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INTRODUCTION

The quiver Hecke algebras, or KLR algebras, %, (") are a remarkable family of graded algebras which were
introduced independently by Khovanov and Lauda [67,68] and Rouquier [114], where n > 0 and I is an
oriented quiver of Kac-Moody type. The algebras %, (T") are Z-graded and they categorify the negative part
of the associated quantum group U,(gr) [115,125]. That is, there are natural isomorphisms

Uy(or)™ = @P[Rep(Z.(I)],
n>0

where [Rep(Z,(T))] is the Grothendieck group of the finitely generated graded %, (I')-modules. For each
dominant weight A the quiver algebra %, (T) has a cyclotomic quotient %22 (I") which categorifes the highest
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2 ANDREW MATHAS

weight module L(A) [62,115,127]. These results can be thought of as far reaching generalizations of Ariki’s
Categorification Theorem in type A [2].

The quiver Hecke algebras attached to the quivers of type A are distinguished because these are the only
quiver Hecke algebras which already existed in the literature — all of the other quiver Hecke algebras are “new”
algebras. In type A, when we are working over a field, the quiver Hecke algebras are isomorphic to affine Hecke
algebras of type A [115] and the cyclotomic quiver Hecke algebras are isomorphic to the cyclotomic Hecke
algebras of type A [19]. The cyclotomic Hecke algebras of type A have a uniform description but, historically,
they been studied either as Ariki-Koike algebras (v # 1), or as degenerate Ariki-Koike algebras (v = 1). These
algebras include as special cases the group algebras of the symmetric groups and the Iwahori—-Hecke algebras
of types A and B. The existence of gradings on Hecke algebras, as least in the “abelian defect case”, was
predicted Rouquier [113, Remark 3.11] and Turner [123].

The cyclotomic quiver Hecke algebras of type A are better understood than other types because we already
know a lot about the isomorphic, but ungraded, cyclotomic Hecke algebras [100]. For example, by piggybacking
on the existing theory, homogeneous bases have been constructed for the cyclotomic quiver Hecke algebras of
type A [49] but such bases are not yet known in other types. Many of the major results for general quiver
Hecke algebras were first proved in type A and then generalized to other types. In fact, the type A algebras,
through Ariki’s theorem and Chuang and Roouquier’s seminal work on sls-categorifications [26], has motivated
many of these developments.

This chapter brings together the “classical” ungraded representation theory and the emerging graded
representation theory of the cyclotomic Hecke algebras of type A so that people can see how the two theories
interact. With the advent of the KLR algebras these algebras can now be studied from the following different
perspectives:

a) As ungraded cyclotomic Hecke algebras.

b) As graded cyclotomic quiver Hecke algebras or KLR algebras.

¢) Geometrically as the ext-algebras of Lusztig sheaves [91,116,125].

d) Through the lens of 2-representation theory using Rouquier’s theory of 2-Kac Moody algebras [62,114,
127).

Here we focus on (a) and (b) taking an unashamedly combinatorial approach, although we will see shadows of
geometry and 2-representation theory. Kleshchev [73] has written a nice survey of the applications of quiver
Hecke algebras to symmetric groups which takes a takes a slightly different path to that given here.

The first section starts by giving a uniform description of the degenerate and non-degenerate cyclotomic
Hecke algebras. We quickly recall some important structural results from the representation theory of these
algebras. Everything that we mention in this section is applied later in the graded setting.

The second section introduces the cyclotomic KLR algebras as abstract algebras given by generators and
relations. We use the relations in a series of extended examples to try and give the reader a feel for these
algebras. In particular, using just the relations we show that the semisimple cyclotomic quiver Hecke algebras
of type A are always direct sums of matrix rings. From this we deduce Brundan and Kleshchev’s Graded
Isomorphism Theorem in the semisimple case.

The third section starts with Brundan and Kleshchev’s Graded Isomorphism Theorem [19]. We then develop
the representation theory of the cyclotomic quiver Hecke algebras as graded cellular algebras, focusing on the
graded Specht modules. The highlight of this section is a self-contained proof of Brundan and Kleshchev’s
Graded Categorification Theorem [20], starting from the graded branching rules for the graded Specht modules
and then using Ariki’s Categorification Theorem [2] to make the link with canonical bases. We also give a
new treatment of graded adjustment matrices using a cellular algebra approach.

In the final section we sketch one way of proving Brundan and Kleshchev’s Graded Isomorphism Theorem
using the classical theory of seminormal forms. As an application we describe how to construct a new graded
cellular basis for the cyclotomic quiver Hecke algebras which appears to have remarkable properties. We end
with a conjecture for the g-characters of the graded simple modules.

Although the experts will find some new results here most of the novelty is in our approach and our
arguments. We include many examples and a comprehensive survey of the literature. We apologize for any
sins and omissions that remain.

Acknowledgements. This chapter grew of a series of lectures that the author gave at the IMS at the
University of Singapore. I thank the organizers for the opportunity to give these lectures and for asking me to
write this chapter. The direction taken in notes, and the conjecture formulated in §4.4, is partly motivated by
the authors joint work with Jun Hu and I thank him for his implicit contributions. Finally, this chapter was
written while visiting Universitét Stuttgart and Charles University in Prague. I am grateful to them for their
hospitality.

Draft version as of October 5, 2013
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1. CycLoToMIC HECKE ALGEBRAS OF TYPE A

This sections surveys the representation theory of the cyclotomic Hecke algebras of type A and, at the
same time, introduces the results and the combinatorics that we need later.

1.1. Cyclotomic Hecke algebras and Ariki-Koike algebras. Hecke algebras of the complex reflections
groups Gy ,, = Z/lZ1S,, of type G(¢,1,n) were introduced by Ariki-Koike [8], motivated by the Iwahori-Hecke
algebras of Coxeter groups [53]. Soon afterwards, Broué and Malle [14] defined Hecke algebras for arbitrary
complex reflection groups. The following refinement of the definition of these algebras unifies the treatment of
the degenerate and non-degenerate algebras.

Let Z be a commutative domain with one.

1.1.1. Definition (Hu-Mathas [52, Definition 2.2]). Fiz integers n > 0 and £ > 1. The cyclotomic Hecke
algebra of type A, with Hecke parameter v € Z* and cyclotomic parameters Q1,...,Q¢ € Z, is
the unital associative Z-algebra H;, = #5,(Z,v,Q1,...,Qp) with generators Ly,..., Ly, Th,...,Th—1 and
relations

[lies (L1 - Q) =0, (T, +v™)(T; —v) =0,
L.L, =L,L,, T, Ts =TT, if [r—s| > 1,
TsTerlTs = Ts+1TsTs+1; T Ly = LtTTa th 7& r,r+1,

Lr+1:TrLrTr+Tra
where 1 <r<n,1<s<n—-1and1l<t<n.

By definition, /7, is generated by Ly, T4, ..., T,_1 but we prefer including Lo, ..., L, in the generating set.

Let &, be the symmetric group on n letters. For 1 <r < nlet s, = (r,r+1) be the corresponding simple
transposition. Then {s1,...,s,-1} is the standard set of Coxeter generators for &,,. A reduced expression
forw € 6, is a word w = S;,...5,, With £ minimal and 1 <r; <nfor 1 <j <k Ifw=s, ...5. is
reduced then set T\, = T}, ...T,,. Then T, is independent of the choice of reduced expression by Matsumoto’s
Monoid Lemma [103] since the braid relations hold in J%,; see, for example, [97, Theorem 1.8]. Arguing as
in [8, Theorem 3.3], it follows that 7, is free as a Z-module with basis

(1.1.2) {L?*...L¢"Ty | 0<ay,...,ap <fand w € &, }.

Consequently, 77, is free as a Z-module of rank ¢"n!, which is the order of the complex reflection group
Gon =Z/UZ2 S, of type G(£,1,n).

Definition 1.1.1 is different to Ariki and Koike’s [8] definition of the cyclotomic Hecke algebras of type
G(¢,1,n) because we have changed the commutation relation for 7, and L,. Ariki and Koike [8] defined their

algebra to be the unital associative algebra generated by Ty, Th,...,T,_1 subject to the relations
¢ _
Hl:l(TO 7Q2) =0, (TT+U 1)(TT*U) =0,
ToThTyT = ThIZTh To T T 1Ts = Ts 1T Ts 1,

T, T, =TT, if [r — s| > 1

We have renormalised the quadratic relation for the 7T}, for 1 < r < n, so that ¢ = v? in the notation of [8].
Ariki and Koike then defined L} = Tj and set L., = T, L.T, for 1 <r < n. In fact, if v — v~ is invertible
in Z then %, is (isomorphic to) the Ariki-Koike algebra with parameters Q) =1+ (v —v~1)Q; for 1 <[ < /.
To see this set L. =1+ (v —v™1)L, in 5%, for 1 <r <n. Then T, L.T, = (vafl)TL T, +T? =1L,
which implies our claim. Therefore, over a field, 4%, is an Ariki-Koike algebra whenever v2 # 1. On the other
hand, if v = 1 then /%, is a degenerate cyclotomic Hecke algebra [11,72]. In general, 7, is not isomorphic
to an Ariki-Koike algebra when v? = 1.

We note that the Ariki-Koike algebras with v? = 1 include as a special the group algebras ZGy,, of the
complex reflection groups Gy, for n > 0. One consequence of the last paragraph is that ZGy,, is not a
specialization of J#,. This said, if F' is a field such that .4, and FGy, are both split semisimple then
My, =2 FGy . On the other hand, the algebras 7], always fit into the spetses framework of Broué, Malle and
Michel’s [15].

The algebras 7, with v? = 1 are the degenerate cyclotomic Hecke algebras of type G(¢,1,n) whereas if
v? # 1 then 7, is an Ariki-Koike algebra in the sense of [8]. The definition of 7%, that we have given is more
natural because many features of the Hecke algebras .57;, have a uniform description in the degenerate and
non-degenerate cases:

e The centre of J%, is the set of symmetric polynomials in Ly, ..., L, (Brundan [17] in the degenerate
case when v? = 1 and announced when v? # 1 by Graham and Francis building on [39]).
e The blocks of 7%, are indexed by the same combinatorial data (Lyle and Mathas [89] when v? # 1 and
Brundan [17] when v? = 1).
Draft version as of October 5, 2013
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e The irreducible JZ;-modules are indexed by the crystal graph of the integral highest weight module
L(A) for U, (5A[e) (Ariki [2] when v? # 1 and Brundan and Kleshchev [21] when v? = 1).

e The algebras 7, categorify L(A). Moreover, in characteristic zero the projective indecomposable
J,-modules correspond to the canonical basis of L(A). (Ariki [2] when v? # 1 and Brundan and
Kleshchev [21] when v? = 1).

e The algebra .7, is isomorphic to a cyclotomic quiver Hecke algebras of type A (Brundan and
Kleshchev [19]).

In contrast, the Ariki-Koike algebras with v?2 = 1 do not share any of these properties: their center can be
larger than the set of symmetric polynomials in Ly, ..., L, (Ariki [2]); they have only one block (Lyle and
Mathas [89]); their irreducible modules are indexed by a different set (Mathas [96]); they do not categorify L(A)
and no non-trivial grading on these algebras is known. In this sense, the definition of the Ariki-Koike algebras
from [8] gives the wrong algebras when v? = 1. Definition 1.1.1 corrects for this.

We remark that many results for the cyclotomic Hecke algebras #* were proved separately in the
degenerate (v? = 1) and non-degenerate cases (v? # 1). Using Definition 1.1.1 it should now be possible to
give uniform proofs in all cases. In fact, all of arguments that we have checked can be extended to include the
v? =1 case. One of the aims of this article is to give a uniform proof of the Ariki-Brundan-Kleshchev Graded
Categorification Theorem [2,20,21] for the integral cyclotomic Hecke algebras 7.

1.2. Quivers of type A and integral parameters. Rather than work with arbitrary cyclotomic parameters
Q1,...,Qy, as in Definition 1.1.1, we now specialize to the integral case using the Morita equivalence results
of Dipper and the author [30] (when v? # 1) and Brundan and Kleshchev [18] (when v? = 1). First, however,
we need to introduce quivers and quantum integers.

Fix an integer e > 2 and let I, be the oriented quiver with vertex set I; = Z/(eZNZ) and edges i — i + 1,
fori e I.. If i,j € I, and i and j are not connected by an edge in ', then we write ¢ -/ j. When e is fixed
we write I' = T'. and I = I.. Hence, we are considering either the linear quiver Z (e = 00) or a cyclic quiver

(e < 00): ) \

e=2 e=3 e=14 e=5
In the literature the case e = oo is often written as e = 0, however, we prefer e = oo because then e = |I.|.
There are also several results which hold when e > n — using the “e = 0 convention” this condition must be
written as e > n or e = 0. Below, if e = co then the coset i + eZ € I should be read as i + (eZNZ) = {i} and
identified with ¢ € Z. We write e > 2 to mean e € {2,3,4,5,...} U {co}.
To the quiver I'. we attach the symmetric Cartan matrix (c;;); jer, where

2, ifi=j,
-1

—2, ifis

, ifi—jori«j,
Cij:

0, otherwise,

Let sl. be the corresponding Kac-Moody algebra [61] with fundamental weights { A; | ¢ € I }, positive weight
lattice P = P = Y7, NA; and positive root lattice QT = @,.; Na;. Let (-,-) be the bilinear form
determined by

(Oéi, Oéj) = Cij and (A“ Oéj) = 51’]‘7 for 1,7 €1.
More details can be found, for example, in [61, Chapter 1].

Fix a sequence k = (k1,...,#¢) € Z', the multicharge, and define A = A(k) = Az, + --- + Ag,, where
a=a+eZ €I fora€Z. Then A € PT is dominant weight of level £. The integral cyclotomic Hecke algebras
defined below depend only on A, however, the bases and much of the combinatorics that we introduce will
depend upon the choice of multicharge k.

Recall that Z is an integral domain. For ¢t € Z* and k € Z define the t-quantum integer [k]; by

M, = t+13 4 2R if k>0,
P R Y, iR <O,

When ¢ is understood we simply write [k] = [k];. Unpacking the definition, if £ # 1 then [k] = (t?* —1)/(t—t~!)
whereas [k] = £k if t = £1.
The quantum characteristic of v is the smallest non-negative integer e € {2,3,4,5,...} U {oo} such
that [e], = 0, where we set e = oo if [k], # 0 for all kK > 0.
Draft version as of October 5, 2013
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1.2.1. Definition. Suppose that A = A(k) € P*, for k € Z*, and that v € Z has quantum character-
istic e. The integral cyclotomic Hecke algebra of type A of weight A is the cyclotomic Hecke algebra
HN = A (Z,0,Q1,...,Q,) with Hecke parameter v and cyclotomic parameters Q, = [k,]y, for 1 <r < {.

If the reader finds the choice of cyclotomic parameters in Definition 1.2.1 surprising then, as discussed
in §1.1, observe that if v? # 1 then these parameters correspond to the Ariki-Koike parameters Q! = v?"*, for
1<r <Vt

As observed in [52, §2.2], translating the Morita equivalence theorems of [30, Theorem 1.1] and [18,
Theorem 5.19] into the current setting explains the significance of the integral cyclotomic Hecke algebras.

1.2.2. Theorem (Dipper-Mathas [30], Brundan-Kleshchev [18] ). Fuvery cyclotomic quiver Hecke algebra 7,
is Morita equivalent to a direct sum of tensor products of integral cyclotomic Hecke algebras.

Brundan and Kleshchev treated the degenerate case when v? = 1 using very different arguments than those
in [30]. With the benefit of Definition 1.1.1 the argument of [30] now applies uniformly to both the degenerate
and non-degenerate cases. The Morita equivalences in [18,30] are described explicitly, with the equivalence
being determined by orbits of the cyclotomic parameters. See [18,30] for more details.

In view of Theorem 1.2.2, it is enough to consider the integral cyclotomic Hecke algebras £ where v € Z*
has quantum characteristic e and A € P*. This said, in this section we continue to consider the general case
of a not necessarily integral cyclotomic Hecke algebra because we will need this generality in §4.2.

1.3. Cellular algebras. For convenience we recall Graham and Lehrer’s cellular algebra framework [45]. This
will allow us to define Specht modules for 77, as cell modules. Significantly, the cellular algebra machinery
endows the Specht modules with an associative bilinear form. Here is the definition.

1.3.1. Definition (Graham and Lehrer [45]). Suppose that A is a Z-algebra that is Z-free and of finite rank
as a Z-module. A cell datum for A is an ordered triple (P, T,C), where (P,1>) is the weight poset, T'(\)
is a finite set for A € P, and
C: [T T x T(A) — A (s,1) = ca,
AEP

s an injective map of sets such that:
(GCq) {cst | s,t€T(N) for A€ P} is a Z-basis of A.
(GCy) Ifs,t € T(N), for some A € P, and a € A then there exist scalars ry(a), which do not depend on s,

such that

Cot@ = Z r(a)cs, (mod AP,
veT'(X)

where AP is the Z-submodule of A spanned by {cap | p > X and a,b € T(pu) }.
(GC3) The Z-linear map *: A — A determined by (cst)* = s, for all X € P and all s,t € T(X), is an

anti-isomorphism of A.
A cellular algebra is an algebra which has a cell datum. If A is a cellular algebra with cell datum (P, T,C)
then the basis {cst | A € P and s,t € T(A} is a cellular basis of A with cellular algebra anti-isomorphism 8.

Kénig and Xi [80] have given a basis free definition of cellular algebras. Goodman and Graber [42] have
shown that (GCj3) can be relaxed to the requirement that there exists an anti-isomorphism  of A such that
(cst)* = cs (mod A) B2,

The prototypical example of a cellular algebra is a matrix algebra with its basis of matrix units, which we
call a Wedderburn basis. As any split semisimple algebra is isomorphic to a direct sum of matrix algebras it
follows that every split semisimple algebra is cellular. The cellular algebra framework is, however, most useful
in studying non-semisimple algebras which are not isomorphic to a direct sum of matrix rings. In general, a
cellular basis can be thought of as approximation, or weakening of, a basis of matrix units. (This is idea is
made more explicit in [101].)

The cellular basis axioms, like the basis of matrix units of a split semisimple algebra, determines a filtration
of the cellular algebra, via the ideals A>*. As we will see, this leads to a quick construction of its irreducible
representations.

For a cellular algebra A we let AZ* be the two-sided ideal of A spanned by {c.p | # > X and a,b € T(u1) }.

Fix A € P. The cell module C* is the (right) A-module with basis {¢; | t € T((\) } and where a € A acts
on C* by:

ca = Z rv(a)ey, for t € T'(N),
veT'(\)
where the scalars ry,(a) € Z are those appearing in (GCz). It follows immediately from Definition 1.3.1 that
C* is an A-module. Indeed, if s € T()\) then C* is isomorphic to the submodule (¢ + A™*)A of A/A via
Draft version as of October 5, 2013
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the map c¢; — cg + A*, for t € T(\). The cell module C? comes with a symmetric bilinear form ( , ), that is
uniquely determined by

(1.3.2) (€t &) ACab = CatCyp (mod AP?)

for a,b,t,v € T(\). By (GC3) of Definition 1.3.1, the inner product {ct, ¢,)» depends only on t and v, and not
on the choices of a and b. In addition, (za,y) = (x,ya*)y, for all z,y € C* and a € A. Therefore,

(1.3.3) radC* = {z € C* | (z,y)» =0 for all y € C*}

is an A-submodule of C*. Set D* = Q’\/radQA. Then D? is an A-module.

