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This supplement gives the proofs of Lemmas 8.3, 8.6–8.7 (see Section 9), the proofs

of Theorems 2.5, 4.1–4.3 (see Section 10), a unit root testing for empirical data (Section

11) and additional simulation results (see Section 12) in the official publication. Results

(formulae) cited are along the lines of the official publication.

9 Proofs of Lemmas 8.3, 8.6 and 8.7

Proof of Lemma 8.3. The proofs of (35) and (36) see Theorem 2.1 of Chen (1999). To

prove (37), we first impose an additional assumption that g2(x) = g2
1(x). Denote

∆2
n = a(n)−1

n∑
t=1

g2
1(xt), Znt = a(n)−1/2g1(xt)∆

−1
n , and Wn =

n∑
t=1

Zntuk. (57)

Recalling that E(ut|Fnt) = 0, it is readily seen that given {x1, ..., xn}, {Zntut,Fnt}nt=1

forms a martingale difference sequence. The result (37) will follow if we prove,

sup
x

∣∣P(Wn ≤ x |x1, ..., xn
)
− Φ(x)

∣∣→P 0. (58)

Indeed, by noting that ∆2
n is measurable with respect to σ(x1, ...xn), we have, for any

α, γ ∈ R, ∣∣E[eiαWn+iβ∆2
n
]
− e−

1
2
α2

E
[
eiβτ5Πγ

]∣∣
≤ E

∣∣∣E(eiαWn|x1, ..., xn
)
− e−

1
2
α2
∣∣∣+ e−

1
2
α2
∣∣∣Eeiγ∆2

n − Eeiγτ5Πβ

∣∣∣→ 0,

by dominated convergence theorem, due to (58) and ∆2
n →D τ5Πβ (see, e.g., Theorem 2.3

of Chen (1999)). This implies that

{Wn,∆
2
n} →D {N, τ5Πβ},
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where N is a standard normal random variable independent of Πβ. Hence, by continuous

mapping theorem, we have{
a(n)−1/2

n∑
t=1

g1(xt)ut, a(n)−1

n∑
t=1

g2
1(xt)

}
=
{

∆nWn,∆
2
n

}
→D {τ 1/2

5 NΠ
1/2
β , τ5Πβ},

which implies the required (37).

We now prove (58). By Theorem 3.9 ((3.75) there) in Hall and Heyde (1980) with

δ = q/2− 1 that

sup
x

∣∣P(Wn ≤ x |x1, ..., xn
)
− Φ(x)

∣∣ ≤ A(δ)L1/(1+q)
n a.s.,

where A(δ) is a constant depending only on δ and q > 2, and (set F∗n = σ(x1, ..., xn))

Ln = ∆−qn

n∑
k=1

|Znk|qE(|uk|q|F∗n) + E
[∣∣∆−2

n

n∑
k=1

Z2
nk[E(u2

k|Fnk)− 1]
∣∣q/2∣∣∣F∗n].

Recall from Assumption 3.2 (iv) and the fact that ∆2
n =

∑n
k=1 Z

2
nk, we have,

E
[∣∣∆−2

n

n∑
k=1

Z2
nk[E(u2

k|Fnk)− 1]
∣∣q/2∣∣∣F∗n]→P 0,

by dominated convergence theorem. Hence, routine calculations show that

Ln ≤ C ∆−(q−2)
n a(n)−(q−2)/2 + oP (1) = oP (1),

because ∆−2
n = OP (1) by (35) and q > 2. This proves (58), which implies that (37) holds

true with g2(x) = g2
1(x). Finally, note that, for any a, b ∈ R,

a(n)−1

n∑
t=1

{
ag2

1(xt) + bg2(xt)
}
→D

∫ ∞
−∞

[
ag2

1(s) + bg2(s)
]
π(ds) Πβ,

due to Theorem 2.3 of Chen (1999), which implies that{
a(n)−1

n∑
t=1

g2
1(xt), a(n)−1

n∑
t=1

g2(xt)
}
→D

{∫ ∞
−∞

g2
1(s)π(ds) Πβ,

∫ ∞
−∞

g2(s)π(ds) Πβ,
}
.

