z;m, we deduce

t
M(t +Z/ Zm x g; o dW;(s —l—/Z
0
t
+Z/M><gzodW —|—/Zsé?tm
0
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Multiplying both sides by a test function ¢ € CJ°(D) and integrating over D we obtain
4q t
(M), 82, = (MO )y + D [ (M x 18} ) o W)
i=1
t
+ /0 (Zs(0m), ) 2py ds

= <M(0)7’¢>]L2(D) + Z/ <M X gi’¢>L2(D) o dWZ(S)

(4.3) /0<6tm zZ; 1¢>L2(D ds,

where in the last step we used (3.16). On the other hand, it follows from (4.2) that, for all
€ € L?(0,t; WH°(D)), there holds:

t t
/ (Om, &) p2py ds = —)\1/ (Zsm x VZ;m,VZ&)2py ds
0 0
t
(4.4) — )\2/ (Zsm x VZym,VZs(m x f))Lg(D) ds.
0
Using (4.4) with & = Zs,_l@b for the last term on the right hand side of (4.3) we deduce

<M(t)7¢>L2(D) = <M(0)7¢>L2(D) + Z/ (M x gia11b>L2(D) o dW;(s)

_A1/ (M x VM, V), ) ds
— AQ/ (M x VM,V Zy(m x Z;1¢)>L2(D) ds
0
It follows from (3.17) that

<M(t)7¢>]L2(D) = <M(0)a¢‘>L2(D) + Z/o (M x gia¢>L2(D) o dW;(s)
i=1

t
— A\ / (M x VM, V) o, ds
0
t
- AQ/ (M x VM, V(M x )1 ds,
0

which complete the proof. ]
The following lemma shows that the constraint on |m| is inherited by |M].
Lemma 4.2. The process M satisfies
|[M(t,x)|] =1 Vt>0, aeex € D,P— a.s.
if and only if m defined in (4.1) satisfies
lm(t,z)| =1 Vt>0, aex € D,P— a.s..
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Proof. The proof follows by using (3.16):
im|* = (m,m)=(Z;'M,Z;'M) = (M,Z2,Z; 'M) = (M,M) = |M|*.
0
In the next lemma we provide a relationship between equation (4.2) and its Gilbert form.
Lemma 4.3. Let m(-,w) € H'(0,T;1L?(D)) N L?(0, T; H' (D)) for P-a.s. w € Q satisfy
(4.5) lm(t,x)| =1, te(0,T), €D,

and
T
(46) )\1 <8tm, (P>IL2(DT) + )\2 <m X 8tm, LP>]L2(DT) = ,U/OV <VZSm, VZs(m X (P)>]L2(D) dS,

where = A2 + \3. Then m satisfies (4.2).

Proof. For each ¢ € L?(0,T;W!H*°(D)), using Lemma 7.1 in the Appendix, there exists
w € L?(0,T;H' (D)) such that

(4.7) AL + Ao X m = 1.
We can write (4.6) as

T
(Oym, Mg + Aagp X m)LQ(DT) + /\1/0 (Zsm x VZ;m, VZS()\lgo»LQ(D) ds

(4.8) + A2 /OT (VZm, VZs( A2 X m))y2(py ds = 0.
From (4.5) and (3.3), we obtain that

(4.9) |Zzm(t,x)| =1, Vte (0,T)and x € D.

On the other hand, by using (4.9), (3.19) and a standard identity

(4.10) (a,bxc)=(b,cxa)=(c,axb), foralla,b,cecR>

we obtain

T T
)\1/ (Zsm x VZ;m,VZs(Aap X m))Lg(D) ds + )\2/ (VZsm, VZS()\1<,0)>L2(D) ds
0 0

T
(4.11) - AQ/O <\vzsm\225m,ZS(A1¢)>L2(D) ds = 0.