The following theorem summarizes some of the main properties of a cellular algebra. The proof is surprisingly
easy given the strength of the result. In applications the main difficulty is in showing that a given algebra is
cellular.

1.3.4. Theorem (Graham and Lehrer [45]). Suppose that Z = F is a field. Then:

a) Suppose that pu € P. Then D> is either zero or absolutely irreducible.
b) Let Po = {pu€P | D"#0}. Then {D" | p€ Py} is a complete set of pairwise non-isomorphic
irreducible A-modules.

¢) If X € P and p € Py then [C*:D"] # 0 only if X\ > . Moreover, [C*:D] = 1.

In part (c), [Q’\:Q“] is the decomposition multiplicity of the simple module D* in C*. If u € Py let
P* be the projective cover of D*. It follows from Definition 1.3.1 that P* has a filtration in which the
quotients are cell modules such that C* appears with multiplicity [C*:D"]. Consequently, an analogue of
Brauer-Humphrey’s reciprocity holds for A. In particular, the Cartan matrix of A is symmetric.

1.4. Multipartitions and tableaux. A partition of m is a weakly decreasing sequence A = (A, A\g,...)
of non-negative integers such that |[\| = A\ + A2 + --- = m. An (¢-)multipartition of n is an (-tuple
A= (\D . AO) of partitions such that AV | 4 -+ + || = n. We identify the multipartition A with its
diagram which is the set of nodes [A] = {(l,r,¢) | 1 <ec< A for1<1 < ¢}. In this way, we think of A
as an ordered /-tuple of arrays of boxes in the plane and we talk of the components, rows and columns
of A. For example, if A = (3,12]2,1/3,2) then

[ ] | |

A=[A] =

A node A is an addable node of A if A ¢ X and AU {A} is the (diagram of) a multipartition of n + 1.
Similarly, a node B is a removable node of A if B € XA and A\ {B} is a multipartition of n — 1. If A is
an addable node of A let A + A be the multipartition AU {A} and, similarly, if B is a removable node let
A — A=A\ {B}. Order the nodes lexicographically by <.

The set of multipartitions of n becomes a poset under dominance where A dominates p, written as A > pu,

if
-1 i -1 i
l l
LD IES SIS el
k=1 j=1 k=1 j=1

for1<!<flandi>1 If A> p and X # p then write X > p. Let P, = Py, be the set of multipartitions
of n. We consider P,, as a poset ordered by dominance.

Fix a multipartition XA. A A-tableau is a bijective map t: [A] —{1,2,...,n}, which we identify with a
labelling of (the diagram of) A by {1,2,...,n}. For example,

1[2]3] | [6]7]] [9]to[11] 9N23] | [6]8] | [1][3]5]
4] 8] 12[13 and 10| 7] 2[4
5] L]

are both A-tableaux when A = (3,122,1]3,2).

A A-tableau is standard if its entries increase along rows and down columns in each component. For
example, the two tableaux above are standard. Let Std(\) be the set of standard A-tableaux. If P is any set
of multipartitions let Std(P) = Uycp Std(A). Similarly set Std*(P) = {(s,t) | s,t € Std(X) for A€ P}.

If t is a A-tableau set Shape(t) = A and let t,, be the subtableau of t which contains the numbers
{1,2,...,m}. If t is a standard A-tableau then Shape(t;,,) is a multipartition for all m > 0. We extend the
dominance ordering to Std(P,,), the set of all standard tableaux, by defining s &> t if Shape(s;,,) &> Shape(tym),
for 1 <m < n. As before, write s > t if s > t and s # t. Finally, define the strong dominance ordering on
Std?*(P,) by (s,t) » (u,v) if s> u and t > v. Similarly, (s,t) » (u,v) if (s,t) » (u,v) and (s,t) # (u,v)
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GRADED CYCLOTOMIC HECKE ALGEBRAS OF TYPE A 7

It is easy to see that there are unique standard A-tableaux t* and ty such that t* > t > ty, for all
t € Std(A). The tableau t* has the numbers 1,2, ...,n entered in order from left to right along the rows of
t)‘(l), and then t)‘(2>, e ,t’\(e). Similarly, ty is the tableau with the numbers 1,...,n entered in order down
the columns of t)‘([), ... ,tA(Z),tA(l). If XA =(3,12|2,1]3,2) then the two A-tableaux displayed above are t* and
tx, respectively.

Given a standard A-tableau t define permutations d(t),d'(t) € &, by t*d(t) = t = txd’(t). Then
d(t)d' (t)~! = d(tx) with £(d(t)) + £(d'(t)) = £(d(tx)), for all t € Std(A). Let < be the Bruhat order on &,
with the convention that 1 < w for all w € &,,. Independently, Ehresmann and James [54] showed that if
s,t € Std(A) then s I> t if and only if d(s) < d(t) and if and only if d’'(t) < d'(s). A proof can be found, for
example, in [97, Theorem 3.8].

Finally, we will need to know how to conjugate multipartitions and tableaux. The conjugate of a partition A
is the partition A = (A}, \),...) where X, = #{s>1 | A > r}. That is, we swap the rows and columns of \.
The conjugate of a multipartition A = (AM| ... A9} is the multipartition X = (A®)’|...|A(1)’). Similarly,
the conjugate of a A-tableau t = (t(]...[t()) is the X'-tableau t' = (t©] ... [t1)’) where t(*) is the tableau
obtained by swapping the rows and columns of t**), for 1 < k < £. Then X > p if and only if g/ > X" and
that s > t if and only if t’' > ¢'.

1.5. The Murphy basis of /. Graham and Lehrer [45] showed that the cyclotomic Hecke algebras (when
v? # 1) are cellular algebras. In this section we recall another cellular basis for these algebras which was
constructed in [29] when v? # 1 and in [11] when v? = 1. When £ = 1 these result are due to Murphy [106].
First observe that Definition 1.1.1 implies that there is a unique anti-isomorphism * on .77, which fixes
each of the generators 11,...,T,—1, L1,..., L, of 54,. It is easy to see that T; = T,,-1, for w € &,
Fix a multipartition A € P,. Following [29, Definition 3.14] and [11, §6], if s,t € Std(\) define mg =
Tasy-1maTyw), where mx = uxza,

|>\(1)|+"'+\>\“>\

1
Ux= H H /7([/7" — [ki+1]) and xx = E Uf(w)Tw’
r=1 Ql+1

1<i<t weG

where Q] =1+ (v —v71)Q; as in §1.1. The renormalization of ux by 1/Q;,, is not strictly necessary. When
Q7,1 = 0 this factor can be omitted from the definition of uy, at the expense of some aesthetics in some of
the formulas which follow. In the integral case, which i what we care most about, this problem does not arise
because Q] = g™ # 0 since Q; = [k, for 1 <1 < L.

Using the relations in " it is not hard to show that uy and xx commute. Consequently, mZ, = mys, for
all (s,t) € Std*(P,,).

1.5.1. Theorem ( [29, Theorem 3.26] and [11, Theorem 6.3]). The cyclotomic Hecke algebra F£~ is free as a
Z-module with cellular basis { mg | s,t € Std(A) for A € P, } with respect to the poset (Py, ).

Consequently, sZ2 is a cellular algebra so all of theory in §1.3 applies. In particular, for each A € P, there
exists a Specht module S» with basis { m, | t € Std(\) }. Concretely, we could take my = mea, + H>>, for
t € Std(A).

Let D* = §*/rad S* be the quotient of S* by the radical of its bilinear form. Set KA = {u € P, | D* #0}.
Then by Theorem 1.3.4 we obtain:

1.5.2. Corollary ( [29,45]). Suppose that Z = F is a field. Then {D* | p € K2} is a complete set of
pairwise non-isomorphic irreducible S -modules.

The set of multipartitions K2 has been determined by Ariki [3]. We describe and recover his classification
of the irreducible .#*-modules in Corollary 3.5.12 below. When ¢ > 3 the only known descriptions of K2 are
recursive. See [9,27] for the cases when £ < 2.

1.6. Semisimple cyclotomic Hecke algebras of type A. We now explicitly describe the semisimple
representation theory of #” using the seminormal coefficient systems introduced in [52]. As we are ultimately
interested in the cyclotomic quiver Hecke algebras, which are intrinsically non-semisimple algebras, it is a little
surprising that we are interested in these results. we will see, however, that the semisimple representation
theory of s and the KLR grading are closely intertwined.

The Gelfand-Zetlin subalgebra of 7%, is the subalgebra %, = %,(Z2) = (L1, Lo, ..., Ly,). We believe
that understanding this subalgebra is crucial to understanding the representation theory of J7,. To explain
how %, acts on (%”,LA define two content functions for t € Std(P,) and 1 <r <n by

(1.6.1) E)=0*DQ +c—byecZ and )=k +c—beZ,
where t(l,b,¢) = r. In the special case of the integral parameters, where Q; = [k;], for 1 < < £, the reader

can check that ¢Z(t) = [cZ(t)],, for 1 <7 < n.

T
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8 ANDREW MATHAS

The next result is well-known and extremely useful.

1.6.2. Lemma (James-Mathas [57, Proposition 3.7]). Suppose that 1 < r < n and that s,t € Std(A), for
A€ P,. Then
me Ly = cZ (t)me + Z ayme, (mod F>),

vt
veStd(X)

for some a, € Z.

Proof. Let (I,b,c) = t™1(r). Using our notation, [57, Proposition 3.7] says that mg L. = Qv mg
plus linear combination of more dominant terms, where @) =1+ (v —v™1)Q;. As L, = 1+ (v —v~ 1)L,
this easily implies the result when v? # 1. The case when v?> = 1 now follows by specialization — or,
see [11, Lemma 6.6]. O

In the integral case this implies that mgL, = [¢Z(t)]ms + >, avmse (mod £>>) . This agrees with [52,
Lemma 2.9].

The Hecke algebra 7%, is content separated if whenever s,t € Std(P,) are standard tableaux, not
necessarily of the same shape, then s = t if and only if ¢Z(s) = ¢Z(t), for 1 < r < n. The following is an
immediate corollary of Lemma 1.6.2 using the theory of JM-elements developed in [101, Theorem 3.7].

1.6.3. Corollary ( [52, Proposition 3.4]). Suppose that Z = F is a field and that %, is content separated.
Then, as an (£, £n)-bimodule,
%n = @ Hsta

(s,t)€Std?(Pn)
where Hy = {h € 4, | Lyh = cZ(s)h and hL, = c¢Z(t)h, for 1 <r <n}.

For the rest of §1.6 we assume that /7, is content separated. Corollary 1.6.3 motivates the following
definition.

1.6.4. Definition (Hu-Mathas [52, Definition 3.7]). Suppose that Z = K is a field. Then a *-seminormal
basis of A, is any basis of the form { fo | 0 # fo € Hy and fX = fi, for (s,t) € Std*(P,) }.
There is a vast literature on seminormal bases. This story started with Young’s seminormal forms for
the symmetric groups [130] and has now been extended to Hecke algebras and many other diagram algebras
including the Brauer, BMW and partition algebras; see, for example, [98,108, 111].
Suppose that { f} is a *-seminormal basis and that (s, t), (u,v) € Std*(P,,). Let €,, = {cZ(s) | s € Std(P,,) for 1 <r <n}
be the set of all possible contents for tableaux in Std(P,,). Following Murphy [101,105], for a standard tableau

s € Std(P,,) define
2 L,.—c
F, = _
=1L o=
r=1 c€Cn
c#cZ(s)

By Definition 1.6.4, if (s, t), (u,v) € Std*(P,) then fg = deu0u, Fy ftFy. In particular, Fy is a non-zero element
of J#,. Tt follows that Fy is a scalar multiple of fi which in turn implies that { F5 | s € Std(P,,) } is a set of
pairwise orthogonal idempotents in 5. (In fact, in [101] these properties are used to establish Corollary 1.6.3.)
Consequently, there exists a non-zero scalar 75 € F' such that F; = ,Yi fss. Therefore, if (s,t), (u,v) € Std*(P,,)
then

(165) fstfuv - fstFthfuv - 5tv’ytfsva
The next definition will allow us to classify all seminormal bases and to describe how #* acts on them.

1.6.6. Definition (Hu-Mathas [52, §3]). A x-seminormal coefficient system is a collection of scalars
a={a(t) | teStd(P,) and 1 <r <n}

such that a,(t) =0 if v =t(r,r + 1) is not standard, if v € Std(P,,) then

(1—v7 e (t) + ve? (v) (L +vef (1) — vt eZ (v))

(c7(t) = cF (V) (cF(v) — 7 (1)) ’

and if 1 <r < n then a,(t)a,41(ts; ) (ts,8r41) = Qg1 (t) . (t8r41) g1 (ESr415r).

a,(V)a,(t) =

As the reader might guess, the two conditions on the scalars «..(t) in Definition 1.6.6 correspond to the
quadratic relations (T} —v)(T}. +v~!) = 0 and the braid relations T} T, 41T, = Tr41T, Ty 41 in 4, respectively.
The simplest example of a seminormal coefficient system is
(1= v 12,0 + veZ (1)

Z z ’
(cPri(t) = cZ(v)
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whenever 1 < r < n and t,t(r,r + 1) € Std(P,). Another seminormal coefficient system is given in (1.7.1)
below.

Seminormal coefficient systems arise because they describe the action of .7, on a seminormal basis. More
precisely, we have the following:

1.6.7. Theorem (Hu-Mathas [52]). Suppose that Z = K is a field and that 7, is content separated and that
{ fst | (s,t) € Std*(Pn) } is a seminormal basis of #;,. Then {f«} is a cellular basis of 7, and there exists a
unique seminormal coefficient system o such that

1+ (v—v")e (1)
fsed :047’(t)fsv+ Cr
i i (t) = 2 (1)
where v = t(r,r + 1). Moreover, if s € Std(\) then Fy = ifss 18 a primitive idempotent and SX > [, is
irreducible for all X\ € Pp,.

fst7

Sketch of proof. By definition, {fit} is a basis of ., such that fi = fi for all (s,t) € Std*(P,,). Therefore, it
follows from (1.6.5) that {fs} is a cellular basis of .7, with cellular automorphism .

It is an amusing application of the relations in Definition 1.1.1 to show that there exists a seminormal
coefficient system which describes the action of 7, on the seminormal basis; [52, Lemma 3.13] for details. The
uniqueness of « is clear.

We have already observed that Fg = i, for s € Std(), so it remains to show that Fy is primitive and that
S* = F.,. By what we have already shown, F..%, is contained in the span of { fs | t € Std(A) }. On the
other hand, if f =", refo € Fsi, and 1, # 0 then r, f, = fF, € Fo2,. 1t follows that Foi7), = >, K fs, as
a vector space. Consequently, F3. 77, is irreducible and F, is a primitive idempotent in J%,. Finally, S* & F,. 7,
by Lemma 1.6.2 since %7, is content separated. O

1.6.8. Corollary ( [52, Corollary 3.7]). Suppose that «c is a seminormal coefficient system and that s >t =
s(r,r+ 1), for tableauz s,t € Std(P,) and 1 <r <n. Then a,(s)n = oy (t)7s-

Consequently, if the seminormal coefficient system « is known then fixing v, for some t € Std(A), determines
s for all s € Std(A). Conversely, these scalars, together with a, determines the seminormal basis.

1.6.9. Corollary (Classification of seminormal bases [52, Theorem 3.14]). There is a one-to-one correspondence
between the x-seminormal bases of A, and the pairs (o, ) where o = {a,(s) | 1 <7 <n ands € Std(P,) }
is a seminormal coefficient system and v = {7y | X € Py, }.

Finally, the seminormal basis machinery in this section can be used to classify the semisimple cyclotomic
Hecke algebras /7, thus reproving Ariki’s semisimplicity criterion [1], when v? # 1 and [11, Theorem 6.11],
when v? = 1.

1.6.10. Theorem (Ariki [1] and [11, Theorem 6.11]). Suppose that F is a field. The following are equivalent:

a) I, = Hp(Fyv,Q1,...,Qy) is semisimple.
b) s, is content separated.

) Wol2o--inle [T T[] *Qe+ 1 —Qs) #0.

1<r<s<t —n<d<n

We want to rephrase the semisimplicity criterion of Theorem 1.6.10 for the integral cyclotomic Hecke
algebras JZ2, for A € P*. For each i € I define the i-string of length n+1 to be Qp = i+ o1+ +Qign.
Then «; ,, € QF.

1.6.11. Corollary. Suppose that A € PT and that Z = F is a field. Then H> is semisimple if and only
if (Ao ) <1, foralliel.

Proof. As Q, = [k,], for 1 <r </, the statement of Theorem 1.6.10(c) simplifies because v2¢Q,. + [d], — Qs =
v72%s[d + K, — Ks)y. Therefore, " is semisimple if and only if

[1][2]u .. - [n]o H H [d+ K£r — Ks]y # 0.
1<r<s<t —n<d<n
On the other hand, (A, a;,,) <1 for all ¢ € I if and only if (A, ;) <1, for all ¢ € I, and whenever (A, ;) # 0
then (A, ajx) # 0, for 1 < k < n. The result follows. O

In particular, note that el > n if (A, o;,,) <1, forall ¢ € I.
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1.7. Gram determinants and the cyclotomic Jantzen sum formula. For future use, we now recall
the closed formula for the Gram determinants of the Specht modules S* and the connection between these
formulas and Jantzen filtrations. Throughout this section we assume that .7, is content separated over the
field K = Z.
A
For A € P, let G* = ((ms,ms>)s7tesm()‘)

arbitrary ordering of the rows and columns of G*.
For (s,t) € Std*(P,) set fi = FemgF;. Then by Lemma 1.6.2 and (1.6.5),

fst = mst + § TuvMuv,

(u,v)B>(s,t)

be the Gram matrix of the Specht module S*, where we fix an

for some 1, € K. By construction, {fs} is a seminormal basis of J%,. By [52, Proposition 3.18] this basis
corresponds to the seminormal coefficient system given by
1, ift>t(r,r+1),
(171) Olr(t) = (1—vflcr(t)+vcr(v)) (1+UCT(t)—v710T(v))
(er®=er@) (erv)—er ()
for t € Std(P,,) and 1 < r < n such that ts, is standard. The vy-coefficients {v} for this basis are explicitly
known by [57, Corollary 3.29]. Moreover,

(1.7.2) detG*= [ =
teStd(A)

, otherwise,

By explicitly computing the scalars 7, and using an intricate inductive argument based on the semisimple
branching rules for the Specht modules, James and the author proved the following:

1.7.3. Theorem (James-Mathas [57, Corollary 3.38]). Suppose that 7, is content separated. Then there exist
explicitly known scalars ga, and signs ex, = 1 such that
im S*
det Q)\ _ gif;‘” dim S
HEP,
pn>A

The scalars gz, are described combinatorially as the quotient of at most two hook lengths which are
determined by A and u. The sign €y, is the parity of the sum of the leg lengths of these hooks.