Hence, by continuous mapping theorem,∑n
t=1 g

2
1(xt)∑n

t=1 g2(xt)
→P

∫ ∞
−∞

g2
1(s) π(ds)

/∫ ∞
−∞

g2(s) π(ds).

This shows that (37) is still true with general g2(x). 2
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Proof of Lemma 8.6. We only prove (42). Others are similar and the details are

omitted. First note that, by Assumption 3.2 (i) and (iii),

sup
θ∈Θ
|fi(xt, θ)| ≤ sup

θ∈Θ
|ḟi(xt, θ)− ḟi(xt, θ0)|+ |ḟi(xt, θ0)|

≤ sup
θ∈Θ

h(‖θ − θ0‖)T (xt) + |ḟi(xt, θ0)| ≤ C.

It follows that ∣∣ḟi(xt, θ) ḟj(xt, θ)− ḟi(xt, θ0) ḟj(xt, θ0)
∣∣

≤
∣∣ḟi(xt, θ)∣∣∣∣ḟj(xt, θ)− ḟj(xt, θ0)

∣∣+
∣∣ḟj(xt, θ0)

∣∣∣∣ḟi(xt, θ)− ḟi(xt, θ0)
∣∣

≤ C
∣∣ḟj(xt, θ)− ḟj(xt, θ0)

∣∣+ C1

∣∣ḟi(xt, θ)− ḟi(xt, θ0)
∣∣.

Therefore, by recalling (33), the result (42) follows from an application of Lemma 8.1 with

κ2
n = n/dn. 2

Proof of Lemma 8.7. Recall max1≤t≤n |xt|/dn = OP (1). Without loss of generality,

we assume max1≤t≤n |xt|/dn ≤ K0 for some K0 > 0. It follows from Assumption 3.4 and

dn →∞ that, for any 1 ≤ i ≤ m and θ ∈ Θ,∣∣ḟi(xt, θ)∣∣ ≤ v̇i(dn)
(
|ḣi(xt/dn)|+ o(1)T1ḟi

(xt/dn)
)
,∣∣ḟi(xt, θ)− ḟi(xt, θ0)

∣∣ ≤ Aḟi(||θ − θ0||)v̇i(dn)T1ḟi
(xt/dn).

This implies that

sup
θ∈Nδ(θ0)

n∑
t=1

∣∣ḟi(xt, θ) ḟj(xt, θ)− ḟi(xt, θ0) ḟj(xt, θ0)
∣∣

≤ 2 (Aḟi(δ) + Aḟj(δ)) v̇i(dn)v̇j(dn)
n∑
t=1

(
|ḣi(xt/dn)|+ T1ḟi

(xt/dn)
)
. (59)

(45) now follows from Aḟi(δ)→ 0 as δ → 0 and

1

n

n∑
t=1

[
|ḣi(xt/dn)|+ T1ḟi

(xt/dn)
]
→D

∫ 1

0

[
|ḣi(G(t))|+ T1ḟi

(G(t))
]
dt = OP (1),

due to Assumptions 3.3 (iii) and 3.4 (iii).

The proof of (46) is similar and hence the details are omitted. As for (47), by noting

∣∣ n∑
t=1

f̈ij(xt, θ)ut
∣∣ ≤ ∣∣ n∑

t=1

f̈ij(xt, θ0)ut
∣∣+

n∑
t=1

|f̈ij(xt, θ)− f̈ij(xt, θ0)| |ut|,

the result can be proved by using the similar arguments as in (31) and (32) of Lemma

8.1. 2
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10 Proofs of Theorems 2.5, 4.1–4.3

Proof of Theorem 2.5. Let Θ0 = {‖θ − θ0‖ ≥ δ} where δ > 0 is a constant. By virtue

of Lemma 8.9, it suffices to prove that, for any η,M0 > 0, there exist a n0 > 0 such that,

for all n > n0,

P
(
n−1 inf

θ∈Θ0

Dn(θ, θ0) > M0

)
> 1− η. (60)

To prove (60), first note that
∑n

t=1 u
2
t/n ≤ M0 in probability, for some M0 > 0, due to

Assumption 2.2 (i). This, together with Cauchy-Schwarz Inequality, yields that

n−1Dn(θ, θ0)