Moreover, we have

T
(4.12) - )\2/ (IVZem|*Zsm, N Zsp x Zsm) ds = 0.
0

L2(D)

Summing (4.8), (4.11) and (4.12) gives

T
(Bym, A1 + Ao X m>L2(DT) + )\1/ (Zsm x NVZ;m, N Zs(Ap + Aap X m)>]L2(D) ds
0
T
+ )\2/ (VZm, VZs(Aip + dop x m))12p) ds
0

T
_)\2/ <|VZSm’2ZSm,ZS()\1(p—|—)\QQO X m)>]L2(D) ds =0
0
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The desired equation (4.2) follows by noting (4.7) and using (3.19), (4.10) and (4.9). O
Remark 4.4. By using (4.10) and (4.5) we can rewrite (4.6) as

T
(4.13) A {m x gm, w2 p,y — A2 (Om, w)p2p,) = M/O (VZsm,VZsw)2py ds,

or equivalently, thanks to Lemma 3.6,

AL (m X Om, w)y 2 p,y — A2 (Orm, w2 pyy =1 VM, Vw) e p,

T
(4.14) *”AF“W“”“”“

where w = m x ¢ for ¢ € L2(0,T;H(D)). We note in particular that w - m = 0. This
property will be exploited later in the design of the finite element scheme.

We state the following lemma as a consequence of Lemmas 4.3, 4.2 and 4.1.

Lemma 4.5. Let m(-,w) € H'(0,T;1L?(D)) N L*(0, T;HY(D)) for P-a.s. w € Q. If m is a
solution of (4.5)— (4.6), then M = Zym is a weak martingale solution of (1.3) in the sense
of Definition 2.2.

Proof. By using Lemmas 4.1, 4.2 and 4.3 together with the imbedding H'(0, T; L?(D)) —
C(0,T;H (D), we deduce that M satisfies (1), (2), (3), (4) in Definition 2.2, which com-
pletes the proof. O

Thanks to the above lemma, we now can now restrict our attention to solving equa-
tion (4.6) rather than (2.1).

5. THE FINITE ELEMENT SCHEME

In this section we design a finite element scheme to find approximate solutions to (4.6).
In the next section, we prove that the finite element solutions converge to a solution of (4.6).
Then, thanks to Lemma 4.5, we obtain a weak solution of (2.1).

Let T}, be a regular tetrahedrization of the domain D into tetrahedra of maximal mesh-
size h. We denote by N}, := {x1,..., 2N} the set of vertices and introduce the finite-element
space V;, C H!(D), which is the space of all continuous piecewise linear functions on Tj.
A basis for Vj, can be chosen to be {¢n&;, n&s, Pn€3}1<n<n, where {§;}i—1 .. 3 is the
canonical basis for R3 and &n(xm) = Opm. Here 0y, denotes the Kronecker delta symbol.
The interpolation operator from C°(D) onto Vj, denoted by Iy, , is defined by

N
Iy, (v) =Y v(@n)pn(z) Vo€ CO(D,R?).
n=1
Before introducing the finite element scheme, we state the following result proved by
Bartels [4], which will be used in the subsequent analysis.

Lemma 5.1. Assume that
(5.1) / Vo -Vojde <0 forall i,je{l,2,---,J} andi# j.
D

Then for all u € Vy, satisfying |u(x;)| > 1,1 =1,2,---,J, there holds

(5.2) /D ’th <‘Z|>

2
d:z:g/ |Vu|? de.
D
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When d = 2, we note that condition (5.1) holds for Delaunay triangulation. Roughly speak-
ing, a Delaunay triangulation is one in which no vertex is contained inside the perimeter of
any triangle. When d = 3, condition (5.1) holds if all dihedral angles of the tetrahedra in
Thlp2(p) are less than or equal to 7/2; see [4]. In what follows we assume that (5.1) holds.

To discretize the equation (4.6), we fix a positive integer J, choose the time step & to
be k = T/J and define t; = jk, j =0,---,J. For j = 1,2,...,J, the solution m(t;,-) is

(4)

approximated by m;"’ € Vj, which is computed as follows.

Since G4+1) "
+
by M) —m(G,) m; " —my)
mt( 7 ) ~ ~ ’
k k
we can define m,(1 Y from mg) by

where vg) is an approximation of m(t;, ) Hence, it suffices to propose a scheme to

compute vgj) .