Theorem 1.7.3 is a very pretty closed formula for the Gram determinant G which generalizes a classical result
of James and Murphy [59]. One problem with this formula is that det G is a polynomial in v,v™, Q1,..., Qs
whereas Theorem 1.7.3 computes this determinant as a rational function in v, @1, ..., Q¢. On the other hand,
as we now recall, Theorem 1.7.3 has an impressive module theoretic application in terms of the Jantzen sum
formula.

Fix a modular system (K, Z, F'), where Z discrete valuation ring with maximal ideal p and such that Z
contains v,v~ 1, Q1,...,Qu, Let K be the field of fractions of Z and let F = Z/p be the residue field of Z.
Let 2, #K =~ #Z 2z K and A = #7 @z F be the corresponding Hecke algebras. Therefore, 1
has Hecke parameter v + p and cyclotomic parameters Q; + p, for 1 <[ < /.

Let A € P, and let S% and S» = S% ®z F be the corresponding Specht modules for /2 and JZF,
respectively. Define a filtration { J,(S3) | k> 0} of S% by Jx(S2) = {z € S3 | (z,y)x € p¥}, for k > 0.
The Jantzen filtration of S* is the filtration S* = Jo(Sp) 2 J1(Sp) 2 --- D J.(S}) = 0, where
Ju(SF) = (Je(S%) +pSZ) /pS% for k> 0.

Let Rep(.74,) be the category of finitely generated .7#,-modules and let [Rep(44,)] be its Grothendieck
group. Let [M] be the image of the ,-module M in [Rep(.7#,)]. Let v, be the p-adic valuation map on Z*.

1.7.4. Theorem (James-Mathas [57, Theorem 4.6]). Suppose that (K, Z, F) is a modular system and that
X € P,,. Then, in [Rep(S£5)],
STEN] = 3 exurp (9 1S4

k>0 n>A

Intuitively, the proof of Theorem 1.7.4 amounts to taking the p-adic valuation of the formula in Theorem 1.7.3.
In fact, this is exactly how Theorem 1.7.4 is proved except that you need the corresponding formulas for the
Gram determinants of the weight spaces of the Weyl modules of the cyclotomic Schur algebras of [29]. This is
enough because the dimensions of the weight spaces of a module uniquely determine the image of the module
in the Grothendieck group. The proof given in [57] is stated only for the non-degenerate case v? # 1, however,
the arguments apply equally well for the degenerate case when v? = 1.
The main point that we want to emphasize in this section is that the rational formula for det Q? in
Theorem 1.7.3 corresponds to writing the lefthand side of the Jantzen sum formula sum as a Z-linear
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combination of Specht modules. Therefore, when the righthand side of the sum formula is written as a linear
combination of simple modules some of the terms must cancel. We give a cancellation free sum formula in
84.1.

Theorem 1.7.4 is a useful inductive tool because it gives an upper bound on the decomposition numbers
of S*. Let Jan = Eaplp(9ap), for A, € P, and set dfu = [Q? : D¥]. Using Theorem 1.7.4 to compute the

multiplicity of D¥ in @, ., Ji(S™) yields the following.

1.7.5. Corollary. Suppose that A\, € P,,. Then 0 < dfu < Z jAVdEN
All;euﬁu
A second application, Theorem 1.7.4 classifies the irreducible Specht modules S*, for A € KA.

1.7.6. Corollary (James-Mathas [57, Theorem 4.7]). Suppose that X € K2. Then the Specht module S™ is
irreducible if and only if ja, = 0 for all p > A.

1.8. The blocks of J7,. The most important application of the Jantzen Sum Formula (Theorem 1.7.4) is to
the classification of the blocks of /% The algebra 7, and in fact any algebra over a field, can be written as
a direct sum of indecomposable two- s1ded ideals: J#F = By @ --- ® By. The subalgebras By, ..., B, which
are the blocks of J7;,, are uniquely determined up to permutatlon. Any #F-module M splits into a direct
sum of block components M = M B; & --- & M By, where we allow some of the summands to be zero. The
module M belongs to the block B, if M = M B,.. It is a standard fact that two simple modules D> and D*
belong to the same block if and only if they are in the same linkage class. That is, there exists a sequence
of multipartitions v = A, vy,...,v, = p such that [S¥" : D¥"+*] £ 0 or [S¥"+* : D¥"] £0, for 0 <r < z.
We want an explicit combinatorial description of the blocks of . Define two equivalence relations
~c and ~; on P, as follows. First, X\ ~¢ p if there is an equality of multisets {c5(r) | 1<r<n} =
{cZ.(r) | 1 <7 <n}. The second relation, Jantzen equivalence, is more involved: A ~; u if there exists a
sequence Vg = \,V1,...,V, = u of multipartitions in P, such that j, ., ., #0or j,, ., #0,for 0 <r < z.

1.8.1. Theorem (Lyle-Mathas [89], Brundan [17]). Suppose that X, u € P,,. Then the following are equivalent:

a) Q)‘ and D" are in the same FF -block.
b) S* and S* are in the same ji”F block.
)

Parts (a) and (b) are equivalent by the general theory of cellular algebras [45] whereas the equivalence of
parts (b) and (c) is a general property of Jantzen filtrations from [89]. (In fact, part (c) is general property of
the standard modules of a quasi-hereditary algebra.) In practice, part (d) is the most useful because it easy
to compute.

The hard part in proving Theorem 1.8.1 is in showing that parts (c) and (d) are equivalent. The argument
is purely combinatorial with work of Fayers [34, 35] playing an important role.

In the integral case, when JF = J* for some A € P* there is a nice reformulation of Theorem 1.8.1.
The residue sequence of a standard tableau t is it = (i%,... i) € I"™ where it = cZ(t) + eZ. If t € Std(X),

for A € P, define
n n
S g =Y e € Q"
r=1 r=1

It is easy to see that B* depends only on A, and not on the choice of t. By definition, * € Q*. Moreover,
X ~¢ p if and only if > = p*. Hence, we have the following:

1.8.2. Corollary. Suppose that A € Pt and X\, pu € P,. Then S™ and S* are in the same HN -block if and
only if B> = M.

2. CYCLOTOMIC QUIVER HECKE ALGEBRAS OF TYPE A

This section introduces the quiver Hecke algebras, and their cyclotomic quotients. We use the relations
to reveal some of the properties of these algebras. The main aim of this section is to give the reader an
appreciation of, and some familiarity with, the KLR relations without appealing to any general theory.

1. Graded algebras. In this section we quickly review the theory of graded (cellular) algebras. For more
details the reader is referred to [13,49,107]. Throughout, Z is a commutative integral domain. Unless
otherwise stated, all modules and algebras will be free and of finite rank as Z-modules.

In this chapter a graded module will always mean a Z-graded module. That is, a Z-module M which
has a decomposition M = @ ., Mq as a Z-module. A positively graded module is a graded module
M =@, Mg such that My =0 if d < 0.
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A graded algebra is a unital associative Z-algebra A = @, , A4 that is a graded Z-module such that
AgAe C Agae, for all d,e € Z. Tt follows that 1 € Ag and that Ay is a graded subalgebra of A. A graded
(right) A-module is a graded Z-module M such that M is an A-module and MzA, C My, for all d,e € Z,
where M and A are the ungraded modules obtained by forgetting the Z-grading on M and A respectively.
Graded submodules, graded left A-modules and so on are all defined in the obvious way.

Suppose that M is a graded A-module. If m € My, for d € Z, then m is homogeneous of degree d
and we set degm = d. Every element d € M can be written uniquely as a linear combination m =3, mq
of its homogeneous components, where degmy = d. Importantly, if M is a graded A-module and
m=>),,mq € M then myg € M, for all d € Z.

A homomorphism of graded A-modules M and N is an A-module homomorphism f:M — N such
that deg f(m) = degm, for all m € M. That is, f is a degree preserving A-module homomorphism. Let
Homy (M, N) be the space of (degree preserving) homogeneous maps and set

Homa(M,N) = €D Homa(M(d), N) == € Homa (M, N(—d)).
deZ deZ
The reader may check that Hom 4 (M, N) = Homa (M, N) as Z-modules.

Let Rep(A) be the category of finitely generated graded A-modules together with degree preserving
homomorphisms. Similarly, Proj(A) is the category of finitely generated projective A-modules with degree
preserving maps.

If M is a graded Z-module and s € Z let M(s) be the graded Z-module obtained by shifting the grading
on M up by s; that is, M(s)q = My_s, for d € Z. Then M = M {(s) as A-modules if and only if s = 0. In
contrast, M = M(s) as A-modules, for all s € Z.

Suppose that ¢ be an indeterminate and that M is a graded module. The graded dimension of M is
the Laurent polynomial dimq M = Y, (dim My)q? € N[g,q7']. If M is a graded A-module and D is an
irreducible graded A-module then the graded decomposition number is the Laurent polynomial

[M: D]y =Y [M:D(s)]¢° € N[g,q"].

By definition, the (ungraded) decomposition multiplicity [M : D] is given by evaluating [M : D], at ¢ =1,
Suppose that A is a graded algebra and that m is an (ungraded) A-module. A graded lift of m is a graded
A-module M such that M = m as A-modules. If M is a graded lift of m then so it M(s), for any s € Z, so
graded lifts are not unique in general. If m is indecomposable then its graded lift, if it exists, is unique up to
grading shift [13, Lemma 2.5.3].
Following [49], the theory of cellular algebras from §1.3 extends to the graded setting in a natural way.

2.1.1. Definition ( [49, §2]). Suppose that A is Z-graded Z-algebra that is free of finite rank over Z. A
graded cell datum for A is a cell datum (P,T,C) together with a degree function

deg : H T\ —Z
AEP
such that
(GCyq) the element cg is homogeneous of degree degcg = deg(s) + deg(t), for all A € P and s,t € T()).
In this case, A is a graded cellular algebra with graded cellular basis {cq}.

We use x for the homogeneous cellular algebra involution of A which is determined by cf = ¢, for
s, t € T(N).
2.1.2. Example (Toy example) The most basic example of a graded algebra is the truncated polynomial
ring A = Flx]/(z" 1), for some integer n > 0, where degx = 2. As an ungraded algebra, A has exactly one
simple module, namely the field F' with x acting as multiplication by zero. This algebra is a graded cellular
algebra with P = {0, 1,...,n}, with its natural order, and T(d) = {d} and cqq = x%. The irreducible graded
A-modules are F(d), for d € Z, and dimq A =1+ q¢> + - + ¢*". O

2.1.3. Example Let A = Mat,(Z) be the Z-algebra of n x n-matrices. The basis of matrix units
{est | 1 <s,t <n}isa cellular basis for A, where P = {O} and T(V) = {1,2,...,n}. We want to put a
non-trivial grading on A. Let {d;,...,d,} C Z be a set of integers such that ds + d,,_s4+1 =0, for 1 < s < n.
Set cst = eg(n—t+1) and define a degree function deg : T'(V) — Z by degs = ds. Then {cy | 1 <5, <n}
is a graded cellular basis of A. We have dimq A = Y7 _, q%. In particular, semisimple algebras can have
non-trivial gradings. O

Exactly as in §1.3, for each A € P we obtain a graded cell module C* with homogeneous basis { ¢; | t € T(\) }
and degc; = degt. Generalizing (1.3.2), the graded cell module C* comes equipped with a homogeneous
symmetric bilinear form ( , ), of degree zero. Therefore, if 2,y € C* then (z,y)x # 0 only if degx +
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degy = 0. Moreover, (za,y)y = (x,ya*)y, for all z,y € C* and all @ € A. Consequently, rad C* =
{z€C*| (z,y)» =0 forall y € C*} is a graded submodule of C* so that D* = C*/rad C* is a graded
A-module. Let Py ={peP | D*#0}.

2.1.4. Theorem (Hu-Mathas [49, Theorem 2.10]). Suppose that Z is a field and that A is a graded cellular
algebra. Then:

a) If D) #0, for A\ € P, then D is an absolutely irreducible graded A-module and (D*)® = DX,

b) {D*(s) | N€ Py and s € Z} is a complete set of pairwise non-isomorphic irreducible (graded) A-
modules.

¢) If \ € P and p € Py then [C*:D*), # 0 only if A > p. Moreover, [CH:DH], = 1.

Forgetting the grading, the basis {cg} is still a cellular basis of A. Comparing Theorem 1.3.4 and
Theorem 2.1.4 it follows that every (ungraded) irreducible A-module has a graded lift that is unique up to
shift. Conversely, if D is an irreducible graded A-module then D is an irreducible A-module (this holds more
generally for any finite dimensional graded algebra; see [107, Theorem 4.4.4]). It is an instructive exercise to
prove that if A is a finite dimensional graded algebra then every simple A-module has a graded lift and, up to
shift, every graded simple A-module is of this form.

By [44, Theorems 3.2 and 3.3] every projective indecomposable #*-module has a graded lift. More
generally, as shown in [107, §4], if M is a finitely generated graded A-module then the Jacobson radical of M
has a graded lift.

The matrix D 4(q) = ([C* : D*];)xep uep, is the graded decomposition matrix of A. For each u € Py
let P* be the projective cover of D* in Rep(A). The matrix Ca(q) = ([P* : D*],)xuep, is the graded
Cartan matrix of A.

An A-module M has a cell filtration if it has a filtration M = My D M; D --- D M, D 0 such
that all of the subquotients M, /M, , are isomorphic to graded cell module, up to shift. Fixing iso-
morphisms M, /M, 1 = C*(d,), for some \, € P and d, € Z, define (M : C*), = > maqq®, where
ma=#{1<r<z |\ =\andd, =d}. In general, the multiplicities (M : C*), depend upon the choice
of filtration and the labelling of the isomorphisms M, /M, = C**(d,) because the cell modules are not
guaranteed to be pairwise non-isomorphic, even up to shift.

2.1.5. Corollary ( [49, Theorem 2.17]). Suppose that Z = F is a field. If u € Py then P* has a cell filtration
such that (P* : C*), = [C* : D¥],, for all X\ € P. Consequently, Ca(q) = Da(q)""Da(q) is a symmetric
matriz.

2.2. Cyclotomic quiver Hecke algebras. We are now ready to define cyclotomic quiver Hecke algebras.
We start by defining the affine versions of these algebras and then pass to the cyclotomic quotients. Through
this section we will make extensive use of the Lie theoretic data that is attached to the quiver I'; in §1.2.

2.2.1. Definition (Khovanov and Lauda [67,68] and Rouquier [114]). Suppose that e > 2 and n > 0.
The quiver Hecke algebra, or Khovanov-Lauda—Rouquier algebra, of type I, is the unital associative
Z-algebra By, = Xn(Z) with generators {1, ..., vn—1} U{y1, ...,y U{e(i) | i € I"} and relations

e(i)e(j) = de(i), Yiemed) =1,

yre(i) = e(i)yra %6(1) = e(sr'i)wra YrlYs = YsYr,
wrws = ’(/}s'(/)ra Zf |T - 3| > 1,
wrys :yswra if57é7ﬂa7ﬁ+1a
(222) ’@[er'rJrle(i) = (yr¢r + 6irir+1)e(i)ﬂ yr+1¢’r‘e(i) = (derr + 6irir+1)e(i)v
(yr—i-l - yr)(yr - yr+1)e(i)7 if i 2 ipg1,
(yr - yr+1)e(i)7 Zf ir — ir+17
(223) 1/)26(1) = (errl - yr)e(i)’ Zf Uy Z'7’Jr17
0, Zf iy = 7:r—i-l)
e(i), otherwise,
(Yr + Yr+2 — 2yry1)e(i), if ipgr2 =ip Z lrya,
. —e(i ) Zf iy =iy = iy ’
(2.2.4) sty — Yrartrtprar)e() = 4 dortr T
6(1)7 Zf lr42 = Up < Uy,
0, otherwise,

fori,j € I and all admissible v and s. Moreover, #2 is naturally Z-graded with degree function determined
by
dege(i) =0, degy, = 2 and degse(i) = —ci ..y,
for1<r<n,1<s<mnandiel™.
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Khovanov and Lauda [67,68] and Rouquier [114] define quiver Hecke algebras for quivers of arbitrary type.
In the short time since their inception a lot has been discovered about these algebras. The first important
result is that these algebras categorify the negative part of the corresponding quantum group [20,67,115,125].

2.2.5. Remark. We have defined only a special case of the quiver Hecke algebras defined in [67,114]. In addition
to allowing arbitrary quivers, Khovanov and Lauda allow a more general choice of signs. Rouquier’s definition,
which is the most general, defines the quiver Hecke algebras in terms of a matrix Q = (Q;;)i,jer with entries
in a polynomial ring Z[u,v] with the properties that Q;; = 0, Q;; is not a zero divisor in Z[u, v] for ¢ # j and
Qij(u,v) = Qji(v,u), for 4,5 € I. For an arbitrary quiver I', Rouquier [114, Definition 3.2.1] defines %, (I") to
be the algebra generated by .., ys, e(i) subject to the relations above except that the quadratic and braid
relations are replaced with

wge(i) = Qir7i7‘+1 (yT7 yT+1)€(i)a
Qiryipyy YrYr+1)—Qiryipyy (Yr Yrs1)

(%%Hiﬂr - 1/Jr+1¢r1/}r+1)€(i) = { Yr+2=yr ’ it ir+2 B Z‘T,

0, otherwise.

The assumptions on Q) ensure that the last expression is a polynomial in the generators. In general, y,e(i) is
homogeneous of degree («;,, ;. ), for 1 <r <n and i € I". Under some mild assumptions, Z%,, is independent
of the choice of @ by [114, Proposition 3.12]. We leave it to the reader to find a suitable matrix @ for
Definition 2.2.1.

ForeQtlet I ={icl"|B=a; + - +a; } Then I" = Ls I7 is the decomposition of I” into a
disjoint union of &,-orbits. Define

(2.2.6) Hp = Fneg, where eg = Z e(i).
HI L

Then Zp = egZnep is a two-sided ideal of #,, and %Z,, = GaﬁeQJr Hp is the decomposition of Z,, into blocks.
That is, Zp is indecomposable for all € Q7.

For the rest of these notes for w € &,, fix a reduced expression w = s, ... s, , with 1 <r; < n. Using this
fixed reduced expression for w define v, = ¥y, ... %Yy, .

2.2.7. Example As the 1-generators of %, do not satisfy the braid relations the element 1), will, in general,
depend upon the choice of reduced expression for w € &,,. For example, by (2.24) if e # 2, n = 3 and
W = $18281 = $25152 then Yr11¢a1h1€(0,2,0) = Yah1102€(0,2,0) + €(0,2,0), by (2.2.4). Therefore, the two
different reduced expressions for w lead to different elements v, € Z,,. O

The (fixed) choice of reduced expression for each w € W is completely arbitrary. Even though v, is not
uniquely determined by w, these elements form part of a basis of %,.

2.2.8. Theorem (Khovanov-Lauda [67, Theorem 2.5], Rouquier [114, Theorem 3.7]). Suppose that 8 € Q.
Then %p(Z) is free as an Z-algebra with homogeneous basis

{oy® ...y2me(i) | w €S, ai,...,an ENandic I°}.

We note that Li [85, Theorem 4.3.10] has given a graded cellular basis of %,, and, in the special case when
e = 00, that Kleshchev, Loubert and Miemietz [74] have given a graded affine cellular basis of %, in the
sense of Koenig and Xi [79].