=
1

n

n∑
t=1

(f(xt, θ)− f(xt, θ0))2 − 2

n

n∑
t=1

(f(xt, θ)− f(xt, θ0))ut

≥ 1

n

n∑
t=1

(f(xt, θ)− f(xt, θ0))2 − 2

n

( n∑
t=1

(f(xt, θ)− f(xt, θ0))2
)1/2( n∑

t=1

u2
t

)1/2

≥Mn(θ, θ0)
[
1−

2
√
M0 + oP (1)

Mn(θ, θ0)1/2

]
, (61)

where Mn(θ, θ0) = 1
n

∑n
t=1(f(xt, θ) − f(xt, θ0))2. Hence, for any equivalent process x∗k of

xk (i.e., x∗k =D xk, 1 ≤ k ≤ n, n ≥ 1, where =D denotes equivalence in distribution), we

have

P
(
n−1 inf

θ∈Θ0

Dn(θ, θ0) > M0

)
≥ P

(
inf
θ∈Θ0

M∗
n(θ, θ0)

[
1−

2
√
M0 + oP (1)

M∗
n(θ, θ0)1/2

]
> M0

)
, (62)

where M∗
n(θ, θ0) = 1

n

∑n
t=1(f(x∗t , θ)− f(x∗t , θ0))2.

Recalling x[nt]/dn →D G(t) onD[0, 1] andG(t) is a continuous Gaussian process, by the

so-called Skorohod-Dudley-Wichura representation theorem (e.g., Shorack and Wellner,

1986, p. 49, Remark 2), we can choose an equivalent process x∗k of xk so that

sup
0≤t≤1

|x∗[nt]/dn −G(t)| = oP (1). (63)

For this equivalent process x∗t , it follows from the structure of f(x, θ) that

m(dn, θ)
2 :=

1

nv(dn, θ)2

n∑
t=1

f(x∗t , θ)
2

=
1

n

n∑
t=1

h(x∗t/dn, θ)
2 + oP (1)

=

∫ 1

0

h(x∗[ns]/dn, θ)
2ds+ oP (1)

→P

∫ 1

0

h(G(s), θ)2ds =: m(θ)2, (64)
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uniformly in θ ∈ Θ. Due to (64), the same argument as in the proof of Theorem 4.3 in

PP yields that

inf
θ∈Θ0

M∗
n(θ, θ0)→∞, in probability,

which, together with (62), implies (60). 2

Proof of Theorem 4.1. We first establish the consistency result. The proof goes

along the same line as in Theorem 2.1. It suffices to show that for any fixed π0 ∈ Θ∩N c,

sup
θ∈Nδ(π0)

dn
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]ut| →P 0, (65)

as δ → 0 uniformly for all large n, and

n∑
t=1

(f(xt, π0)− f(xt, θ0))ut = oP (n/dn). (66)

By (38) in Lemma 8.4 with g1(x) = |T (x)|, (65) follows from

sup
θ∈Nδ(π0)

dn
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]ut| ≤ sup
θ∈Nδ(π0)

h(‖θ − π0‖)
dn
n

n∑
t=1

|T (xt)||ut|

≤ C sup
θ∈Nδ(π0)

h(‖θ − π0‖)OP (1)→P 0,

as δ → 0. Similarly, by (39) in Lemma 8.4 with g1(x) = f(x, π0)− f(x, θ0), we have that

n∑
t=1

(f(xt, π0)− f(xt, θ0))ut = OP [(n/dn)1/2],

which implies the required (66).

We next prove the convergence in distribution. As in Theorem 3.2, it suffices to verify

the conditions (i)–(iii) and (iv)’ of Theorem 3.1, but with

Dn =
√
n/dnI, Z = Λ1/2 NL

1/2
G (1, 0), M = ΣLG(1, 0),

under Assumptions 4.1.

The proofs for (i) and (ii) are exactly the same as those of Theorem 3.2. Using similar

arguments as in the proof of (56), (iv)’ follow from Lemma 8.4.