Motivated by the property dym - m = 0, we will find v(J ) in the space Wl(lj) defined by
(5.4) W = {w eV | w(zn) - mP(2,) =0, n=1,.. N}

Given m(j) € Vj, we use (4.14) to define ’U(J) instead of using (4.6) so that the same test

and trial functions can be used (see Remark 4.4). Hence, we define by ’U( 1) ¢ W(] ) satisfying
the following equation

() () ., () _ (7)., @) _ () () ()
A <mh x vy wy >]LQ(D) A2 <vh , Wy >]L2(D) —M<V(mh + kOv;’), Vwy

(5.5) + nF(t5, mﬁf),wg)) P-a.s..

We summarise the algorithm as follows.

>]L2(D)

Algorithm 5.1.
Step 1: Set j = 0. Choose mgo) = Iy, my.

Step 2: Find vgj) S ng) satisfying (5.5).
Step 3: Define

N (4) ()
- my (xy,) + kv’ ()
mglJJrl)(:B) — Z h 0 (93)
n=1 ‘mh (mn)“‘kv (zn)
Step 4: Set j = j+ 1, and return to Step 2 if j < J. Stop if j = J
Since ’m( )( )‘ =1 and vg)(xn) . mg)(l‘n) =0foralln=1,...,Nand j=0,...,J,

we obtain (by induction)

(5.6) ‘m,(l])(:nn) + k’ugj)(mn) >1 and ‘mg)(xn) =1, j=0,...,J.

In particular, (5.6) shows that the algorithm is well defined.
We finish this section by proving the following three lemmas concerning some properties

of mgj) and Ry, 1.
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Lemma 5.2. Forany j=0,...,J,
[ Ny <1 and - [lmg 2y < |D
where |D| denotes the measure of D.
Proof. The first inequality follows from (5.6) and the second can be obtained by integrating
mﬁf)(m) over D. O

Lemma 5.3. There exist a deterministic constant ¢ depending on my, {gi}?zl, A1 and A
such that for any 6 € [1/2,1] and for j =1,...,J there holds

112 it 2 -t A2
E[[vm)| gk [ 20— 03 5w, <
Vm, L3(D) + k ;:1 p K ||v, (D) + k%(20 — 1) 2 Vu,, L2y = c
Proof. Taking 'w(] ) = vgj) in equation (5.5) yields to the following identity:
—)\g‘v(j)HQ :,u<Vm(j) V’U(j)> +u/<:9HV’v(j)H2 —i—,uF(t m\) pV ))
o lL2ipy ho VYO /1) o lL2(p) 3 My V)

or equivalently

() o,y () 0|? () o))

(5.7) <th , Vuy >]L2( —A2 H H — pko HVUh H]LQ(D) — ,uF(t],mh V) )
From Lemma 5.1 it follows that

2 2

va j+1) < Hv ) 4 kol ,

L2(D) L?(D)

or equivalently,
2 2112
|vmi; Grl* o [vm?||, k| vl 2k (vm) vo) .
L2(D) L2(D) L2(D L2(D)

Therefore, together with (5.7), we deduce

112
ot o, v e < [

[ o

—2k:F(t],m§L), Gy,

Thus, it follows from (3.26) that

FE2(20 - 1E Hw,@

. 2 A2
o 20
Vm; L2(D) + 251 olE ||vy (D)

e e el

L*(D)

G)||? 1/2 o||?
< (1 4 keeT)E || Vmy LQ@)—i—cke(T%—T )E ||m}; o)

+ ke T+ T2+ 1)E o) H;(D) .
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By choosing € = % in the right hand side of this inequality and using Lemma 5.2
we deduce
. 2 (12 (12
EH (]"Fl)H k —1)\ EH (])H k2 20 — 1 EH (J)‘
Vmy L2(0) +Ekpm AR ||v) L2(D) + E5( )E ||V, L2(0)

12
<ck+ (1+kc)E HVmg)‘ Loy

Replacing j by i in the above inequality and summing for ¢ from 0 to 7 — 1 yeilds

oIk S 0|2 S ||
E |V HLQ(D)HC;M DoE |of LQ(D)—I—k2(29—1);EHVvh o)
j-1 4
6.9 < ek 4l Tm gy + b E [Tl

Since mg € H?(D) it can be shown that there exists a deterministic constant ¢ depending
only on mg such that

0
(5.9) 1V 2y < e
Hence, inequality (5.8) implies

2

j—1 2
+E(20-1)Y E ngﬂ
=1

A2 j—1 .
B[y + 5 o e [0l i

L*(D)