In these notes we are not directly concerned with the quiver Hecke algebras %,,. Rather, we are more
interested in cyclotomic quotients of these algebras.

2.2.9. Definition (Brundan-Kleshchev [19]). Suppose that A € Pt. The cyclotomic quiver Hecke algebra
of type T and weight A is the quotient algebra %) = %,J(yil\’a”)e(i) |iel™).

We abuse notation and identify the KLR generators of Z%,, with their images in #Z2. That is, we consider
Ry, to be generated by ¥n,...,%¥n_1,Y1,...,yn and e(i), for i € I, subject to the relations in Definition 2.2.1
and Definition 2.2.9.

When A is a weight of level 2, the algebras %fl‘ first appeared in the work of Brundan and Stroppel [24] in
their series of papers on the Khovanov diagram algebras. In full generality, the cyclotomic quotients of %,
were introduced by Khovanov-Lauda [67] and Rouquier [114]. Brundan and Kleshchev were the first to
systematically study the cyclotomic quiver Hecke algebras %2, for any A € P+.

Although we will not need this here we note that, rather than working algebraically, it is often easier to
work diagrammatically by identifying the elements of Z2 with certain planar diagrams. In these diagrams,
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the end-points of the strings are labeled by {1,2,...,n,1’,2’,...,n'} and the strings themselves are coloured
by I"™. For example, following [67], the KLR generators can be identified with the diagrams:

i] i in i1 tr—liptrtd in 1 s—1s s n

6(1) = ¢r€(i) = yse(i) =

Multiplication of diagrams is given by concatenation, read from top to bottom, subject to the relations above
which are also interpreted diagrammatically. As an exercise, we leave it to the reader to identify the two
relations in Definition 2.2.1 which correspond to the following ‘local’ relations on strings inside braid diagrams:

ikl ikl ikl

XX 0K

(For the second relation, e # 2.) For more rigorous definitions of such diagrams, and non-trivial examples of
their application, we refer the reader to the works [48,75,85,90] which, among others, use variations of these
diagrams extensively.

2.2.10. Example (Rank one algebras) Suppose that n =1 and A € PT. Then

Z = (y1,e(i) | yrei) = e(i)yr and y{™*e(i) = 0, for i € I),
with degy; = 2 and dege(i) = 0, for ¢ € I. Therefore, there is an isomorphism of graded algebras

= P 2y 2,
el
(A,Oéi)>0

where y = g is in degree 2. Armed with this description of Z2 it is now straightforward to show that
AN = N when Z is a field and n = 1. O

2.3. Nilpotence and small representations. In this section and the next we use the KLR relations to
prove some results about the cyclotomic quiver Hecke algebras ,@{l‘ for particular A and n.

By Theorem 2.2.8 the algebra %, is infinite dimensional, so it is not obvious from the relations that the
cyclotomic Hecke algebra %2 is finite dimensional — or even that %2 is non-zero. The following result shows
that y, is nilpotent, for 1 < r < n, which implies that %’fl‘ is finite dimensional.

2. 3 1. Lemma (Brundan and Kleshchev [19, Lemma 2.1)). Suppose that 1 < r < n and i € I". Then
yNe(i) =0 for N > 0.

Proof. We argue by induction on r. If r = 1 then y( 0ia) e(i) = 0 by Definition 2.2.9, proving the base step
of the induction. Now consider y,1e(i). By induction, we may assume that there exists N > 0 such that
yNe(j) =0, for all j € I™. There are three cases to consider.

Case 1. ipy1 /iy

By (2.2.3) and (2.2.2), yN_je(i) = yN v2e(i) = pyNpre(i) = ¥rylNe(s, - )¢, = 0, where the last equality
follows by induction.

Case 2. 4,41 =1, £ 1.
Suppose first that e # 2. This is a variation on the previous case, with a twist. By (2.2.3) and (2.2.2), again

y2e(i) =y yee(d) + 23T (Yrsr — yo)e(d)

e
2N -1 2N—1 .
_yTyr—i-l 6(1) r+1 z@(l)
yry?«fl 16(1) + lﬂryw 16( : )wr
N
=yrypar () = =y yrye(i) = 0.

The case when e = 2 is similar. First, observe that y2, je(i) = (2y,yr+1 — y2 — ¥2)e(i) by (2.2.3). Therefore,
arguing as before, y2ye(i) = yr (2yr1 — v )y i1 2e(®) = -+ = yN Qyrar — v) Ny eli) = 0.

Case 3. @41 = 1p.

Let ¢ = ¥ (yr — Yrt1). Then ¢,1hre(i) = —21pe(i) by (2.2.2), so that (1 + ¢,.)%e(i) = e(i). Moreover,

(1 + ¢T)yr(1 + d)?")e(i) = (yr + Oryr +Yr o + ¢ryr¢r) () = yr+1€(.)
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where the last equality is a small calculation using (2.2.2). Now we are done because

uae(®) = (L on)yr(1+60) " ed) = (1+ 0y (1+ 6,)ei) =0,
since ¢, commutes with e(i) and yNe(i) = 0 by induction. O

We have marginally improved on Brundan and Kleshchev’s original proof of Lemma 2.3.1 because, with a
little more care, the argument gives an explicit bound for the nilpotency index of y,. In general, this bound
is far from sharp. For a better estimate of the nilpotency index of y, see [52, Corollary 4.6] (and [48] when
e = 00). See [62, Lemma 4.4] for another argument which applies to cyclotomic quiver Hecke algebras of
arbitrary type.

Combining Theorem 2.2.8 and Lemma 2.3.1 shows that %2 is a finite dimensional.

2.3.2. Corollary (Brundan and Kleshchev [19, Corollary 2.2]). Suppose Z is a field. Then %> is finite
dimensional.

As our next exercise we classify the one dimensional representations of Z2 when Z = F is a field. For
icTletit=(,i+1,...,i+n—1)andi, = (i,i —1,...,4 —n+1). Then if € I". If (A, ;) = 0 then
e(i?) = 0 by Definition 2.2.9. However, if (A, a;) # 0 then using the relations it is easy to see that %, has
unique one dimensional representations Dj’ n = Fd;fn and D;,, = F'd; , such that

die(i) =G dy, and df y, =0=d; v,
foriel™ 1 <r<mnand]l<s<nand such that deg d;fn = 0. In particular, this shows that e(i") # 0. If
e # 2 then { DX (i) | i € I and (A, ;) # 0} are pairwise non-isomorphic irreducible representations of Z2.
If e = 2 then i} =i, so that D, = D/ .

2.3.3. Proposition. Suppose that Z = F is a field and that D is a one dimensional graded % -module. Then
D= Dfn<k>, for some k € Z and i € I such that (A, a;) # 0.

Proof. Let d be a non-zero element of D so that D = F'd. Then d =} ;. de(j) so that de(i) # 0 for some
i € I". Moreover, de(j) = 0 if and only if j = i since otherwise de(i) and de(j) are linearly independent
elements of D, contradicting assumption that D is one dimensional. Now, degdy, = 2 + degd, so dy, = 0,
for 1 <r < mn, since D is one dimensional. Similarly, d¢), = de(i)y, = 0 if 4, = 441 oOr i = 4,41 = 1 since in
these cases dege(i)y,. # 0.

It remains to show that i = i} and that (A,a;,) # 0. First, since 0 # d = de(i) we have that
e(i) # 0 so that (A,a;,) # 0 by Definition 2.2.9. To complete the proof we show that if i # i} then
d = 0, which is a contradiction. First, suppose that i, = 4,41 for some r, with 1 < r < n. Then
d = de(i) = d(¥ryr+1 — yrthr) = 0 by (2.2.2), which is not possible so i, # i,41. Next, suppose that
iry1 # i £ 1. Then d = de(i) = dyp2e(i) = dip,e(s, - 1)1, = 0 because D is one dimensional and de(j) = 0 if
j # 1. This is another contradiction, so we must have ¢,; = ¢, =1 for 1 <r < n. Therefore, if i # i’} then
e#2,n>2and i, =442 =441 = 1 for some r. Applying the braid relation (2.2.4),

d= de(1> = ide(l) (¢Twr+1wr - wr+1wr¢r+1) = 07
a contradiction. Setting k& = deg d it follows that D = Dii’n (k), completing the proof. O

2.4. Semisimple KLR algebras. Now that we understand the one dimensional representations of %2 we
consider the semisimple representation theory of the cyclotomic quiver Hecke algebras. These results do not
appear in the literature, but there will be no surprises for the experts because everything here can be easily
deduced from results which are known. The main idea is to show by example how to use the quiver Hecke
algebra relations.

Recall from Corollary 1.6.11 that #* is semisimple if and only if (A, o) <1, for all i € I. In this section
we use this criterion to study Z2.

Recall from §1.8 that it = (if,...,d)) is the residue sequence of t € Std(P,,), where it = cZ(t) + eZ. In §1.4
we defined addable and removable nodes. If ¢ € I then a node A = (I,r,¢) is an i-node if i = k; + ¢ — r + eZ.

2.4.1. Lemma. Suppose that (A, ;) <1, for all i € I, where A € Pt has height {. Then e > nl. Moreover,
if s,t € Std(P,,) then s =t if and only if i* = i*.

Proof. By definition, if A = A(k) € PT then (A,az,) > 1, for 1 <[ < {. Therefore, if (A, a;,) < 1, for all
1€ 1, then k) # ky £d, for 0 <d<nand1<I[<1!l </{ This forces e > nt.

For the second statement, observe that if i € I and pu € P,,, where 0 < m < n, then p has at most one
addable i-node since (A, o) < 1. Hence, it follows easily by induction on n that if s,t € Std(P,,) then s =1t
if and only if i = i*. O
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We could have proved Lemma 2.4.1 by appealing toTheorem 1.6.10 and Corollary 1.6.11. We caution
the reader that if t is a standard tableau then the contents cZ(t) € Z and the residues it € I are in general
different.

Let I} = {i* | t € Std(Py,) } be the set of residue sequences of all of the standard tableaux in Std(P,,). As
a consequence of the proof of Lemma 2.4.1, if i = i* € I} and 4,41 = i, £ 1 then » and r + 1 must be in either
in the same row or in the same column of t. Hence, we have the following useful fact.

2.4.2. Corollary. Let A € Pt with (A, ;) <1, for all i € I. Suppose that i € Iy and that iy+1 = i, + 1.
Then s, -i¢ Iy.

When A = Ag the next result is due to Brundan and Kleshchev [19, §5.5]. More generally, Kleshchev and
Ram [77, Theorem 3.4] prove a similar result for quiver Hecke algebras of simply laced type.

2.4.3. Proposition (Seminormal representations of Z2). Suppose that Z = F is a field, A € Pt and that
(A, ) <1, for alli € I. Then for each X € P, there is a unique irreducible graded %) -module S* with
homogeneous basis { ¢ | t € Std(A) } such that degyyy = 0, for all t € Std(X), and where the %} -action is
given by

¢t€(i) = 5i,it'¢t7 Yy =0 and wtwr = Ut(r,r4+1)s

where we set vy 1) = 0 if t(r,r + 1) is not standard.

Proof. By Lemma 2.4.1, if s,t € Std(X) then s =t if and only if i* = i*. Moreover, i}, = i}. = 1 if and only if
r and 7 4 1 are in the same row or in the same column of t. Similarly, ;. # 4., for any r. Consequently,
since ¥y = ¢re(it) almost all of the relations in Definition 2.2.1 are trivially satisfied. In fact, all that we need
to check is that 91, ..., _1 satisfy the braid relations of the symmetric group &,, with 1?2 acting as zero
when 4}, ; = i}. & 1, which follows automatically by Corollary 2.4.2. By the same reasoning if t(r,r + 1) is
standard then dege(it)y, = 0. Hence, we can set degy = 0, for all t € Std(\). This proves that S* is a
graded Z}-module.

It remains to show that S> is irreducible. If s,t € Std(\) then s = t*d(s) = td(t)~'d(s), so s =
Yetay-1%4(s). Suppose that x = Y7, 7¢); is a non-zero element of SA. If 7 # 0 then ¢ = %txe(it), so it

follows that 15 € 2 %2, for any s € Std(\). Therefore, S* = 2% so that S is irreducible as claimed. 0
Consequently, e(i) # 0 in %’fl\, forallie IT[L‘. This was not clear until now.

We want to show that Proposition 2.4.3 describes all of the graded irreducible representations of %,‘}, up to
degree shift. To do this we need a better understanding of the set Iy. Okounkov and Vershik [110, Theorem 6.7]

explicitly described the set of all content sequences (c%(t),...,c%(t)) when £ = 1. This combinatorial result
easily extends to higher levels and so suggests a description of I}.
IfieI"and 1 <m <mnlet i, = (i1,...,%y). Theni, € I and Iy’ = {i,, | i€ I} }.

2.4.4. Lemma (cf. Ogievetsky-d’Andecy [109, Proposition 5]). Suppose that (A, a; ) <1, fori € I, and that
iel". Thenie€ I} if and only if it satisfies the following three conditions:

a) (A, ayy) #0.

b) If1<r<nand (A, o;.) =0 then {i, — 1,4 + 1} N {é1,...,0r—1} # 0.

c) If1<s<r<nandi, =is then {i, — 1,4, + 1} C {isq1,...,0r—1}-

Proof. Suppose that t € Std(P,) and let i = i*. We prove by induction on r that i, € I}. By definition,
i1 = K¢ + eZ for some t with 1 < ¢ < ¢, so (a) holds. By induction we may assume that the subsequence
(41,...,4r—1) satisfies properties (a)—(c). If (A, a;.) = 0 then r does not sit in the first row and first column
of any component of t, so t has an entry in the row directly above r or in the column immediately to the
left of » — or both! Hence, there exists an integer s with 1 < s < r such that if = 4. + 1. Hence, (b) holds.
Finally, suppose that i, = is as in (¢). As the residues of the nodes in different components of t are disjoint
it follows that s and r are in same component of t and on the same diagonal. In particular, r is not in the
first row or in the first column of its component in t. As t is standard, the entries in t which are immediately
above or to the left of r are both larger than s and smaller than r. Hence, (c¢) holds.

Conversely, suppose that i € I" satisfies properties (a)—(c). We show by induction on m that i,, € I},
for 1 <m <mn. If m =1 then i; € I} by property (a). Now suppose that 1 < m < n and that i,, € I{*. By
induction i, = i°, for some s € Std(P,,). Let v = Shape(s). If i € I then (A, a; ) < 1, so the multipartition v
can have at most one addable i-node. On the other hand, reversing the argument of the last paragraph, using
properties (b) and (c¢) with 7 = m + 1, shows that v has at least one addable i,,,1-node. Let A be the unique
addable i,,1-node of v. Then i1 = i* where t € Std(P,,+1) is the unique standard tableau such that
t;m =s and t(A) = m + 1. Hence, i € I}"™ as required. O

By Proposition 2.4.3, if i € I} then e(i) # 0. We use Lemma 2.4.4 to show that e(i) =0if i ¢ I}. First, a
result that holds for all A € PT.
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2.4.5. Lemma. Suppose that A € PT, i€ I" and e(i) # 0. Then (A, a;,) # 0. Moreover, if (A, ;) =0, for
1<r<n, then {i, — 1,i, + 1} N {i1, ... 3p_1} # 0.

Proof. By Definition 2.2.9, e(i) = 0 whenever (A, a;,) = 0. To prove the second claim suppose that (A, ;) =0
and 4, +1 ¢ {i1,...,i-—1}. By induction on r, we may assume that i, # i; for 1 < s < r. Applying (2.2.3)
r-times,

e(i) = v2 1e(i) = r_1€(ity v yipyip1yipits ey in)p_1
==t g 1€(ipy i1y i1y gty -y i) by = 0,
where the last equality follows because (A, «;, ) = 0. O
2.4.6. Proposition. Suppose that 1 < m <n and that (A, 0;m) <1, forallieI. Theny; = -+ =y, =0

and if i € I" then e(i) # 0 only if i, € I}

Proof. We argue by induction on 7 to show that y, = 0 and e(i) = 0if i, ¢ I}, for 1 <7 <m. If r =1 this is

immediate because yiA’a”)e(i) = 0 by Definition 2.2.9 and (A, «;,) < 1 by assumption. Suppose then that

l<r<m.

We first show that e(i) = 0 if i, ¢ I}. By induction, Lemma 2.4.4 and Lemma 2.4.5, it is enough to show
that e(i) = 0 whenever there exists s < r such that i =4, and {i, — 1,4, + 1} C {i541,...,%r—1}. We may
assume that s is maximal such that i, = 4, and 1 < s < r. There are several cases to consider.

Case1l. r=s+1.

By (2.2.2), e(i) = (ys+1¥s — ¥sys)e(i) = yst1se(i), since ys = 0 by induction. Using this identity twice,
reveals that e(i) = ys190se(i) = ysy1e(i)vhs = y2, 1 ¥se(i)ths = y2, 1 ¥2e(i) = 0, where the last equality comes
from (2.2.3). Therefore, e(i) = 0 as we wanted to show.

Case 2. s<r—1and {ir —1,ir + 1} N {isy1,...,0r_1} = 0.

By the maximality of s, i, ¢ {is41,...,%-—1}. Therefore, arguing as in the proof of Lemma 2.4.5, there exists
a permutation w € &,. such that e(i) = ¥ye(i1,. .-, s, 0r, bst1y .-y bp1,Grt1,---,in)w. Hence, e(i) = 0 by
Case 1.

Case 3. s<r—1and {ir — 1,6, + 1} N {isy1,...,ir—1} = {j}, where j =i, £1.
Let ¢ be an index such that i, = j =4, £ 1 and s <t < r. Note that if there exists an integer ¢’ such that
iy =iy and s < t <t <r then we may assume that is € {i441,...,7—1} by Lemma 2.4.4(c) and induction.
Therefore, since s was chosen to be maximal, ¢ is the unique integer such that i; = j and s < t < r. Hence,
arguing as in Case 2, there exists a permutation w € &,. such that

B(i) = djwe(il, ey is—la is+17 e ,it_l,is,it, ir,it+1, e 77;7,_1, ir+1, ey Zn)ﬂ}w
For convenience, we identify e(i1, ..., %s,%, i, ..., 4,) with e(i, j,7), where ¢ = i; = i, and j =i = 1. Then we
are reduced to showing that e(i,,4) = 0. Since we have a sequence of length 3 we may assume that e > 3 by
Lemma 2.4.1. By (2.2.4),

e(i,j, 1) = £ (Y1barr — abrabe)e(i, 4, 1)
= :I:wlee(jv ia 7’)1/)1 + wale(i7 l)j)wQ
= £12 (Y32 — Yayz2)e(d, i,9) 1 F a1 (yothr — ryr)e(i, i, j)a,

where for the last equality we have used (2.2.2) twice. Translating back to our previous notation, y; and ys
correspond to y;_1 and yq, respectively. By induction, if ¢t < r — 1 then y; = yo = y3 = 0, so the displayed
equation becomes e(i) = 0. If ¢ = r — 1 then we only know that y; = y2 = 0, so e(4, j, i) = £ 102y312(], 4,9) 1.
Hence, by (2.2.2),
e(ivjv Z) = iwle(waZ + 1)6(], iv Z)wl = iwlz/&e(ja iv 1)1/11 = iwlz/}flple(ivj, Z)
Applying the last equation twice, and then using (2.2.3),
e(i, j, i) = £prihatpre(i, j, i) = Pripopivaihre(i, j, i)
= P1p2(y2 — y1)varpre(i, j, i) = 0,

where last equation follows because y; = yo2 = 0 by induction. Consequently, e(i) = 0 as we wanted.