Finally, note that (65) and (66) still hold if we replace f(x, θ) by f̈ij(x, θ) due to

Assumption 3.2. By choosing kn → ∞ in the same way as in the proof of Theorem 3.2,
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we have, for any 1 ≤ i, j ≤ m,

sup
θ:‖Dn(θ−θ0)‖≤kn

∣∣∣dn
n

n∑
t=1

f̈ij(xt, θ)ut

∣∣∣
≤ sup

θ:‖Dn(θ−θ0)‖≤kn

∣∣∣dn
n

n∑
t=1

[f̈ij(xt, θ)− f̈ij(xt, θ0)]ut

∣∣∣+
∣∣∣dn
n

n∑
t=1

f̈ij(xt, θ0)ut

∣∣∣
= oP (1), (67)

which implies the required (iii). 2

Proof of Theorem 4.2. The proof goes along the same line as in Theorem 2.1 and

Theorem 4.1. Write vn = v(
√
n), It suffices to show that for any fixed π0 ∈ Θ ∩N c,

sup
θ∈Nδ(π0)

1

nv2
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]ut| →P 0, (68)

as δ → 0 uniformly for all large n, and

n∑
t=1

(f(xt, π0)− f(xt, θ0))ut = oP (nv2
n). (69)

The result (69) follows from (41) of Lemma 8.5. To see (68), by Cauchy-Schwarz

inequality then weak law of large number, we have

sup
θ∈Nδ(π0)

1

nv2
n

n∑
t=1

|[f(xt, θ)− f(xt, π0)]ut|

≤ sup
θ∈Nδ(π0)

1

nv2
n

( n∑
t=1

[f(xt, θ)− f(xt, π0)]2
)1/2( n∑

t=1

u2
t

)1/2

≤ C sup
θ∈Nδ(π0)

Af (‖θ − π0‖)
( 1

n

n∑
t=1

T 2
1f

( xt√
n

))1/2

→P 0,

as δ → 0, as required. 2

Proof of Theorem 4.3. Write vn = v(
√
n), v̇in = v̇i(

√
n), v̈ijn = v̈ij(

√
n), for

1 ≤ i, j ≤ m. It suffices to verify the conditions (i)–(iii) and (iv)’ of Theorem 3.1 with

Dn = diag(
√
nv̇1n, ...,

√
nv̇mn), M =

∫ 1

0

Ψ(t)Ψ(t)′dt,

Z = σξu

∫ 1

0

Ψ̇(t)dt+

∫ 1

0

Ψ(t)dU(t), (70)

under Assumptions 4.1.

The proofs for (i) and (ii) are exactly the same as those in Theorem 3.4. Note that

sup1≤i,j≤m |
vn v̈ijn
v̇in v̇jn

| < ∞. It follows that, by choosing kn → ∞ in the same way as in the
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proof of Theorem 3.2, we have, for any 1 ≤ i, j ≤ m,

sup
θ:‖Dn(θ−θ0)‖≤kn

∣∣∣ 1

nv̇inv̇jn

n∑
t=1

f̈ij(xt, θ)ut

∣∣∣
≤ sup

θ:‖Dn(θ−θ0)‖≤kn

∣∣∣ C

nv̈ijn

n∑
t=1

[f̈ij(xt, θ)− f̈ij(xt, θ0)]ut

∣∣∣+
∣∣∣ C

nv̈ijn

n∑
t=1

f̈ij(xt, θ0)ut

∣∣∣
= oP (1),

where the convergence of first term follows from (68) with π0 = θ0 and f replaced by f̈ ,

and that of second term follows from Lemma 8.5. This yields the required (iii).

Finally, (iv)’ follows from Lemma 8.5 with

g1(x) = α′3ḣ(x, θ0) and g2(x) = α′1ḣ(x, θ0)ḣ(x, θ0)′α2.