Jj—1 12
(5.10) §c+kc;EHVmIg) L)

By using induction and (5.9) we can show that
E|[Vm|[fapy < 1+ ck)'.
Summing over ¢ from 0 to j — 1 and using 1 + z < e” we obtain

Jj—1 ;
) 1 k) —1
kZE va§z|’i2(D) < Ck(—i—cck) < €CkJ =C.
=0

This together with (5.10) gives the desired result. O

6. THE MAIN RESULT
In this section, we will use the finite element function mgf) to construct a sequence of
functions that converges in an appropriate sense to a function that is a weak martingale
solution of (1.3) in the sense of Definition 2.2.
The discrete solutions mg) and 'v,(f ) constructed via Algorithm 5.1 are interpolated in
time in the following definition.
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Definition 6.1. For all x € D, w,v € Vi, and all t € [0,T], let j € {0, ..., J} be such that
t € [tj, tjiy1). We then define

t—t; tivi—t
my (L, ) == ijﬁfﬂ)(x) + %m,&j)(m),
my,  (t,7) = m (x),
o i(t z) = v (x),
Fi(t,u,v) == F(tj,u,v) P—as.

We note that m x(t) is an Fy; adapted process for ¢ € [t;,t;11). The above sequences
have the following obvious bounds.

Lemma 6.2. There exist a deterministic constant ¢ depending on myg, g, p1, po and T
such that for all 6 € [1/2,1],

* * 2
E|lmj, lli2(pyy +E ”th,kH]LQ(DT) +E ||Uh,k||]2L2(DT) + k(20 - 1)E ||Vvh,k||]2L2(DT) <c

where mj , = my,, or m, . In particular, when 6 € [0, b,

2
* * 2 —
EHmh’kHig(DT)—I—]E Hth,kHLQ(DT) + (14 (20 = )kh™)E |lop, \iQ(DT) <ec.
Proof. 1t is easy to see that
J—1 ‘ J-1
I lB2 gy = 5 Y I 12apy and Jlonilang =k D 105 [22p)-
=0 1=0

Both inequalities are direct consequences of Definition 6.1, Lemmas 5.2, and 5.3, noting
that the second inequality requires the use of the inverse estimate (see e.g. [14])

Vo 122y < ch ™20 |22 py-
]

The next lemma provides a bound of my, ;, in the H'-norm and establishes relationships
between m; ., My and vy .

Lemma 6.3. Assume that h and k approach 0, with the further condition k = o(h?) when
0 €[0,1). The sequences {my,}, {my, ..}, and {vp} defined in Definition 6.1 satisfy the
following properties:

(6.1) Ellmunkllin g < ¢

(6.2) E|lmpg, — my,, |f2p,y < ck?,

(6.3) Ellvnk — Oemn il oy < ck,

(6.4) El[[mi] — 13a(py, < c(h® +K2).

Proof. The results can be obtained by using Lemma 6.2 and the arguments in the proof
of [13, Lemma 6.3]. O

We now prove some properties of F' and Fj, which will be used in the next two lemmas.
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Lemma 6.4. For any uw,v € L*(Q; L?(0,T;H'(D))), there exists a constant ¢ depending
on T and {g;}i=1,.. ¢ Such that
(6.5)

T
% 1/2 1/2 1/2
E[ /0 [F*(t,ult, ), v(t, )] df] < c(Bl|ul?sp,)])" ((E[nwnizwﬂn P E ol p,p]) Y )
here, I* = I or F},. Furthermore,

T
E| /0 F(t,ult, ), o(t, ) — Fe(t,ult, ), o(t, )| di]

(6.6) < ek 2 (E[||ull?2p,]) ((E[||Vv||iz(DT)1)1/2 + (E[|v||i2(DT)]>”2).

Proof. Proof of (6.5): The first result of the lemma for F* = F can be deduced from
Lemma 3.9 by replacing s = t, u = u(t,-), v = v(t,-) and using Hoélder’s inequality as
follows:

T T
E| /0 F(tu(t, ), o(t, )] di] = /0 E[|F(t, u(t, ), v(t, )] dt
T
<e /0 (Elllut, )P2p)) " (BIIVo(E, ) 22 ) db
T
(6.7) +e /0 (Ellla(t, Y122 py)) 2 (L0t )22 p)) 2

< c(Ellul22p,]) ((Enrwuiz(m)])”? + (Emv|ri2<DT)1)”2).