Combining Cases 1-3 shows that e(i) # 0 whenever {i, — 1,4, + 1} C {i541,...,%—1}. Hence, i, € I} as
required.

To complete the proof of the inductive step (and of the proposition), it remains to show that ¢, = 0. Using
what we have just proved, it is enough to show that y,e(i) = 0 whenever i, € I. If i,_; = i, = 1 then, by
induction and (2.2.3),

yred) = (yr — yr—1)e() = £y e(i) = by _re(s,—1 - D1 = 0,
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where the last equality follows because (s, - 1), ¢ I} by Corollary 2.4.2. If i,_q # i, £ 1 then i,_1 -+ i,
by Lemma 2.4.4 since i, € I;. Therefore, y.e(i) = y,v2_ e(i) = r_1yr—1¢r—1€(i) = 0 since y,—1 = 0 by
induction. This completes the proof. O

Before giving our main application of Proposition 2.4.6 we consider what this result means for the cyclotomic
quiver Hecke algebra of the symmetric group.
2.4.7. Example (Symmetric groups) Suppose that A = Ag and that 1 < e <n. Then (A, a; 1) <1 for all
i € I. Therefore, Proposition 2.4.6 shows that y, = 0 for 1 <7 < e — 1 and that e(i) # 0 only if i,_; € I5 "
In addition, we also have ¢y = 0 because if i € I" then ¢1e(i) = e(s1 - 1)11 = 0 because if i,_1 € I} ! then
(s1-1)e1 & 15"
Translating the proof of Proposition 2.4.6 back to Lemma 2.4.1, the reason why vy = 0 is that if i =i is
the residue sequence of some standard tableau t € Std(P,,) then 41 = 0 and i3 # 0, so s1 - 1 can never be a
residue sequence. By the same reasoning, 1, is not necessarily zero if A has level ¢ > 1. O

We now completely describe the KLR algebras %/ When A € Pt and (A,a;,) < 1, for i € I. For
(s,t) € Std*(P,,) define eq = Yas)-re(i )Q/Jd(t), where * = it

2.4.8. Theorem. Suppose that A € P+ and (A, ;) <1, for alli € I. Then %% is a graded cellular algebra
with graded cellular basis { eq | (s,t) € Std*(P,) } with deges = 0 for all (s,t) € Std*(P,,).

Proof. By Proposition 2.4.6, y. = 0 for 1 <7 < n and e(i) = 0 if i ¢ I2}. In particular, this implies that
Ui, ...,¥n_1 satisfy the braid relations for the symmetric group &,, because, by Lemma 2.4.4, if i € I} then
(i,i+1,4) is not a subsequence of i, for any 7 € I. Therefore, %2 is spanned by the elements 1, e(i)1),,, where
v,w € &, and i € I}. Moreover, if j € I" then e(j)i,e(i)1h, = 0 unless j = v -i € I}. Therefore, Z2 is
spanned by the elements { eg | (s,t) € Std*(P,)} as required by the statement of the theorem. Hence, %2
has rank at most ¢"n! by Theorem 1.6.7.

Let K be the algebraic closure of the field of fractions of Z. Then Z2(K) = #2(2) ®z K. By the last
paragraph, the dimension of 22 is at most £"n!. Let rad Z2(K) be the Jacobson radical of Z2(K). For each
X € P, Proposition 2.4.3 constructs an irreducible graded Specht module S*. By Lemma 2.4.1, if X\, u € P,
and d € Z then S* = S#(d) if and only if A = g and d = 0. Therefore, by the Wedderburn theorem,

0'n! > dim Z5 (K)/rad 2y (K) > ) (dim S*)? = > |Std(A)]* = £"nl.
AEP, AEP,

Hence, we have equality throughout so that {es | (s,t) € Std*(P,) } is a basis of Z2(K). As the elements
{est} span Z2(Z), and their images in Z2(K) are linearly independent, it follows that {es} is also a basis of

It remains to prove that {es} is a graded cellular basis of Z/. The orthogonality of the KLR idempotents
implies that esey = druesy. Therefore, {eg} is a basis of matrix units for %{1\ Consequently, %’,‘} is a direct
sum of matrix rings, for any integral domain Z, and {es} is a cellular basis of %Z2.

Finally, we need to show that eg is homogeneous of degree zero. This will follow if we show that
degre(i) =0, for 1 <r < n andie€ I}. In fact, this is already clear because if i € Iy then i, # i,41, by
Lemma 2.4.4, and if 4,41 = i, £ 1 then ¢,e(i) = 0 by Corollary 2.4.2 and Proposition 2.4.6. O

By definition, esey, = dwesy. Let Maty(Z) be the ring of d x d matrices over Z. Hence, the proof of
Theorem 2.4.8 also yields the following.

2.4.9. Corollary. Suppose that Z is an integral domain and that (A, «; ) <1, for alli € I. Then
M2)= P Mat,, (2
AEP,
where sy = # Std(A) for A € P,,.

Another consequence of Theorem 2.4.8 is that the KLR relations simplify dramatically in the semisimple
case.

2.4.10. Corollary. Suppose that Z is an integral domain and that A € P with (A, a;,) <1, for alli € I.
Then %2 is the unital associative Z-graded algebra generated by 1, ... ,%,_1 and e(i), foric I}, subject to
the relations

Zlé[”e( ) 1 6(i)€(j) = 5ije(i)7
%%HW = ¢r+1¢rwr+lv 1/)74/15 = wswra Zf |T - $| > 1a
r° i T ) .r .’I” =+ ]-a
Pre(i) = § 8 D¥rs Firga 2
0, if iy =1, £ 1,
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fori,j € I"™ and all admissible r and s. Moreover, #% is concentrated in degree zero.
As a final application, we prove Brundan and Kleshchev’s graded isomorphism theorem in this special case.
2.4.11. Corollary. Suppose that Z = K is a field and that (A, ;) < 1, for alli € I. Then Z2 = .

Proof. By Corollary 2.4.10 and Theorem 1.6.7, there is a well-defined homomorphism ©:%} — J#*
determined by
1 1

) (7 + pQ(s))FS’

for s € Std(P,,) and 1 <r < n. By definition, © is injective so it is an isomorphism by Theorem 2.4.8. O

e(i®) — Fy and Yre(i®) —

We emphasize that it is essential to work over a field in Corollary 2.4.11 because Corollary 2.4.9 says that
Z is always a direct sum of matrix rings whereas if n > 1 this is only true of s when it is defined over a
field.

These results suggest that %2 should be considered as the “idempotent completion” of the algebra A
obtained by adjoining idempotents e(i), for i € I"™. We will see how to make sense of the idempotents
e(i) € A for any i € I" in Theorem 3.1.1 and Lemma 4.2.2 below.

2.5. The nil-Hecke algebra. Still working just with the relations we now consider the shadow of the
nil-Hecke algebra in the cyclotomic KLR setting. For the affine KLR algebras the nil-Hecke algebras case has
been well-studied [67,114]. For the cyclotomic quotients (in type A) the story is similar.

For this section fix ¢ € I and set 8 = na; and A = nA;. Following (2.2.6), set 52’[13\ = e(i)#2e(i), where
i=i% = (). Then %’;} is a direct summand of Z2 and, moreover, it is a non-unital subalgebra with identity
element e(i). As %//3\ contains only one idempotent, ¥, = ¢.e(i) and ys = yse(i). Therefore, %’g is the unital
associative graded algebra generated by v, and ys, for 1 <r <mn and 1 < s < n, with relations

yi =0,  Y2=0,  YYs = Ysyr,
UrYrr1 = Yrthr + 1, Yr1¥r = Yryr + 1,
Vrtps = Psiby if [r —s] > 1, Yrys = ystbr if s Fr,r+1,
UrYri1Vr = Yrp10r ey

The grading on %’g is determined by deg 1, = —2 and degys; = 2. Some readers will recognize this presentation
as defining as a cyclotomic quotient of the nil-Hecke algebra of type A [81]. Note that the argument from
Case 3 of Lemma 2.3.1 shows that yf =0for1<r<V.

Let A = (1]1]...]1) € Ps. Then the map t — d(t) defines a bijection between the set of standard
A-tableaux and the symmetric group &,,. For convenience, we identify the standard A-tableaux with the
set of (non-standard) tableaux of partition shape (n) by concatenating their components. In other words, if
d = d(t) then t = [dy|do] - {d,,] , where d = d; .. .d, is the permutation written in one-line notation.

If v,s € Std(A) then write st>v if s > v and ¢(d(v)) = £(d(s)) + 1. To make this more explicit write ¢ <, m
if ¢ is in an earlier component of v than m — that is, ¢ is to the left of m in v. Then the reader can check that
st v if and only if there exist integers 1 < m < t < n such that s = v(m,t), m <, ¢t and if m <1 < t then
either [ <, m or t <, .

2.5.1. Example Suppose that n =6. Let v= E and take ¢ = 3. Then
{BI6[s[al1]2], [4]6[3[8] 12} [4[c[s[2[1[3], [4[6[5[T]3]2] }

is the set of A-tableaux {s | s=v(3,r)p>vfor 1 <r <n}. O

We can now state the main result of the section.

2.5.2. Proposition. Suppose that 5 = na; and A = nA;, fori € I. Then there is a unique graded %’é\—module
S* with homogeneous basis {1 | s € Std(A) } such that deg s = () — 2¢(d(s)) and

Vs(rrr1), if s> s(r,r+ 1) € Std(A),
¢s¢r = .
0, otherwise,
wvyt = § wu - § %7
1<k<t t<s<n
u=v(k,t)>u u=v(k,t)>v

fors,v € Std(A), 1 <r <n and 1 <t <n. Moreover, if Z is a field then S is irreducible.
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Proof. The uniqueness is clear. To show that S* is an %’é‘—module we check that the action respects the
relations of %é\ By definition, if v € Std(A) then 1), = ¥atqq and P2 = 0 since Yyh,. = 0 if v(r,7 +1) > v.
In particular, this implies that the action of ¢y ..., 1,_1 on S respects the braid relations of &,, and that ),
has the specified degree. Further, note that if ut>v then ¢(d(v)) = ¢(d(u)) + 1 so that deg, = deg), + 2.

By the last paragraph, the action of %’é\ is compatible with the grading on S*, but we still need to check
the relations involving y1,...,y,. First consider ¥y, y: = Yyy:y,, for 1 <rt <n and v € Std(A). If r =¢
there is nothing to prove so suppose r # t. By definition,

UYryr = Z Z g¢(v,u)er(u, s)vs,
ulP>vspk>u
for appropriate choices of the signs €;(v,u) and &,(u,s). Suppose that 15 appears with non-zero coefficient in
this sum. Then we can write u = v(m,t) and u = v(l,r), for some I, m such that st>u>v. If [ # m then the
permutations (m,t) and (I,r) commute. As the lengths add, we also have that s v(l,7) > v. Therefore, s
appears with the same coefficient in ¥, y:ys and ¥, y,y:. If | = m then s > u > v only if m is in between r
and ¢ in v. That is, either r <, m <, t or t <, m <, r. However, this implies that either s u or u¥ v, so
that 15 does not appear in either t,1,y; or in 1, y,y,. Hence, the actions 7, and y; on S* commute.

Similar, but easier, calculations with tableaux show that the action on S* respects the three relations
Urye = Yery YrYr+1 = Yr¥pr + 1 and y, 119, = Py, + 1. To complete the verification of the relations in %’g
it remains to show that ¢, y? = 0, for all v € Std(A). This is clear, however, because ¥,y; is equal to a linear
combination of terms s where 1 appears in an earlier component of s than it does in v.

Finally, it remains to prove that S> is irreducible over a field. First we need some more notation. Let
tx = [n]-]-][2]1] and set wx = d(tx). Then wy is the unique element of longest length in &,,. Recall from
§1.4, that d’(t) is the unique permutation such that t = tyd’(t) and, moreover, d(t)d'(t)~! = wy with the
lengths adding. Therefore, if £(d(s)) > £(d(t)) then sy, ) = dsttbes -

We are now ready to show that S* is irreducible. Suppose that z = > < Ts¥s is a non-zero element
of S*. Let t be any tableau such that r, # 0 and /(d(t)) is minimal. Then, by the last paragraph,
W/’;/(t) =Tty SO Y, € x%é\ We have already observed that y; acts by moving 1 to an earlier component.

Therefore, ¥,y " = (=1)" 4, ,, where tx; = [1[n[--[3]2]. Similarly, Yoyt 2 = (—1)2" 34y, ,,

where ty o = [1[2[n[-][3]. Continuing in this way shows that ¢, y" 1952 . . yn_1 = (—1)2" Depx. Hence,
x%ﬁ = S, so that S™ is irreducible as claimed. O

The proof of Proposition 2.5.2 shows that y{“lygk2 ... Yn—1 is a non-zero element of S*. Using the relations,

and a bit of ingenuity, it is possible to show that { ¥, y]" ... y%» | w € S, and 0<a, <n—r, for 1 <r<n}
is a basis of 2. Alternatively, it follows from [20, Theorem 4.20] that dim 2} = (n!)®. Hence, we obtain the
following.

2.5.3. Corollary. Suppose that f = na; and A = nl;, fori € I. Let X = (1]1]...]1) and for s,t € Std(X)
define o = U ey bag), where N =1 and y* =y 'y3 . yn1. Then {s | s,t € Std(A) } is a
graded cellular basis of %g

The basis of the Specht module S* in Proposition 2.5.2 is well-known because it is really a disguised
version of the basis of Schubert polynomials of the coinvariant algebra of the symmetric group &,, [83,94].
The coinvariant algebra %, is the quotient of the polynomial ring Z[x] = Z[z1, ..., z,] by the symmetric
polynomials in x1,...,z, of positive degree. Identify x, with its image in %, for 1 <r < n. Then %, is free
of rank n!. As we have quotiented out by a homogeneous ideal, %, inherits a grading from Z[x], where we set
degz, = 2 for 1 < r < n. There is a well-defined action of .%g on %, where y, acts as multiplication by z,.,
and ¥, acts as a divided difference operator:

f(X)wr = 8Tf(x) = Mv
Ty — errl
where x = (x1,...,2,) and 8, - x = (T1,.. ., Tri1, Tr, ..., Ty) for 1 <r < n. Here we are secretly thinking of
%é\ as being a quotient of the nil-Hecke algebra, where this action is well-known.

For d € &,, define og = (2} ‘252 .. . 2 _1)%wya. Then {04 | d € &, } is the basis of Schubert polyno-
mials of €,,. The Specht module is isomorphic to %, as an %g—module, where an isomorphism is given by
Yy = og(r)- To see this it is enough to know that the Schubert polynomials satisfy the identity

Os.d, 1 l(spd) =40(d)—1,

a7’0—cl = .
0, otherwise.

Now observe that by the last paragraph of the proof of Proposition 2.5.2, if t € &,, then

e = Voata) = Yoyl Y Yn—1%ag)-
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Hence, our claim follows by identifying «:, with the polynomial 1 € €,.
Finally, we remark that the formula for the action of 1, ..., y, in Proposition 2.5.2 is a well-known corollary
of Monk’s rule; for example see [94, Exercise 2.7.3].

3. ISOMORPHISMS, SPECHT MODULES AND CATEGORIFICATION

In the last section we proved that the algebras #2 and J£* are isomorphic when (A, q;,) < 1, for all
i € I. This section starts with Brundan and Kleshchev’s Graded Isomorphism Theorem: %2 22 77, for all
A € PT. Then we start to investigate the consequences of this result for both algebras.

3.1. Brundan and Kleshchev’s Graded Isomorphism Theorem. One of the most fundamental results
for the cyclotomic Hecke algebras 2 is Brundan and Kleshchev’s spectacular isomorphism theorem.

3.1.1. Theorem (Graded Isomorphism Theorem [19,114]). Suppose that Z = F is a field, v € K has quantum
characteristic e and that A € PT. Then there is an isomorphism of algebras %,/L\ = ji”nA.

Suppose that F' is a field of characteristic p > 0 and that e = pf, where f > 1. Then F' cannot contain an
element v of quantum characteristic e, so Theorem 3.1.1 says nothing about the quiver Hecke algebra % (F).

As a first consequence of Theorem 3.1.1, by identifying #* and % we can consider JZ* as a graded
algebra.

3.1.2. Corollary. Suppose that A € P and Z = F is a field. Then there is a unique grading on > such
that dege(i) = 0, degy, = 2 and degvse(i) = —ci, i,,,, for 1<r<n,1<s<nandiecl".

Brundan and Kleshchev prove Theorem 3.1.1 by constructing family of isomorphisms %2 — 2,
together with their inverses, and then painstakingly checking that these isomorphisms respect the relations
of both algebras. Their argument starts with the well-known fact that J#* decomposes into a direct sum
of simultaneous generalized eigenspaces for the Jucys-Murphy elements L1, ..., L,. These eigenspaces are
indexed by I™, so for each i € I" there is an element e(i) € S, possibly zero, such that e(i)e(j) = di;e(i).
We describe these idempotents explicitly in Lemma 4.2.2 below.

Translating through Definition 1.1.1, Brundan and Kleshchev’s isomorphism is given by e(i) — e(i) and

1
Qs(1)

Yr Z v L — z,«]y)e(i)7 and 1), — Z (TS +Ps(i))

ieln icln

e(i),

for1<r<n,1<s<mnandie€I”. We are abusing notation by identifying the KLR generators with their
images in JZ. Here, P,(i) and Q,(i) are certain rational functions in g, and y,,; which are well-defined
because (L — [it]v)e(l) is nilpotent in JZ*, for 1 <t < n. The inverse isomorphism is given by e(i) — e(i),

Lo Y (g +[in)ed) and Ty > (0:.Qs(0) — Pu(i))e(i),

ieln icIn

forl<r<n,1<s<nandie€el".

Rouquier [114, Corollary 3.20] has given a quicker proof of Theorem 3.1.1 by first showing that the
(non-cyclotomic) quiver Hecke algebra &, is isomorphic to the (extended) affine Hecke algebra of type A.
Following [52] we sketch another approach to Theorem 3.1.1 in §4.2 below.

The following easy but important application of Theorem 3.1.1 was a surprise (at least to the author!).

3.1.3. Corollary. Suppose that Z = F is a field and that v,v" € F are two elements of quantum characteristic e.
Let A € Pt. Then JEMN(F,v) = AN (F0').

Proof. By Theorem 3.1.1, SZAN(F,v) =2 ZM(F) = A2 (F, ). O

Consequently, up to isomorphism, the algebra #* depends only on e, A and the field F. Therefore, because
AN s cellular, the decomposition matrices of 2 depend only on e, A and p, where p is the characteristic
of F'. In the special case of the symmetric group, when A = Ag, this weaker statement for the decomposition
matrices was conjectured in [97, Conjecture 6.38].