2

11 A Unit Root Test

In this section, we perform a unit root test to check the stationarity of the time series in

our example. There exist many works in macro-economics that demonstrate that GDP

and CO2 are nonstationary. See, e.g., Wagner (2008). We implement a simple unit root

test to verify the nonstationarity of the data we adopt in Section ??. Denote yt be the time

series we want to test for unit root. It can either be the logarithm of GDP or logarithm

of CO2. For each country, the series is modeled in the following way:

yt = αyt−1 + εt, t = 1, ..., n,

where εt is a stationary error process. We are interested in testing the hypothesis: H0 :

α = 1 versus H1 : α < 1. To achieve this, Dickey-Fuller test is performed on the

logarithm of GDP and CO2 for each country, by using the adfTest() function in the

fUnitRoots package of the statistical software R. The critical value for a sample size

of 58 is -1.947. Table 1 below presents the observed values of the test statistics for the

logarithm of GPD and CO2 for all countries. All observed values are greater than the

critical value. Therefore, we do not reject the hypothesis that there is a unit root in the

model.

12 Additional Tables and Figures
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Table 1: Dickey-Fuller Test Results

Countries DF for log(GDP) DF for log(CO2)
AUS 4.9129 2.0222
AUT 3.6022 0.7622
BEL 4.8375 -0.2559
CAN 3.8486 0.9752
DEN 5.0166 0.2707
FIN 3.1312 -0.0394
FRA 3.0434 -0.1289
HOL 4.1681 0.8059
IRE 3.2837 1.188
ITA 2.5805 -1.1359
JAP 1.671 -0.3775
NOR 4.3584 1.3698
SWI 3.1305 -0.5665
USA 4.6961 0.2954

Table 2: Means and standard errors of θ̂n and σ̂2
n with f(x, θ) = exp{−θ|x|}.

ρ = 0 ρ = 0.5 ρ = 1
n Mean Std. error Mean Std. error Mean Std. error

Scenario S1

θ̂n 200 0.10018 (0.00121) 0.10018 (0.00125) 0.10011 (0.00139)
500 0.10014 (0.00074) 0.10013 (0.00077) 0.10004 (0.00086)

σ̂2
n 200 8.95974 (0.88064) 8.96749 (0.89797) 8.98783 (0.89446)

500 8.98116 (0.57035) 8.98106 (0.56659) 8.99062 (0.57060)
Scenario S2

θ̂n 200 0.10014 (0.00131) 0.10024 (0.00136) 0.10014 (0.00146)
500 0.10009 (0.00081) 0.10017 (0.00083) 0.10012 (0.00092)

σ̂2
n 200 8.97149 (0.89930) 8.96567 (0.88766) 9.00270 (0.89405)

500 8.99296 (0.57106) 9.00135 (0.56876) 8.99701 (0.56470)
Scenario S3

θ̂n 200 0.10033 (0.00192) 0.10017 (0.00202) 0.10026 (0.00223)
500 0.10022 (0.00122) 0.10020 (0.00124) 0.10012 (0.00138)

σ̂2
n 200 9.08776 (0.91758) 9.11416 (0.92635) 9.12292 (0.92537)

500 9.13221 (0.58686) 9.12295 (0.59715) 9.14155 (0.59417)
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Table 3: Means and standard errors of θ̂n = (α̂n, β̂1n, β̂2n) and σ̂2
n with f(x, α, β1, β2) =

α + β1x+ β2x
2.

ρ = 0 ρ = 0.5 ρ = 1
n Mean Std. error Mean Std. error Mean Std. error

Scenario S1
α̂n 200 -19.99444 (0.52156) -19.99776 (0.52417) -20.00214 (0.53271)

500 -20.00171 (0.33352) -20.00164 (0.33260) -20.00333 (0.33106)

β̂1n 200 9.99995 (0.04303) 10.01348 (0.04427) 10.02649 (0.04441)
500 9.99961 (0.01713) 10.00537 (0.01741) 10.01056 (0.01790)

β̂2n 200 0.09999 (0.00137) 0.09999 (0.00133) 0.10000 (0.00115)
500 0.10000 (0.00034) 0.10001 (0.00034) 0.10000 (0.00029)

σ̂2
n 200 8.87340 (0.89132) 8.83901 (0.89370) 8.79399 (0.87995)

500 8.94769 (0.56790) 8.94198 (0.57076) 8.91645 (0.56403)
Scenario S2

α̂n 200 -19.99538 (0.54080) -19.99210 (0.54464) -20.00177 (0.53812)
500 -20.00287 (0.33868) -20.00412 (0.33885) -20.00142 (0.34983)