We first note that

T T
E| /0 Byt ult, ), o(t, )] df] = /0 E[|Fi(t, u(t, ), v(t, )] dt
i A
- / E[|F(t;, u(t, ), o(t, )] dt,
7=0 "1

then apply Lemma 3.9 for s = t;, u = u(t, ) and v = v(t,-) to deduce

T
E[/O | F(t, u(t, ), o(t, )| di] <CZ / Efllu(t, )22 p))) 2 (BTt ) 22 p)]) 2
-1 ti+1
+cZO< 12 4 1)) / (Elllatt, )22 ) Elllo ()2 ) 2 dt

T
< T / (Ellet, Z20)) 2 BT (2, ) E2 1)) 2
T 1/2 1/2
—|—c(T+T1/2)/0 (Elllut, ME2m)) " (Ello(t, )IE2epy]) = dt.

Hence, (6.5) with function F* = Fj, follows by using Holder’s inequality.
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Proof of (6.6): Noting that
T
E| / F(tult, ) v(t, ) — Fo(tou(t, ), v(t, )| dt

J J+1
Z/ ‘F t u ) U(t,~)) —F(tj,’u(t, ')7U(ta'))H dt
j=0

J J+1
(68) =3 / ~tult ), w(t ) dt
7=0

q t . q t ~ ~
Fl(t,x,y) = Z/o F (s, 2,y)ds + Z/o F3 (s, x,y) dWi(s),
i=1 i=1

in which Fij,i(sa$7y) = Fl,i(s + tjvmay)? Fii(saxay) = FQ,’i(S =+ t]amvy) and VNV@(S) =
Wi(s +t;) — Wi(t;). By using the same arguments as in the proof of Lemma 3.9 we obtain
the same result for the upper bound of F7, namely

~ 1/2 1/2
E| (s, u,0)| < es(Efllwl?2 ) (EIIV0]|22p)])

1/2( [

1/2
E[[|l|Z2p))) "

+ (512 + ) (El[ull 22 )
Hence, there holds
AL bt 1/2 1/2
[ ER Gl < [T sEllulap) P EIVolR)
j j

ti+1 2 2
e / (512 + 8) (Bl )]) /2 (Bll]1 22 )) /2 ds,

J

EAS 9 1/2 9 1/2
SCk?t (E[HUHLZ’(D)]) (E[||V’U||L2(D)]) ds

J

(69 relB 40 [ Eluala) 7 Bl ) ds

tj

Therefore, it follows from (6.8) and (6.9) that
T
E[/ |F(t7 u(ta ')7 ’U(t, )) - Fk(ta u(tv ')7 U(t, ))| dt ]
0
g 2 1/2 2 1/2
sck | (Ellwlizp)) " EIVllEp]) " ds

T
1/2 1/2
et 8) [ (Bl n) (B0l ) ds.

The result follows immediately by using Holder’s inequality, which completes the proof of
the lemma. i

The following two Lemmas 6.5 and 6.6 show that m,; , and my, x, respectively, satisfy a
discrete form of (4.6).
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Lemma 6.5. Assume that h and k approach 0 with the following conditions

k = o(h?) when 0 < 6 < 1/2,
(6.10) k =o(h) when 0 = 1/2,
no condition when 1/2 < 6 < 1.

Then for any ¥ € C§°((0,T); C*(D)), there holds P-a.s.

-\ <m;’k X Vp ks mfl’k X ’lp> + Ao <Uh,ka m;’k X ¢>

L2(Dr) L2(Dr)

+u/ Fy(t,my, my, X ) dt = ZIJ,
7j=1

+p <V(m,;,c + kOvp k), V(my, % ¢)>L2(DT

where

I := <—/\1m}:k X Upk + )\2’0h7k,m;k X — IVh(mgk X ’lﬁ)> ,
) ) ) ]LQ(DT)

Iy:=p <V(m;’k + kOvp ), V(m,:’k X — Iy, (m};k x w))>IL2(DT) )
T
I3 := /’L/ Fk(t7 m]zkv m};k X ’lp) - Fk(ta m];ka IVh (m};k X 110)) dt.
0
Furthermore, E|I;| = O(h) fori=1,2,3.