When F' = C it is easy to prove Corollary 3.1.3 because there is a Galois automorphism of Q(v), as an
extension of Q, which interchanges v and v'. It is not difficult to see that this automorphism induces an
isomorphism A (F,v) = 2 (F,v'). This argument fails for fields of positive characteristic because such
fields have fewer automorphisms.
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3.2. Graded Specht modules. As we noted in §2.1, if we impose a grading on an algebra A then it is not
true that every (ungraded) A-module has a graded lift, so there is no reason to expect that graded lifts of the
Specht modules S exist in general. Of course, graded Specht modules do exist and this section describes one
way to define them.

Recall from §1.5 that the ungraded Specht module S*, for A € P,, has basis {m, | t € Std(A\)}. By
construction, S* = mex .. Brundan, Kleshchev and Wang [23] proved that S has a graded lift essentially
by declaring that m should be homogeneous and then showing that this induces a grading on the Specht
module S* = maZ2.

Partly inspired by [23], Jun Hu and the author [49] showed that /" is a graded cellular algebra. The
graded cell modules constructed from this cellular basis coincide exactly with those of [23]. Perhaps most
significantly, the construction of the graded Specht modules using cellular algebra techniques endows the
graded Specht modules with a homogeneous bilinear form of degree zero.

Following Brundan, Kleshchev and Wang [23, §3.5] we now define the degree of a standard tableau. Suppose
that p € P,,. For i € I let Add;(pe) be the set of addable i-nodes of p and let Rem;(pt) be its set of removable
i-nodes. If A is an addable or removable i-node of p define

da(p) =#{B € Addi(n) | A<B} —#{B€Rem;(n) | A<B},
(3.2.1) d*(p) =#{B € Add;(p) | A>B} - #{B€ERem;(u) | A>B},
di(p) = # Add;(p) — # Rem;(p).

If t is a standard p-tableau then its codegree and degree are defined inductively by setting codeg, t =0 =
deg, t if n =0 and if n > 0 defining

codeg, t = codeg, t|(n_1) + d*(p) and deg, t = deg, tyn—1) +da(p),

where A = t~1(n). When e is fixed write codegt = codeg, t and degt = deg, t.

Implicitly, all of these definitions depend on the choice of multicharge «. The definition of the (co)degree
of standard tableaux due to Brundan, Kleshchev and Wang [23], however, the underlying combinatorics dates
back to Misra and Miwa [104] and their work on the crystal graph and Fock space representations of U, (sA[e)

Recall that we fixed a reduced expression for each permutation w € &,,. In §1.4 for each tableau t € Std(A)
we have defined permutations d'(t), d(t) € &, by tad'(t) = t = t*d(t).

3.2.2. Definition ( [49, Definitions 4.9 and 5.1]). Suppose that p € P,,. Define non-negative integers d¥', ..., d"
and d}“ ..., dj, recursively by requiring that
dj,+ - +dj, = codeg(tt}) and di +--- +dlf = deg(t}}),

. ot s th dj, d, ak d® 2
for 1 <k <n. Now set i, =i, i* =i", y* =y,* ...yn" and y* = y;" ...yn". For (s,t) € Std”(p) define
wét = wér(ge(iu)yuwd/(t) and s = wz(s)e(i“)y“wdm,

where % is the unique (homogeneous) anti-isomorphism of %2 which fires the KLR generators.

3.2.3. Example Suppose that e =3, A = Ag + Ay and p = (7,6, 3,2|4,3,1), with multicharge k = (0, 2).
Then

1[2]8]4]5]6]7] | [19[20[21]22] 9 [13[17[20[22]24]26] | [1]4]6]8]
u 8|9 1011|1213 23]24[25 10]14[18[21]23]25 2|5]7
th = and t, =

14[15[16 26] 11]15[19 3

17]18 12]16

The reader may check that e(i*) = ¢(01201202012011200120121200). We have coloured the nodes in t* which
have column index divisible by e or have residue 2, which is the residue of 19 in=t{y. This should convince
the reader that y* = y2y2ysy10¥11Y13Y15Y16Y21Y25. Using similar colourings for ty, and reading right to left,

Yu = Y3YaYrY11Y15Y19- O

3.2.4. Example Let = na; and A = nA;, for some i € I, so that %{3\ is the nil-Hecke algebra %é\ of §2.5.
Let A = (1]1]...]1). Then y» = y7 ... 42 oy, 1. Hence, the basis {14} of %é\ coincides with that of
Corollary 2.5.3. O

3.2.5. Example As in Example 2.2.7, in general, the basis element g depends on the choices of reduced
expressions that we have fixed for the permutations d(s) and d(t). For example, suppose that A = 2Ag+ A1, kK =
(0,1,0) and g = (1|1|1) and consider the standard p-tableaux t* = ([1]| [2]| [3]) and t, = ([3]] [2]| [1])-
Then d(t*) = 1 and d(t,) = (1,3) = s15281 = s25152 has two different reduced expressions. Let tx,t, =
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Prpatpre(iF)yPahr1bathy and z/AJtut” = Pat1hae(i*)y*1hath19hs. Then the calculation in Example 2.2.7 implies
that R
d)tutu = wtut“ + ¢t”t“ + wt“tu + Yrutn.

This is probably the simplest example where different reduced expressions leads to different 1-basis elements,
but examples occur for almost all 2. This said, in view of Proposition 2.4.3, 1) is independent of the choice
of reduced expressions for d(s) and d(t) whenever (A, o; ) <1, for all ¢ € I. The t-basis can be independent
of the choice of reduced expressions even when %2 is not semisimple. For example, this is always the case
when e > n and ¢ = 2 by [50, Appendix|. These algebras are typically not semisimple. O

3.2.6. Theorem (Hu-Mathas [49, Theorem 5.8]). Suppose that Z = F' is a field. Then

{ta | (s,1) € Std*(Pa) }
is a graded cellular basis of Z2 with ¥}, = s and deg by = degs + degt, for (s,t) € Std*(P,,).

Using the theory of graded cellular algebras from §2.1, we obtain graded Specht modules from Theorem 3.2.6.
By [49, Corollary 5.10] the graded Specht modules { S* | A € P, } attached to the -basis coincide with
those constructed by Brundan, Kleshchev and Wang [23]. When (A, a; ) < 1 it is not hard to show that these
Specht modules coincide with those we constructed in Proposition 2.4.3 above. Similarly, for the nil-Hecke
algebra considered in §2.5, the graded Specht module S*, with A = (1/1]...|1), is isomorphic to the graded
module constructed in Proposition 2.5.2. Moreover, on forgetting the grading S* coincides exactly with the
ungraded Specht module S* constructed in §1.5, for A € P,,.

If XA € P, he graded Specht module S* has basis {¢; | t € Std(X) }, with degx = degt. The reader should
be careful not to confuse ¥ € S with Yacr) € #2! Hence, using Theorem 3.2.6 we recover [20, Theorem 4.20]:

L{imq SA — Z qdegt — z{imq %A _ Z qdegs+degt — Z (ﬁmq SA)Q.
teStd(A) (s,t)eStd(A) AEP,

In essence, Theorem 3.2.6 is proved in much the same way that Brundan, Kleshchev and Wang [23]
constructed a grading on the Specht modules: we proved that the transition matrix between the -basis and
the Murphy basis of Theorem 1.5.1 is triangular. In order to do this we needed the correct definition of the
elements y*, which we discovered by first looking at the one dimensional two-sided ideals of #* (which
are necessarily homogeneous). We then used Brundan and Kleshchev’s Graded Isomorphism Theorem 3.1.1,
together with the seminormal forms (Theorem 1.6.7), to show that e(i*)y* £ 0. This established that the
basis of Theorem 3.2.6 is a graded cellular basis. Finally, the combinatorial results of [23] are used to determine
the degree of 1-basis elements.

Following the recipe in §2.1, for p € P,, define D* = S*/rad S*, where rad S* is the radical of the
homogeneous bilinear form on S¥. This yields the classification of the graded irreducible #*-modules.
The main point of the next result is that the labelling of the graded irreducible #*-modules agrees with
Corollary 1.5.2.

3.2.7. Corollary ( [20, Theorem 5.13], [49, Corollary 5.11]). Suppose that A € Pt and that Z = F is a
field. Then { D¥(d) | p € K} and d € Z} is a complete set of pairwise non-isomorphic graded > -modules.
Moreover, (D*)® = D¥ and D" is absolutely irreducible, for all p € KA.

The KLR algebra &%, is always Z-free, however, it is not clear whether the same is true for the cyclotomic
KLR algebra .@,‘L\ To prove this you cannot use the Graded Isomorphism Theorem 3.1.1 because this result
holds only over a field. Using some extremely sophisticated diagram calculus calculations, Li [85] proved the
following.

3.2.8. Theorem (Li [85]). Suppose that A € P+. Then the quiver Hecke algebra Z2(Z) is free as a Z-module
of rank €™n!. Moreover, Z>(Z) is a graded cellular algebra with graded cellular basis { Vs | (s,t) € Std*(P,) }.

Therefore, Z2 is free over any commutative ring and any field is a splitting field for Z2. Moreover, the
graded Specht modules, together with their homogeneous bilinear forms, are defined over Z. The integrality
of the graded Specht modules can also be proved using Theorem 3.6.2 below.

The next result lists some important properties of the 1-basis.
3.2.9. Proposition. Suppose that (s,t) € Std*(P,) and that Z is an integral domain. Then:

a) [49, Lemma 5.2] Ifi,j € I" then g = 0 3:0; ie(i)tsee(]).

b) [50, Lemma 3.17] Suppose that s and 1/Ajst are defined using different reduced expressions for the

permutations d(s),d(t) € &,. Then there exist ay, € Z such that

'J)st = wst + Z aukuva
(u,v)p>(s,t)

where ay, # 0 only if i¥ = 1%, i¥ = i* and degu + degv = degs + degt.
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c) [5b1, Corollary 3.11] If 1 < r < n then there exist by, € Z such that

wstyr = Z buv’(/)uva

(u,v)»(s,t)
where by, # 0 only if i¥ =i, i¥ = i* and degu + degv = degs + degt + 2.

Part (a) follows quickly using the relations in Definition 2.2.1 and the definition of the ¢-basis. In contrast,
parts (b) and (c) are proved by using Theorem 3.1.1 to reduce an analogous properties of seminormal bases.
With part (c), it is fairly easy to show that by, # 0 only if u > s. The difficult part is showing that b,, # 0
only if v > t. Again, this is done using seminormal bases.

Finally, we note that Theorem 3.2.8 implies that e(i) # 0 in Z2 if and only if i € I¥ = {i* | t € Std(P,) },
generalizing Proposition 2.4.6. In fact, if F' is a field and S22 (F) = %2 (F) then it is shown in [49, Lemma 4.1]
that the non-zero KLR idempotents are a complete set of primitive (central) idempotents in the Gelfand-Zetlin
algebra 2, (F') and that .Z,(F) = (y1,...,yn,e(i) | 1 € I™). It follows that .Z,(F) is a positively graded
commutative algebra with one dimensional irreducible modules indexed by I}, up to shift. It would be
interesting to find a (homogeneous) basis of .%,(F). The author would also like to know whether %2 is
projective as an .%,-module.

3.3. Blocks and dual Specht modules. This section shows that the blocks of J#2 are graded symmetric
algebras and it proves a corresponding statement relating the graded Specht modules and their graded duals.

Theorem 1.8.1 describes the block decomposition of 72 so, by Theorem 3.1.1, it also describes the block
decomposition of Z2. As in (2.2.6), let

Ry = Hhes,  where eg =Y e(i).

ielf

It follows from Definition 2.2.1 that eg is central in Z2, so %//3\ = eg#eps is a two-sided ideal of Z2. Let
QFf=Qf(N)={BeQt | eg#0}in Z2. Similarly, let Ps ={A€P, | iI*cIP}={AeP, | A=}
Combining Theorem 3.2.8, Theorem 3.1.1 and Corollary 1.8.2 we obtain the following.

3.3.1. Theorem. Suppose that A € P+. Then % = GBBGQI %’é\ is the decomposition of Z#2 into indecompos-

able two-sided ideals. Moreover, %g is a graded cellular algebra with cellular basis { s | (s,t) € Std*(Pg) }
and weight poset Pg.

By virtue of Theorem 3.2.8, the block decomposition of 2/ holds over Z, even though we cannot talk about
the blocks as linkage classes of simple modules in this case. Compare with Theorem 2.4.8 in the semisimple
case.

Suppose that A is a graded Z-algebra. Then A is a graded symmetric algebra if there exists a
homogeneous non-degenerate trace form 7: A— Z. That is, 7(ab) = 7(ba) and if 0 # a € A then there exists
b € A such that 7(ab) # 0. The map 7 is homogeneous of degree d if 7(a) # 0 only if dega = —d.

Fix 8 € QT. The defect of § is the non-negative integer

detf=(A,8) - 5(8.0) = 5 (A M)~ (A= 5.4~ ).

If X € P, set def A = def 3> (see Corollary 1.8.2). If A € Py, is a partition then def \ is equal to its e-weight;
see, for example, [34, Proposition 2.1] or the proof of [82, Lemma 7.6].

The definitions readily imply the following fundamental relationship connecting degrees, codegrees and
defects.

3.3.2. Lemma. Suppose that X € P,,.

a) [23, Lemma 3.11] If A € Add;(X) then da(A) + 1+ dA(A) = d;(X) and def(A+A) = def X + d;(A) — 1.
b) [23, Lemma 3.12] If s € Std(A) then degs + codegs = def A.

In Definition 3.2.2 we defined two sets of elements {15} and {4} in Z2. Just as there are two versions of
the Murphy basis {ms} which are built from the trivial and sign representations of J# [99], respectively,
there are two versions of the t-basis. By [49, Theorem 6.17], { ¢/, | (s,t) € Std*(P,)} is also a graded cellular
basis of 7 with weight poset (P,, <) and with deg), = codegs + codegt. We warn the reader that we are
following the conventions of [50], rather than the notation of [49]. See [50, Lemma 3.15 and Remark 3.12] for
the translation.

The bases {t} and {1/} of #Z) are dual in the sense that if (s,t),(u,v) € Std*(Ps) then, by [51,
Theorem 6.17],

(3.3.3) Yathe 70 and  gthl, # 0 only if i*=1i" and u > t.
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Let 7 be the usual non-degenerate trace form on %LA [18,93]. In general, T is not homogeneous, however, it
can be written as a sum of homogeneous components. Let 73 be the homogeneous component of 7 of degree
—2def 8. By [51, Theorem 6.17], 75(¢stt)l;) # 0. Therefore, 75 is non-degenerate and we obtain the following.

3.3.4. Theorem (Hu-Mathas [49, Corollary 6.18]). Suppose that B € Q). Then ,%’é\ a graded symmetric
algebra with homogeneous trace form of degree —2def 3.

It would be better to have an intrinsic definition of 75 for Z2(Z). Webster [127, Remark 2.27] has given a
diagrammatic description of a trace form on an arbitrary cyclotomic KLR algebra. It is unclear to the author
how these two forms on %Z2 are related.

The basis {1, } is a graded cellular basis of J#* so it defines another collection of graded cell modules.
The dual graded Specht module S} is the graded cell module indexed by A € Pg and determined by the
y’-basis. The dual Specht module Sx has basis {1 | t € Std(A) }, with deg{ = codegt, so

z{imq S)\ — Z qcodegt.
teStd(A)
We can identify Sx(codegtx) with (¢, + /9272, where <> is the two-sided ideal of /£ spanned

by ., where (s, t) € Std*(u) for some multipartition g such that X t> p. Similarly, we can identify S*(degt*)
with (Y + AN AN, Therefore, by (3.3.3) there is a non-degenerate pairing

{, }:5Mdegt*) x Sx(codegty) —7Z
given by {a + S>> b+ H#/*} = 15(ab*). Hence, using Lemma 3.3.2, we obtain:

3.3.5. Corollary (Hu-Mathas [49, Proposition 6.19]).
Suppose that X € P,,. Then S* = SY(def A) and Sx = (S*)®(def A).

This result holds for the Specht modules defined over Z by Theorem 3.2.8 or by [75, Theorem 7.25].

There is an interesting a byproduct of the proof of Corollary 3.3.5. In the ungraded setting the Specht module
S is isomorphic to the submodule of H2 generated by an element maTyw, mA; see [31, Definition 2.1 and
Theorem 2.9]. By [49, Corollary 6.21], maT,,m’ is homogeneous and, in fact, Yo thu, Ui, 1, = MaTwsmy-
Moreover, Yooy, 1/’€>\tx%)1/1& & SA(def XA + codeg ty).

3.4. Induction and restriction. The cyclotomic Hecke algebra ji”nA is naturally a subalgebra of c%ﬂnﬁ_l, and
AN is free as an S -module, by (1.1.2). This gives rise to the usual induction and restriction functors.
These functors can be decomposed into the i-induction and i-restriction functors, for ¢ € I, by projecting onto
the blocks of these two algebras. As we will see, these functors are implicitly built into the graded setting.

Recall that I = Z/eZ and A € PT. For each i € I define
€n,i = Z e(j \ Z) € ‘@71}+1'
je[n
The relations for 22, in Definition 2.2.1 imply that e, ; is an idempotent and that Y, ; €y = > ;e yns1 €(i)

is the identity element of %2 ;.

3.4.1. Lemma. Suppose that i € I and that Z is an integral domain. Then there is a (non-unital) embedding
of graded algebras #> — %{}H given by

e(.]) — e(.] \4 i)a Yr v EnilYr and s en,iww
forjel™, 1 <r<nandl <s<n. This map induces an ezxact functor
i-Ind : Rep (%) —>Rep(%ﬁ+1);M = M ®gn en7i‘%7[z\+1'
Moreover, Ind = @, i-Ind is the graded induction functor from Rep(%2) to Rep(Z},4).

Proof. The images of the homogeneous generators of %2 under this embedding commute with e,, ;, which
implies that this map defines a non-unital degree preserving homomorphism from %2 to %2 1. This map is
an embedding by Theorem 3.2.8. The remaining claims follow because, by definition, e, ; is an idempotent
and >, ; e, is the identity element of 22, ;. O

The i-induction functor i-Ind functor is obviously a left adjoint to the i-restriction i-Res functor which
sends an %2, ;-module M to e, ;M = M Dan, | R2, 1€, A much harder fact is that these functors are

two-sided adjoints.

3.4.2. Theorem (Kashiwara [64, Theorem 3.5]). Suppose i € I. Then (E;, F;) is a biadjoint pair.
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Kashiwara proves this theorem for all cyclotomic quiver Hecke algebras such that the associated Cartan
matrix is symmetrizable. We are cheating by stating this result now because its proof builds upon Kang and
Kashiwara’s proof that the cyclotomic quiver Hecke algebras of arbitrary type categorify the integrable highest
weight modules of the corresponding quantum group [62]. Theorem 3.4.2 was conjectured by Khovanov-
Lauda [67] and Rouquier [114].

We want to describe these functors on the graded Specht modules. This result generalizes the well-
known (ungraded) branching rules for the symmetric group [54, Example 17.16] and the cyclotomic Hecke
algebras [10,102,118].

Recall the definition of the integers d(X) and da() from (3.2.1).