β̂1n 200 10.00054 (0.04456) 10.01464 (0.04606) 10.02658 (0.04718)
500 10.00025 (0.01747) 10.00548 (0.01829) 10.01142 (0.01838)

β̂2n 200 0.10001 (0.00145) 0.10000 (0.00136) 0.10000 (0.00118)
500 0.09999 (0.00037) 0.10000 (0.00034) 0.10000 (0.00029)

σ̂2
n 200 8.85807 (0.89311) 8.83928 (0.89470) 8.79743 (0.89541)

500 8.95826 (0.56801) 8.94974 (0.56812) 8.92162 (0.56690)
Scenario S3

α̂n 200 -19.99784 (0.62713) -20.00389 (0.60584) -19.99447 (0.62031)
500 -19.99644 (0.39496) -19.99572 (0.38897) -20.00707 (0.40941)

β̂1n 200 9.99962 (0.04949) 10.01477 (0.05129) 10.03178 (0.05180)
500 10.00011 (0.02033) 10.00647 (0.02073) 10.01282 (0.02142)

β̂2n 200 0.10002 (0.00165) 0.09998 (0.00156) 0.10000 (0.00131)
500 0.10000 (0.00040) 0.10000 (0.00039) 0.10000 (0.00033)

σ̂2
n 200 8.96801 (0.91677) 8.93070 (0.91952) 8.86505 (0.93340)

500 9.08728 (0.58567) 9.07935 (0.58298) 9.03815 (0.58235)
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Figure 6: Density estimate of θ̂n.
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Figure 7: Density estimate of α̂n.
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Figure 8: Density estimate of β̂1n.
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Figure 9: Density estimate of β̂2n.
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Figure 10: Density estimate of θ̂n t-ratios.
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Figure 11: Density estimate of α̂n t-ratios.
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Figure 12: Density estimate of β̂1n t-ratios.
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Figure 13: Density estimate of β̂2n t-ratios.
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Figure 14: Estimates and 95% Confidence Intervals of α̂n.

Table 4: Confidence Intervals (95% confidence) of α̂n.

Country α̂n Lower Upper
AUS -57.387 -58.005 -56.769
AUT -25.352 -26.414 -24.290
BEL -41.632 -43.144 -40.121
CAN -44.442 -45.615 -43.268
DEN -113.670 -115.375 -111.965
FIN -91.869 -94.019 -89.720
FRA -76.449 -78.162 -74.735
HOL -71.892 -73.439 -70.344
IRE -33.058 -34.265 -31.851
ITA -71.375 -72.604 -70.146
JAP -27.674 -29.293 -26.056
NOR -58.519 -60.442 -56.597
USA -45.950 -46.945 -44.954
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Table 5: Confidence Intervals (95% confidence) of β̂1n.

Country β̂1n Lower Upper
AUS 11.520 10.810 12.230
AUT 5.075 4.193 5.958
BEL 9.116 7.922 10.310
CAN 9.217 8.114 10.321
DEN 23.724 22.242 25.205
FIN 18.967 17.225 20.709
FRA 16.443 15.000 17.886
HOL 14.921 13.579 16.262
IRE 6.816 6.062 7.570
ITA 14.502 13.647 15.356
JAP 5.447 4.614 6.279
NOR 11.802 10.555 13.050
USA 9.536 8.449 10.623

Table 6: Confidence Intervals (95% confidence) of β̂2n.

Country β̂2n Lower Upper
AUS -0.562 -0.730 -0.394
AUT -0.246 -0.389 -0.102
BEL -0.485 -0.721 -0.248
CAN -0.462 -0.732 -0.192
DEN -1.226 -1.586 -0.865
FIN -0.967 -1.256 -0.678
FRA -0.875 -1.190 -0.559
HOL -0.762 -1.093 -0.432
IRE -0.341 -0.443 -0.238
ITA -0.729 -0.882 -0.576
JAP -0.258 -0.365 -0.151
NOR -0.586 -0.822 -0.351
USA -0.477 -0.768 -0.186
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