Proof. For t € [tj, t;+1), we use equation (5.5) with wj) = Iy, (my, . (t,-) x 9(t,")) to see
X {50 ) X Ot ), T (i () X () )

20 (ol ), Tu, (i) X ()
(Y (mg (8 ) + kO (), Vv, (i (1) X (E)) )

+ uFy(t, mhk( )IVh(mhk( -) X p(t, ))):O‘

Integrating both sides of the above equation over (t;,t;41) and summing over j =0,...,J—1
we deduce

—>\1 <m,;k X Vp k, IVh (m,;k X ¢)>

L2(D)

L2(D)

T <’Uh,k= Ly, (1, d’)>

L2(Dr) L2(Dr)

T
+ p <V(m}:’k + k@vh,k), Vliy, (m,;k X ¢)>L2(DT) + M/O Fk(t, m;}k, Iy, (m,:’k x b)) dt = 0.
This implies

-\ <m;k X OpJo, My, f, X '¢> + Ao <vh’k,mg’k X ¢>

L2(Dr)

T
+ <V(m,;,f + kbvpk), V(my, ;. % Q/J)>]L2(D : + u/ Fi(t,my, . my, X ) dt
T 0
=1L+ I+ Is.

L2(Dr)
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Hence it suffices to prove that E|I;| = O(h) for i = 1,2, 3. First, by using Lemma 5.2 we
obtain

(6.11) Iy, oo (ppy < sup my [y < 1,
0<5<5J

and

(6.12) Imngllioe e <2 sup [[m{|lLeipy < 2.
0<5<J

Lemma 6.2 and (6.11) together with Holder’s inequality and Lemma 7.2 yield

E|1| < B [(Im i) + 1) 10nkllLe o Imi, < @ = Ty, (mi, < ) lLao,)]
< € [Jonllieqn Imi x ¥ = Ty, (g, X 9) 2o,

1/2 _ _ 1/2
< c(Ellvnil2 o)) 2 (Ellmy . x 9 — By, (my % )1 220p,]) "

< ch.

The bound for E|I3| can be obtained similarly, using Lemma 6.2 and noting that when
0 € [0, 3], a suitable bound on k vahkaHP(DT) can be deduced from the inverse estimate
as follows:

kIVonkllie(pyy < kb~ onkllpa p,y < ckh™t

The bound for E|I3] can be obtained by noting the linearity of F' in Remark 3.7 and using
Lemmas 6.4 and 7.2. Indeed,

T
E|I5| = M]E‘/ Fi(t,my, . my o X ¢ — Iy, (my, ;. X 9)) dt|
0

T
< MIE/O ‘Fk(t,m,:’k,m,;k X — Iy, (my . % ¥))|dt

< c(Blllmy, 22 pp]) 2((E[|W<m;,k x b — Iy, (miy . % ) 22 o))

+ (Ellmi, x % — Ty, (mjy x w>\|iz<DT>])”2>

< ch.

This completes the proof of the lemma. 0

Lemma 6.6. Assume that h and k approach 0 satisfying (6.10). Then for any v €
Cs°((0,T);C>(D)), there holds P-a.s.

— A (M X Ogm g, M g X ¢>1L2(DT) + A2 (Oymp g, o g X ¢>L2(DT)

T 7
(6.13) 4+ p(V(mak), Vimug X)) p,y + M/ F(t,mu g, mu g, x ) dt = 1,
0 :
7j=1
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where

Iy =—-\ <m,;k X Up o, My, o X '¢> + AL (my g X Oymup g, My, g X ¢>L2(DT) ,

L2(Dr)

Is = X <’Uh,k7 my, . X TP>L2(DT) — X2 (Oymup ko, Mo g X ¢)L2(DT) ,

Is = p <V(m};k + kbvnk), V(my, ;. X ¢)> = u{V(mpk), V(mne X )12 p,y

L2(Dr)
T
B [ (Pt < 6) = Filtom i ) de.