3.4.3. Theorem. Suppose that Z is an integral domain and X € P,,.
a) [51, Main theorem] Let A; < Ay--- < A, be the addable i-nodes of X. Then i-Ind S* has a graded
Specht filtration
0=IyclC---CI, =ilIndS*,
such that I;/I;_1 = S24i(d4i (X)),
b) [23, Theorem 4.11] Let B, < --- < By < By be the removable i-nodes of X. Then i-Res S* has a
graded Specht filtration
0=RyCRyC- - CR,=iResS*,
such that Rj/Rj_1 = S*Bi(dBi(N\)), for 1 <j <y.
¢) [51, Corollary 4.6] Let A, < --- < Ay < Ay be the addable i-nodes of X. Then i-Ind Sx has a graded
Specht filtration
0=IyCcl C---ClI,=1IndSj,
such that Ij/1;_y = SMAi(dy, (X)), for 1 <j < 2.

The corresponding statement for the restriction of the dual graded Specht modules follows easily using
Corollary 3.3.5. As we do not need this we leave it as an exercise for the reader.

Part (b) was proved first using a standard argument based on properties of the graded cellular basis of S™*.
Part (a), which was conjectured by Brundan, Kleshchev and Wang [23, Remark 4.12], is proved by extending
some elegant ideas of Ryom-Hansen [118] to the graded setting using results from [49].

3.5. Grading Ariki’s Categorification Theorem. We now relate the graded representation theory of
the Hecke algebras JZ with the representation theory of the quantum group Uq(sA[e) by lifting Ariki’s
Categorification Theorem to the graded setting. This allows us to give a new proof of Brundan and
Kleshchev’s theorem that the cyclotomic KLR algebras categorify the integrable highest weight modules
of U, (;[e) Our main tools are Ariki’s categorification theorem, the graded branching rules of Theorem 3.4.3
and the Fock space and canonical basis combinatorics.

Throughout this section we assume that the Hecke algebras #* are defined over a field F, for n > 0. In
the end we will assume that F' is a field of characteristic zero, however, almost all of the results in this section
hold over any field F.

Recall that Uq(ﬁ/'\[e) is the quantum group over Q(gq) associated with the quiver I'.. Therefore, Uq(gle) is
generated by elements FE;, F; and Kii, for i € I, subject to the quantum Serre relations [88, §3.1].

Let P = U,>0 Pn, K* = U,;>0 K2 and set A = Z[q,q']. The combinatorial Fock space .Z4 is the
free A-module with basis the set of symbols {|A) | A € P}. Let ﬁ&q) = 74 ®4Q(g). Then, ﬁé}(q) is an
infinite dimensional Q(g)-vector space. We consider { |A) | A € P} as a basis of 336((1) by identifying |A) and
[A) @ 1g(g)-

3.5.1. Theorem (Hayashi [47]). Suppose that A € P*. Then f&q) is an integrable Uq(;[e)—module with

U, (s, )-action determined by

EN= 3 ¢#VA-B) and FN= > ¢V ata),
BeRem; () AcAdd;(XA)

and K;|A) = ¢ |X), for alli € T and X € P,,.

Hayashi [47] considered only the special case when A = Ag. The general case follows easily from this using
the coproduct of Uq(sA[e) because the definitions imply that fé}(q) = 98(?) ® - ® 98(7) as a U, (sl, )-module.
The crystal and canonical bases of the higher level Fock spaces were studied in [60, 104, 124].

For each dominant weight A € P* let L(A) = U, (;[e)vA be the integrable highest weight module of high
weight A, where v, is a highest weight vector of weight A. It follows from Theorem 3.5.1 that L(A) = U, (sA[e)|Q>
as U, (fz\[e)—modules7 where 0 = (00| ... |0) € Py is the empty multipartition of level £.
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Let Rep(#£2) be the category of finitely generated graded s#*-modules and let Proj 4 () be the category
of finitely generated projective graded #*-modules. Let [Rep(2£2)] and [Proj(s#)] be the Grothendieck
groups of these categories. If M is a finitely generated #*-module let [M] be its image in [Rep(£*)] or
abusing notation slightly, in [Proj(s£2)] if M is projective.

3.5.2. Definition. Suppose that p € ICfl‘. Let YH be the projective cover of D in Rep(%”nA).

Then {[D*] | u € K2} is a basis of [Rep(#2) and {[Y#] | u € K2} is a basis for Proj(s£). We use
the notation Y* because these modules are special cases of the graded lifts of the Young modules constructed
in [98]; see [50, §5.1] and [92, §2.6]. By Corollary 2.1.5, [PH] = 3" dan(q)[S*] in [Rep (1)) .

Consider [Rep(#£2)] and [Proj(#£2)] as A-modules by letting q act as the grading shift functor: [M(d)] =
q?[M], for d € Z. Set

[Repi] = PIRep (") and  [Proji] = P[Proj(A41)].

n>0 n>0
Extending scalars, let [Repa(q)] = [Repﬁ‘] ®4 Q(q) and [Proja(q)] = [Projﬁd ®4 Q(q)-

3.5.3. Proposition. Suppose that A € PT. Then the i-induction and i-restriction functors of [Rep@ ](%A)
induce isomorphisms [PrOJQ(q)} > LA [RepQ(q | of Uq(ﬁle)—modules.

Proof. Recall that d, is the graded decomposition matrix of JQA and qu is its transpose. Define linear maps

dT

A q
[Projg(q)] ———— T4y
\ ldq

[RGP{L\D(Q)]

where qu([Y“]) =2 A dau(@)|A), dg(|X)) = 32, dap(q)[D*] and where c; = dg od, is the Cartan map. We

claim that that these maps can be made into U, (E[e)—module homomorphisms.

The i-induction and i-restriction functors are exact, for ¢ € I. Therefore, they send prOJect1ve modules to
projectives and they induce vector space endomorphlsms of the Grothendieck groups [Rep@ )] and [PTOJQ(q)].
By Theorem 3.4.3, and Lemma 3.3.2(a) for the first formula,

FInd SML - ()] = Y g GAA = KT gAY,
A€Add; (X) A€Add; (X\)
[(-ResS* = Y ¢N[SAI]
BeRem; ()

Identifying E; with ¢-Res and ¢F; K ! with 4-Ind, the vector space maps d, and dg become well-defined
Uq(;[e)—module homomorphisms by Theorem 3.5.1. By construction, the Uq(sA[e)—modules [Repa(q)] and
[Proja(q)] are both cyclic, being generated by [P2] = [$9] = [D2]. As L(A) = U,(sl,)[0) is irreducible, the
proposition follows. O

By Theorem 2.1.4(c), the graded decomposition matrix dgy = (dap(q)) is invertible over A with inverse
e, = (eau(q)). Therefore, we can consider {[S*] | A € K*} to be an A-basis of either Grothendieck group,
where we aAbuse notation by identifying [Si} in [Proja(q)] with (d])~!w)) = ;A eap(q)[Y?], for p e KA.

Let Uy(sle) 4 be Lusztig’s A-form of U, (sl.). Theorem 3.5.1 implies that U, (sl.) 4 acts on the A—submodule
of & of JQ( ) In particular, there are well-defined actions of the divided powers E( ) and F(k) on 4, for
i€ I an k > 0. By Proposition 3.5.3, [Rep’y] and [Proj¥] are both Uq(sle)A modules.

The bar involution on A = Z[q, ¢~ '] is the unique Z-linear map such that § = ¢~ !. A semilinear map

of A-modules is a Z-linear map 6: M — N such that 8(f(q)m) = f(q)8(m), for all f(q) € A and m € M.
There is a natural pairing (, ): [Proj’y] x [Rep’y] — A that is determined by

([P], [M]) = dimq Horm (P, M),

for graded 2#*-modules P and M with P projective. This pairing is sesquilinear in the sense that it is
semilinear in the first variable and A-linear in the second. By definition, if A, p € K* then ([P2], [D*]) = dxp-
By biadjointness (Theorem 3.4.2), or a direct calculation using Theorem 3.4.3,
(i-Ind[P], [M]) = ([P], i-Res[M]) ~ and  (i-Res[P], [M]) = ([P],i-Ind[M]).
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Therefore, (, ) is a Shapovalov form in the sense of [20, (3.39)].
Recall that M® = Homp (M, F) is the contragredient dual of the graded Z*-module M. Similarly, if P
is a graded projective #*-module define P# = Hom s (P, M), In both cases the J#A-action is given by

(f - h)(m) = f(mh*), for h € >, m € M and f € M® or f € P¥#. These dualities induce semilinear linear
involutions on [Repé(q)] and [Proja(q)], which are given by

[PI# = [P*], and [M]® =[M®]

for M € Rep () and P € Proj(").
We can now show that the Specht modules and dual Specht modules are dual bases with respect to the
Shapovalov form. if A, u € K* then

(18%)15°]) = 3 eas(@ = @ ([P 107)
- Z d/.w' €a - 6)41,

Equivalently, ([S?], [Su]) = dang™ 9f# by Corollary 3.3.5. In particular, the form ( , ) is non-degenerate. The
Shapovalov form justifies our making the identifications [Proj’y] = L(A)4 and [Rep’y] = L(A)%.

(3.5.4)

Importantly, the involutions ® and # commute with the action of U,(sl.) .

3.5.5. Lemma. The involutions # and ® on [Proj’y] and [Rep’y], respectively, commute with the action of Fj,
foriel.

Proof. Tt is enough to check that F; commutes with # and ® on the Specht modules in [Proj’] and [Rep].
Now,

F[SN® = ¢~ I E[Sa], by Corollary 3.3.5,
=g 4 Z qfdA()‘) [Sxtal, by Theorem 3.4.3(c),
A€Add;(N)
= Z g VTN —1-def At A) [Sxatal, by Lemma 3.3.2(a),
AcAdd; ()
= Z g AN —def+A) (g1 by Lemma 3.3.2(a),
A€Add; ()
®
= Z q_dA()‘) [S)‘+A]) ) by Corollary 3.3.5,
A€Add;(N)
— (RISY)".
Essentially the same argument shows that F;[SM# = (F;[S*])*. O

Similarly, ® and # commute with F;, for ¢ € 1.
The following result is well-known and easily verified. See, for example, [20, Lemma 2.5].

3.5.6. Lemma. Suppose [P] € [Proj’y] and [M] € [Rep’]. Then ([P]#,[M)]) = ([P],[M]®).
The effect of the involutions # and ® on [Proj] and [Rep’y] is particularly nice.
3.5.7. Lemma. Suppose that A € K*. Then [YA# = [Y?], [D}]® = [D?],
[SA# =12+ Y @M (@IsH] and [SNT =[N+ D anu(@)[SM],

peKh REK)
p>A AD

for some Laurent polynomials ax,(q),a*(q) € A.

Proof. That [D#]® = [D¥] is immediate by Corollary 3.2.7. Using Lemma 3.5.6, this implies that [Y#]# = [Y¥].

Finally, by Theorem 2.1.4,
®
O = (Y dnu@D*) = Y daula DD

A p ;J,EKQ
A p

=3 (X danlaMewl(a)Is”]

vekd  pekh
ADr v ubA
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as claimed. Writing [S*] = > €ur(@)[PH], essentially the same argument shows that [SH]# can be written
in the required form. Alternatively, use Lemma 3.5.6. (]

The triangularity of the action of ® and # on [Rep’y] and [Proj’y], respectively, has the following easy but
important consequence.

3.5.8. Proposition. There exist bases { B> | A€ K™} and { Bx | A € KM} of [Projy] and [Rep?y], respec-
tively, which are uniquely determined by the properties (B*)#* = B* and (Bx)® = Bx

+ 37 bM(QISH] and Ba=[SM+ > ban(q)[S*
MEKA HEKQ
U AD>p

for polynomials b, (q), " (q) € dap + qZlq]. Moreover, if A, € K™ then

S P (@boua) = Sr

oeckh

Abolpu
Proof. The existence and uniqueness of these two bases follows immediately from Lemma 3.5.7 by a standard
argument known as Lusztig’s Lemma [88, Lemma 24.2.1]. For completeness, we quickly sketch a common
variation on this argument for the basis {B}.

Fix a multipartition u € K2, for some n > 0, and suppose that B,, and B;L are two elements of [Projﬁ]
with the required properties. Then B, — B;L is ®-invariant. By assumption we can write B, — B;L =
D avp b')‘u(q)[S)‘], for some polynomials b}, ,(q) € Z[g]. Since these coefficients are polynomials, Lemma 3.5.7
forces B,, — BL = 0, proving uniqueness.

To prove existence, we argue by induction on dominance. If g is minimal in K2 then we can set
By, = [S#] = D* by Lemma 3.5.7. If € K} is not minimal with respect to dominance then set Bj, = [D¥].
Tl‘hen (BL)® = B,, and B,, = [S¥] + E;wu by (@)[S¥], for some L.aurent polynomial.s biw(q) G Zlg,q 1. If
by (@) € qZlq| for all p D v then we can set B, = B,,. Otherwise, find g > v minimal with respect to
dominance such that b,,(q) ¢ ¢Z[q]. Using induction, define B, = B,, — pu.(q) By, where p,,(q) is the
unique Laurent polynomial such that pp.,(¢) = pu.(¢) and b),,,(¢) — puw(q) € gZ[g]. Then (B,;)® = B,; and
the coefficient of [S¥] in Bj; belongs to ¢Z[q]. Continuing in this way, a finite number of steps will construct
an element B,, with the required properties.

Turning to the inner products, if X, u € K* then, since ([S7], [S"']®) = do+ by (3.5.4),

(B Bu) = (BNBJ) = > 0 (a) bru(a)([57],[57]%)

oA T

> (@) boul9).

ADo>p

In particular, (B*, B,) € dxu + ¢ 'Z[g"!]. On the other hand, (B*,B,) = (B*#,B,) = (B*,B}]) =
(B*, B,,) by Lemma 3.5.6, Therefore, (B> B,,) = dx, as this is the only bar invariant polynomial in
Oap +q ' Zlg . a

By Lemma 3.5.5, the action of F; on [Repﬁ] and [Projﬁ\], for ¢ € I, commutes with # and with &®.
(In the language of [20, §3.1], # and ® are compatible bar-involutions). It follows that the basis {B*} is
Lusztig’s canonical basis [87, §14.4], or Kashiwara’s upper global basis [63], of L(A) and {B,} is the
dual canonical basis, or the lower global basis.

3.5.9. Proposition. Suppose that F is an arbitrary field and that n > 0. Then the following are equivalent:
a) B* = [YH], for all p € KA.
b) B, = [DH], for all p € K.
¢) dxau(q) € 6xp + gN[q], for all X € P,, and p € K2.

Proof. In the Grothendieck groups, [D*] = [S] 4 305, ean(q)[S#] and [Y*] = [S*] + 3=, x dan(9)[SH].
Moreover, by Lemma 3.5.7, [Y#]# = [Y#] and [D*]|® = [DH], for p € K. By definition, dx.(q) € N[g,q7!]
and e, = d;'. Therefore, dxu(q) € dau + qN[g] for all A, p, if and only if ex,(q) € dau + ¢Z[g] for all X, p
Hence, the proposition is immediate from Proposition 3.5.8. O

We can now state Ariki’s celebrated Categorification Theorem. By specializing ¢ = 1 the quantum group
U, (E,A[e) 4 ® Q becomes the Kac-Moody algebra U(sl.). Let Li(A) be the irreducible integrable highest weight
U(s?[e)—module of high weight A. The canonical bases of L;(A) are obtained by specializing ¢ = 1 in the
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canonical bases of L(A)4. Forgetting the grading in the results above, Rep(g >~ I1(A) = Projg7 where
Repg2 =, Rep () ©7 Q and Projg =P, Proj (D) 92 Q.

3.5.10. Theorem (Ariki’s Categorification Theorem [2, Theorem 4.4]).
Suppose that F is a field of characteristic zero. Then the canonical basis of L1(A) coincides with the basis of
(ungraded) projective indecomposable 2 -modules { Y] | X € KAY of Proja.

For a detailed proof of this important result see [4, Theorem 12.5]. For a overview and historical account of
Ariki’s theorem see [41]. For a proof in the degenerate case see [21, Theorem 3.10].
Combining Theorem 3.5.10 with Proposition 3.5.9 we obtain the main result of this section.

3.5.11. Corollary (Brundan and Kleshchev [20, Theorem 5.14]). Suppose that F' is a field of characteristic
zero. Then the canonical basis of L(A) coincides with the basis {[Y*] | A € KA} of [Proja(q)]. In particular,
dxp(q) € 6xu + qNg], for all X, p € K*.

When A is a weight of level 2 and e = co this was first proved by Brundan and Stroppel [24, Theorem 9.2].
For extensions of this result to cyclotomic quiver Hecke algebras of arbitrary type see [62,84,115,127].

Corollary 3.5.11 implies that the graded decomposition numbers dx,(g) = [S* : DH], = b**(q) are
parabolic Kazhdan-Lusztig polynomials. Explicit formulas are given in [92, Lemma 2.46]. When e = co see
also [50, Theorem 7.8] and [18, Theorem 3.1].

For the canonical basis { B*} it is immediate that b*¥(q) € Z[q] are polynomials, however, it is a deep fact
that their coefficients are non-negative integers. In contrast, it is immediate that dx,(¢)N[g,¢'] but it is
a deep fact that they are polynomials rather than Laurent polynomials. Thus, the difficult result changes
from positivity of coefficients to positivity of exponents in the graded setting. In fact, it is also true when
F = C that the inverse graded decomposition numbers ex,(—q) = bx,(—¢) are polynomials with non-negative
integer coefficients. This is perhaps best explained by passing to the Koszul dual of the corresponding graded
cyclotomic Schur algebras [6,50,121] using [50,92].

Brundan and Kleshchev’s proof of Corollary 3.5.11 is quite different to the one given here. They have to
work quite hard to define triangular bar involutions on L(A) whereas we have done this by exploiting the
representation theory of #*. The catch is that Brundan and Kleshchev have an explicit description of their
bar involutions, which they can compute with, whereas we have no hope of working with our bar involution
unless we already know the graded decomposition matrices. On the other hand, our approach works for any
multicharge k.

To complete the proof of Corollary 3.5.11, Brundan and Kleshchev lift Grojnowski’s elegant approach [46]
to the representation theory of #* to the graded setting. As a result they obtain graded analogues of
Kleshchev’s modular branching rules [16, 70, 71] which, under categorification, correspond to the action of
the crystal operators on the crystal graph of L(A); see [20, Theorem 4.12]. By invoking Ariki’s theorem
they deduce an analogue of Corollary 3.5.11, although possibly with different labelling of the simple modules.
Finally, they then prove that the labelling of the irreducible #*-modules coming from the branching rules
agrees with the labelling in Corollary 1.5.2; compare with [5,7].

We have not yet given an explicit description of the labelling of the (graded) irreducible #*-modules
because, by definition, KA = {u € P, | D* # 0}. Extending (3.2.1), given nodes A, C' € Rem;(\) define

dS=#{BecAdd;(\) | A< B<C}—-#{BcRem(\) | A< B<C}.

Following Misra and Miwa [104] (and Kleshchev [69]), a removable i-node A is normal if d4 < 0 and d§ < 0
whenever C' € Rem;(A) and A < C. A normal i-node A is good if A < B whenever B is a normal i-node.
Write A geedy 4y if 4y = A+A for some good node A. Misra and Miwa [104, Theorem 3.2] show that the crystal
graph of L(A) 4, considered as a submodule % ﬁ, is the graph with vertex set

L ={pneP | p=0or X ged, y for some X € L},
and with labelled edges A Ly pu whenever p is obtained from A by adding a good i-node, for some i € I.