Furthermore, EB|I;| = O(h) fori=1,---,6 and E|I;| = O(h + k'/?).
Proof. From Lemma 6.5 it follows that

— A1 (M, i X Oy g, Mo g X ¢>L2(DT) + Ao (Oymap g, M g X ¢>L2(DT)

T

+ u{V(mng), V(mn g X))o, + u/ Fi(t,mpp, myp 1 X ) dt
0

St

Hence it suffices to prove that E|I;| = O(h) for i = 4,---,6. First, by using the triangle
inequality and Hélder’s inequality, we obtain

A <

m;, , —m X v m, , X
<( h,k hk) bk TThp ke ¢>L2(DT)

« - X
+’<mh,k Uh,kv(mh,k ™y, 1) w>L2(DT)

+ ‘<mh,k X (Vpp — Oymp 1), My X ¢>L2(DT)‘ ,

< 2[lmy . — muklzon lvn k(o) (17, llie (og) + Ima gl o)) 19 o)

+ [vn gk — mn il (g mn k| o (0 191 (D7)

Therefore, the required bound on E|I4| can be obtained by using (6.11), (6.12) and Lem-
mas 6.2, 6.3. The bounds on E|I5| and E|Is| can be obtaineded similarly.

In order to prove the bound for E|I7|, we first use the triangle inequality then Remark 3.7
and Lemma 6.4 to obtain

T
E’I7| < E/ ]F(t,mhk,mh,k X ’lb) — Fk(t,mhyk,mh,k X ’l,b)‘ dt
0

T T
+E/ ‘Fk(t,m}%k - m};k,mh,k X 1/))‘ dt—i—E/ ‘Fk(t, m};k, (m}%k - m};k) X ’l[))‘ dt
0 0

< k2 (E[||m i

1/2 1/2
%‘LQ(DT)])”Z((E[Hth,uﬁQ(DT)]) 2 4 (Bl mn e Zagp)) )

_ 1/2 1/2 1/2
+ Bl mi g oo (ST o) V2 + (Ellmansleo)
< c(h+ kY?),

in which (6.1) and (6.2) are used to obtain the last inequality. This completes the proof of
the lemma. O
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In order to prove the convergence of random variables my, j, we first state a result of
tightness for the family £(my, ;). We then use the Skorohod theorem to define another
probability space and an almost surely convergent sequence defined in this space whose
limit is a weak martingale solution of equation (4.14). The proof of the following results
are omitted since they are relatively simple modification of the proof of the corresponding
results from [13].

Lemma 6.7. Assume that h and k approach 0, and further that (6.10) holds. Then the set
of laws {L(m, 1)} on the Banach space C([0,T);H (D)) N L?(0,T;L?(D)) is tight.

Proposition 6.8. Assume that h and k approach 0, and further that (6.10) holds. Then
there exist:
(a) a probability space (V, F',P');
(b) a sequence {my, ;} of random variables defined on (', F',P') and taking values in
C([0,T);H (D)) N L*(0,T;L*(D)); and
(¢) arandom variable m’ defined on (Y, F',P') and taking values in C ([0, T);H™(D))N
L*(0,T:L*(D)),
satisfying
(1) Lmpg) = LM, ),
(2) mj, —»min C ([0, T);H-1(D)) N L*(0,T;L*(D)) strongly, P'-a.s..

Moreover, the sequence {my}, .} satisfies

(6.14) E[[|m), . fppy) < €
(6.15) Bl [mf gl — 122 ppy] < (2 + £2),
(6.16) ||m'h7k||]]2400(DT) <c P-as.,

here, ¢ is a positive constant only depending on {g;}i=1,.. 4-
We are now ready to state and prove our main theorem.

Theorem 6.9. Assume that T > 0, My € HY(D) satisfies (??) and g; € W*>(D) for
i=1,---,q satisfy the homogeneous Neumann boundary condition. Then m/, the sequence
{mj, ,} and the probability space (', F', ') given by Proposition 6.8 satisfy:

(1) the sequence of {my, ;} converges to m' weakly in L2(V;HY(Dr)); and
(2) (. F (Fiep,r), ', M') is a weak martingale solution of (1.3), where

M'(t) := Zym!/(t) Vte€0,T], a.e. x € D.

Proof. From (6.16) and property (2) of Proposition 6.8, there exists a set V' C €' such that
P'(V) =1 and for all w’ € V there hold

||m;17k(w')||i2(DT) <c¢ and mj (W) = m/(W') in L2(Dr) strongly.
Hence, by using Lebesgue’s dominated convergence theorem, we deduce
(6.17) my,;, — m’ in L*(QY;1L?(Dr)) strongly,
which implies from (6.14) that
(6.18) mj, ;. — m/ in L*(Q;H'(Dr)) weakly.
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In order to prove Part (2), by noting Lemma 4.5 and Remark 4.4 we only need to prove
that m’ satisfies (4.5) and (4.14), namely

(6.19) m/(t,z)] =1, te€(0,T), x€D, P-as.
and

(6.20) I(m/,p) =0 P-as. Ve e L*(0,T;HY(D)),
where

Z(m/, ) =M (m' x dym/,m’ x ‘P>JL2(DT) — X2 (9ym/,m/ x 90>JL2(DT)

T
(VP 9}y = ) 0) 0

By using (6.15) and (6.17), we obtain (6.19) immediately.
In order to prove (6.20), we first find the equation satisfied by m}, , and then pass to the
limit when h and k approach 0.

By using Lemmas 6.6 and property (1) of Proposition 6.8, it follows that for any 1 €
C§°(0,T;C*(D)) that there holds

(6.21) E|Z(m}, 1, %)| = O(h + k'/?).

To pass to the limit in (6.21), we first using (6.17)—(6.19) and the same arguments as in [13,
Theorem 6.8] to obtain that as h and k tend to 0,

(622) <m;z,k X atm;l k?m%k X ‘P>L2(Q’ ]LQ( )) — <m/ X atmlu m/ X ‘P>L2(Q’;]L2(DT)) )

(6.23) (Osmmy, g, 4, X ‘P> 2(Q/;L2(Dr) — (9m/,m’ x ‘P>L2(Q/;L2(DT)) g
(6.24) (Vi 1, V(my,, X @ >L2 LD = (Vm/,V(m' x ¢)>L2(Q,;L2(DT)) )
Then, by using Remark 3.7 and (6.5) with F* = F , we estimate
/WthM Jom L)  (t,) — Pt (), m/ () x p(t, )]
gEA!ﬂammﬁ»—nﬂt>mM<>x¢ ) dt

T
+ E/O ‘F(t7 (m;z,k(tv ) = m/(t, )) x(t,), m/(t, ))‘ dt

< ellmp g — M/ || 22y IV 1l 22 () + 10 4l 22Dy

+ IV || 212Dy + 17 2(0012(D2)) -
Since m/ € L?(SY;H'(Dr)), it follows from (6.14) and (6.17) that
(6.25)

T T
E[/O F(t7m;17k(t ) mhk( ) X 90( ))dt] —>E[/O F(tvm/(ta’)am/(tf) X QD(t, )) dt])
as h and k tend to 0. From (6.22)—(6.25) we deduce that
E|I(m;t,ka ¢) - I(m,a ,lb)‘ - 07

and hence, together with (6.21) E|Z(m/,4)| = 0. This implies (6.20) which completes the
proof of our main theorem. O
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7. APPENDIX
For the reader’s convenience we will recall the following results, which are proved in [13].

Lemma 7.1. For any real constants A and Ay with A # 0, if 9, ¢ € R? satisfy |¢| = 1,
then there exists @ € R? satisfying

(7.1) Ap + Ao X (=19

As a consequence, if ¢ € HY(Dr) with |{(t,x)| =1 a.e. in Dy and ¢ € L*(0,T; WH*°(D)),
then ¢ € L?(0,T; HY(D)).

Lemma 7.2. For any v € C(D), vy, € V}, and ¢ € C3°(Dr),
v, vl (D) < [[VllLee(D),
I x % — Ly, (Mg, < Y)IIE 0,70 (py) < Rl g lIE 0,775 () 19 v2.oe (1
where my, s defined in Defintion 6.1
The next lemma defines a discrete LP-norm in Vj, equivalent to the usual LP-norm.

Lemma 7.3. There exist h-independent positive constants Cy1 and Cs such that for all
p € [1,00] and u € Vy,

N
Cl”“”ﬁp(g) < hdz [u(x,)P < C2H“H£p(g)v

n=1

where Q C R?, d=1,2,3.
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