3.5.12. Corollary (Ariki [3]). Suppose that F is an arbitrary field and that p € P,. Then K» = £}, That
is, if pu € Py, then DY % 0 if and only if p € L.

Proof. If F is a field of characteristic zero then K* = .,fOA by Corollary 3.5.11, Proposition 3.5.9 and the
definition of crystal graphs. If F' is a field of positive characteristic then a straightforward modular reduction
argument shows that D% # 0 only if DE # 0, for p € P,, (compare with §3.7 below). So, KA C Z2. By
Proposition 3.5.3, the number of irreducible .#*-modules depends only on e, and in particular not on F, so
KA = £ as required. O
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3.6. Homogeneous Garnir relations. We have now seen that %2 is a graded cellular algebra and, as a
consequence, that there exist graded lifts of the Specht modules for arbitrary A € P*. However, at this point
we cannot really compute inside the graded Specht modules because we do not know how to write basis
elements indexed by non-standard tableaux in terms of standard ones. This section shows how to do this.
First we need some combinatorics.

Fix a multipartition A and a node A = (I,r,¢) € A. A (row) Garnir node of X is any node A = (I,7,¢)
such that (I,7 + 1,¢) € A. The (e, A)-Garnir belt is the set of nodes

Ba={(,rc)eXx|r>cande[=t] <AV —c+1}
U {Ur+1l,c)eAr] rgcandcze(%]}.

Let by = #B4/e and write by = aa + c4 where ea 4 is the number of nodes in B4 in row (I,7). Let P4 be
the set of minimal length right coset representatives of &, , x 6., in &, ,; see, for example, [97, Proposition 3.3].
When e = oo these definitions should be interpreted as By =0, by =0 =a4 = c4 and 24 = 1.

Suppose A is a Garnir node of A. The rows of A are indexed by pairs (I,r), corresponding to row r in p®
where 1 <[ < /¢ and r > 1. Order the row indices lexicographically. Let t4 be the A-tableau which agrees
with t* for all numbers k < t*(A) =t*(I,r,c) and k > t*(I,7 + 1, ¢) and where the remaining entries in rows
(I,7) and (I,r 4+ 1) are filled in increasing order from left to right first along the nodes in row (I,r 4+ 1) which
are in the first ¢ columns but not in B 4, then along the nodes in row (I,7) of B4 followed by the nodes in
row (I,7+ 1) of B4, and then along the remaining nodes in row (I, r).

3.6.1. Example As Garnir belts are contained in consecutive rows of the same component, the general case

can be understood by looking at a two-rowed partition (of level one), so we consider the case e = 3, A = (14, 6)
and A= (1,1,4). Then

o_(1[2[3]56]7)8 F910j11]12[13]17]18]

A7 4 |i4]15]16]19[20
The lines in t4 show how the (3, A)-Garnir belt decomposes into a disjoint union of “e-bricks”. In general, b4
is equal to the number of e-bricks in the Garnir belt and a4 is the number of e-bricks in its first row. In this
case, by =4 and ay = 3. Therefore, 24 = {1, s3, 8382, $35251 }. O

Let k4 = ta(A) be the number occupying A in t4. For 1 <r < by define
ka+tre—1

wh = H (a,a+e).

a=ka+te(r—1)

The elements {w? | 1 < < ba } generate a subgroup of &,, that is isomorphic to &, via the map w? + s,,
for 1 <r < ba. Set i =it4. If d € P4 choose a reduced expression d = s, ... s,, for d and define

i = (i) (W + 1) (s +1) € B

The elements Tj‘ of #2 seem to be very special and deserving of further study. They are homogeneous
elements in % of degree zero which are independent of all choices of reduced expressions. Moreover,
by [75, Theorem 4.13], the elements { 72 | 1 <r < b4 } satisfy the braid relations and they generate a copy
of Gy, inside Z2!

3.6.2. Theorem (Kleshchev, Mathas and Ram [75, Theorem 6.23]). Suppose that X € P,, and that Z is an
integral domain. The graded Specht module S2 of #2(Z) is isomorphic to the graded % -module generated
by a homogeneous element v of degree degth subject to the relations:

a) ve(l) = O vn.

b) vwys =0, for 1 < s < n.

¢) v, =0 whenever r and r + 1 are in the same row of t*, for 1 <r < n.

d) Yieq, vnth,Ty =0, for all Garnir nodes A € X.

There is an analogous description of the dual Specht modules S,, in terms of column Garnir relations [75, §7].
The relations in part (d) are the homogeneous Garnir relations. These relations are a homogeneous
form of the well-known Garnir relations of the symmetric group [54, Theorem 7.2]. Relations (a)—(c) already
appear in [23] and, in terms of the cellular basis machinery, they are a consequence of Proposition 3.2.9. The
most difficult part of the proof of Theorem 3.6.2 is showing that the 74 satisfy the braid relations. This is
proved using the Khovanov-Lauda diagram calculus which was briefly mentioned in §2.2. Like Theorem 3.2.8
this result holds over an arbitrary ring. To prove that the graded module defined by the presentation in
Theorem 3.6.2 has the correct rank the constructions of the graded Specht module S* over a field from

Theorem 3.2.6, from [23,49], are used.
One of the main points of Theorem 3.6.2 is that it makes it possible to do calculations in the graded Specht
modules defined over an arbitrary ring. Prior to Theorem 3.6.2 the only way to compute inside the graded
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Specht modules was, in effect, to use the isomorphism %Z2 5 J#* of Theorem 3.1.1 to work in the ungraded
setting then use the inverse isomorphism J#* =+ %2 to get back to the graded setting. This made it difficult
to keep track of, and to exploit, the grading on S* — and it was only possible to work with Specht modules
defined over a field.

Theorem 3.6.2 also gives the relations for S* as an %,,-module. From this perspective Theorem 3.6.2 can
be used to give another construction of the graded Specht modules. For o, 8 € QT let Zop = Zo @ XZg.
Definition 2.2.1 implies that there is a non-unital embedding Za g — Za+s which maps e(i) ® e(j) to e(iVj),
where iV j is the sequence obtained by concatenating i and j. Under this embedding the identity element

of #o,p maps to
€a8 = Z e(iVj).
iel> jelp

Definition 2.2.1 implies that Zo+g is free as an %, g-module, so the functor

Imd (MR N) = (MR N)eas @, , Rats
is a left adjoint to the natural restriction map. Iterating this construction, given fi,..., 8, € QT and %3,
modules My, for 1 < k < £, define

Mo oMy =nd} P (M K- - & My).

The definition of the graded Specht modules by generators and relations in Theorem 3.6.2 makes the
following result almost obvious. This description of the Specht modules is part of the folklore of these algebras
with several authors [21,126] using it as the definition of Specht modules.

3.6.3. Corollary (Kleshchev, Mathas and Ram [75, Theorem 8.2]). Suppose that \*) € Py 5, for B, € Q*
and 1 <k < ¢, so that X € Pg, where § = 31 +---+ B¢. Then there is an isomorphism of graded R -modules
(and graded Z,,-modules),

SMdegt™” 4+ degt*”) 2 (S2 0+ 0 S ) (deg tY),
where on the right hand side SN s considered as an Hpg, -module, for 1 <k < L.

A second application of Theorem 3.6.2 is a generalization of James’ famous result [54, Theorem 8.15] for
symmetric groups which describes what happens to the Specht modules when they are tensored with the sign
representation. First some notation.

Following [75, §3.3], for i € I"™ let —i = (—i1,--- —i,) € I". Recalling the multicharge k from §1.2,
set k' = (—ky,...,—k1) and let A" = A(k’) € P*. Similarly, if 8 = Y, a;a; € QT let §/ = 3. a;a;.
Inspecting Definition 2.2.9, there is a unique isomorphism of graded algebras
(3.6.4) sgn:%’gﬂ%’é\/’; e(i) —e(-1), yr+— —y,, and Y5 —s,

for all admissible  and s and i € I%. The involution sgn induces an equivalence of categories Rep (%’é\,/) —
Rep (%’g) which sends an %é\,,—module M to the %é\—module M#=g* where the %é\—action is twisted by sgn.

3.6.5. Corollary (Kleshchev, Mathas and Ram [75, Theorem 8.5]). Suppose that pu € Pgs, for B € Qt. Then
SH = (S,)%8 and S, = (S“/)sgn as %’é\-modules.

In [75] this is proved by checking the relations in Theorem 3.6.2. As noted in [50, Proposition 3.26], this
can be proved more transparently by noting that, up to sign, the involution sgn maps the v-basis of Z2 to
the 1)’-basis of :%’g,l. Some care must be taken with the notation here. For example, if p € Pg then p' € Pgr.
See [50, §3.7] for more details.

We give an application of these results to the graded decomposition numbers. First, by Corollary 3.5.12
if o € K2 there exists i € I"™ and a sequence of multipartitions gy, = 0, pty, ..., ¢, = p in K* such that
My q is obtained from p; by adding a good ix-node, for 0 < k < n. It follows from the modular branching
rules [20, Theorem 4.12], and properties of crystal graphs, that there exists a unique sequence of multipartitions
m(pg) = 0,m(p,y),...,m(p,) = p such that m(p, ) is obtained from m(p,,) by adding a good —ij-node
and m(py ) € lC‘k\/H, for 1 < k < n. The Mullineux conjugate of p is the multipartition m(u). Thus,
D™(#) is a non-zero irreducible %’é\/-module. We emphasize that the %’é\/-module D™(#) ig defined using the

1-basis of %é\,, and hence the crystal theory used in §3.5, with respect to the multicharge k'.
3.6.6. Theorem. Suppose that u € K5, for 8 € Q1. Then (D™)s82 = Di g5 %g-modules.

Proof. As sgn is an equivalence of categories, (D™(®))%e® = D¥(d) for some v € IC@ and d € Z by Corol-
lary 3.2.7. Since sgn is homogeneous, by Theorem 2.1.4(a),
dimg (D™))*e = fim, D™ = dim Dm(®) = dim(Dm(K))sen,
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so that d = 0 and (D™(®)se = D¥  To show that v = p it is now enough to work in the ungraded setting.
Therefore, we can either use the modular branching rules of [5,46], or their graded counterparts from [20,
Theorem 4.12], together with what is by now an almost standard argument due to Kleshchev [70, Theorem 4.7],
to show that v = p. O

As we have defined it, sgn induces an equivalence Rep (%4, ) — Rep (,@é\) As sgn is an involution, we also
write sgn: Rep (%//3\) — Rep (%//3\,/) for the inverse equivalence. With this small abuse of language, the last
two results can be written as (S*)%€* = Sy, and (DH)%8* = D™(K) a5 %’g;-modules, for X € Pg and p € ICQ.
3.6.7. Corollary. Suppose that F is a field and that A € Pg and p € K5. Then dpp(q) = 1, dppyul(q) = qlefr

and dx,(q) # 0 only if m(u) > X > p. Moreover, if F = C then 0 < degd(g\“(q) < def u whenever
m(p) > A > pu.

Proof. Suppose that A € Pg and p € /Cg\. Then
(S DH], = (S5 (D),

=[Sy : Dm(”)]q, by Corollary 3.6.5 and Theorem 3.6.6,
= glefr[(sN)® . D™, by Corollary 3.3.5,
= gt H[SN . Dmw)] | by Theorem 2.1.4(a) and §3.5.

By Theorem 2.1.4(c), if 7 € K2 and o € P,, then d,(1) = 1 and dx,(g) # 0 only if A > p. Therefore,
Am(p)y (@) = O P dmuymp) = ¢ and dx,(g) # 0 only if m(p)’ > A > p. The argument so far is valid
over any field. Now suppose that F' = C. Then dx,.(q) € dx. + ¢[N], by Corollary 3.5.11, so the remaining
statement about the degrees of the graded decomposition numbers follows. O

Corollary 3.6.7 was conjectured by Fayers [38]. He was interested in this property of the graded decomposition
numbers in characteristic zero because it leads to a more efficient algorithm for computing the graded
decomposition numbers dx,(q), for X € P, and p € KA. (When e > n a very fast algorithm is given
in [50, §5].)

3.7. Graded adjustment matrices. All of the results in this section have their origin in the work of
James [55] and Geck [40] on adjustment matrices. Brundan and Kleshchev have given two different approaches
to graded decomposition matrices in [19, §6] and [20, §5.6]. In this section we give third cellular algebra
approach. Even though our definitions and proofs are different, it is easy to see that everything in this section
is equivalent to definitions or theorems of Brundan and Kleshchev — or to graded analogues of results of
James and Geck.

Before we introduce the adjustment matrices, let A[I"] be the free A-module generated by I™. The
g-character of a finite dimensional %,,-module M is

Chy M =Y dimq M; -i € A[I"],
ieln

where M; = Me(i), for i € I". For example, Ch, S* = 2 testd(n) qdes® . jt,

3.7.1. Theorem ( [67, Theorem 3.17]). Suppose that Z is a field. Then the map
Chy : [Rep(%n)] — A[I"]; [M] — Chy M
18 1njective.

As every %Z2-module can be considered as an %,,-module by inflation, it follows that the restriction of Ch,
to [Rep(Z2)] is still injective. Extend the map ® to A[I"] by defining (}; fi(q) - i)® =", fi(g) - i. Then
(Chy[M])® = Ch,[M®], for all M € Rep(Z2).

In this section we compare representations of cyclotomic KLR algebras over different fields. Write S% for
the graded Specht module of the algebra %2 (Z) defined over the ring Z, for A € P,,. Similarly, if F is a field
and p € K2 let D% be the corresponding graded irreducible %2 (F)-module. If K is an extension of F' then
D% =~ DY ®p K since D% is absolutely irreducible by Theorem 2.1.4.

Suppose that g € P,,. By Theorem 3.2.8, or by Theorem 3.6.2, the graded Specht module S¥ is defined over Z

and S4 = SF' ®@7 Z for any commutative ring Z. The graded Specht module S¥ has basis {¢; | t € Std(p) }
and it comes equipped with a Z-valued bilinear form ( , ) which is determined by

(3.7.2) (s, Vi) her = Psthur = wswé(t)y“e(ik)v
where y* € %2 is given in Definition 3.2.2. Following (1.3.3), define the radical of S to be

radS§ ={ze€ Sy | (z,y)=0forallye S }.
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In fact, by (3.7.2), rad S = {z € S¥ | xa =0 for all a € (Z2)=+ }.
3.7.3. Definition. Suppose that p € P,,. Let DY =S¥ /rad S} .

By definition, rad S% is a graded submodule of S, so DY is a graded %2 (Z)-module. Hence, DY @z Z is
a graded Z2 (Z)-module for any ring Z.
The following result should be compared with [19, Theorem 6.5].

3.7.4. Theorem. Suppose that p € Pp,. Then rad Sy is a Z-lattice in rad Si; and Dy is a Z-lattice in Dg.
Consequently, Dy = D¥ ®7 Q and Ch, Df; = Ch, Dg.

Proof. Fix an ordering Std(p) = {t1,...,t.} of Std(u) and let G5 = ((¢5, ¢1)) be the Gram matrix of S¥'. As
Z is a principal ideal domain, by the Smith normal form there exists a pair of bases {a,} and {bs} of S¥ such
that ((a,,bs)) = diag(dy.ds,. .., d,) for some non-negative integers such that di|ds|...|d,, where d, = 0 only
if dg =0 for all s > r. That is, di,...,d. are the elementary divisors of the Gram Matrix G%. As the form is
homogeneous, we may assume that the bases {a,} and {bs} are homogeneous with dega, = degt, = — degb,.
Moreover, in view of Proposition 3.2.9(a), we can also assume that a,e(i) = it ja, and bse(i) = ds. ;bs, for
1<rs<zandie I". Comparing with the definitions above, it follows that {a, | d, =0} is a basis of
rad S5 and that {a, + rad S¥ | d, =0} is a basis of D¥. All of our claims now follow. O

For an arbitrary field F, it is usually not the case that D% is isomorphic to DY ®z F as an Z2 (F)-module.
Indeed, if F is a field of characteristic p > 0 then the argument of Theorem 3.7.4 shows that
dimp Dz = {1 <7 <2z | d, #0 (mod p) } <rankz Dy = dimg D,
with equality if and only if all of the non-zero elementary divisors of G¥ are coprime to p.

3.7.5. Definition (cf. Brundan and Kleshchev [20, §5.6]). Suppose that F is a field. For A, u € K2 define
Laurent polynomials afﬂ(q) € Ng,q7 ] by

af(@) = S [D3 @z F : Ditd)] ¢,
deZ

The matriz af = (afu(q)) is the graded adjustment matriz of %> (F).

Recall that dx,(q) is a graded decomposition number of #2. When want to emphasize the base field F
then we write d5,,(q) = [S7 : D], and d} = (d5,,(¢)). Note that e is always fixed.
3.7.6. Theorem (cf. Brundan and Kleshchev [20, Corollary 5.11, Theorem 5.17]). Suppose that F is a field.
Then:

a) If A, p € K& then a¥y (1) =1 and afu(q) # 0 only if X > w. Moreover, afu(q) = afu(q).

b) We have, df = diIQ o ag. That is, if X € P, and p € K2 then

(5% : Dyl =dXu(a) = ) d3,(@)ay,

vekld

Proof. By construction, every composition factor of D @ F is a composition factor of S, so the first two
properties of the Laurent polynomials af (q) follow from Theorem 2.1.4. By Theorem 3.7.4, the adjustment

matrix induces a well-defined map of Grothendieck groups a [Rep(%A(Q))] — [Rep(Z2(F))] given by
pneEKS

Taking g-characters, Ch Da =, afﬂ( ) Chy D%.. Applying ® to both sides gives Ch DQ =2, a)\“( ) Ch, D%

Therefore, afu(q) = aA”( ) by Theorem 3.7.1, completing the proof of part (a). For (b), since Sp = S? @z F

53 =al (183]) =al (3 % @g) = 3 Y 4, (@ab @)Dk

vekh vekh pekh

Comparing the coefficient of [D%] on both sides completes the proof. O

Corollary 3.5.11 determines the graded decomposition numbers of the cyclotomic Hecke algebras in
characteristic zero. There are several different algorithms for computing the graded decomposition numbers
in characteristic zero [38,43,50,76,82,124]. To determine the graded decomposition numbers in positive
characteristic it is enough to compute the adjustment matrices of Theorem 3.7.6. The simplest case will be
when afu (q) = 6ap, forall A, pn € KA. Unfortunately, we currently have no idea when this happens. Two
failed conjectures for when aqF is the identity matrix are discussed in Example 3.8.4 and Example 3.8.5 below.
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3.8. Gram determinants and graded adjustment matrix examples. The graded cellular basis of
FD = #MN(Z) given by Theorem 3.2.8 (or Theorem 3.6.2), defines a Z-valued homogeneous symmetric bilinear
form on the graded Specht modules S*, for A € P,,. Using Theorem 3.6.2 it is possible to calculate this form.
In general, the homogeneous bilinear form is difficult to compute, however, it gives a lot of information about
the Specht modules and the simple modules of Z2.

By (1.3.2), if s,t € Std(A) then the inner product (15, %) can be computed inside the Specht module S*
using (3.7.2). This section computes the Gram matrices G = ({15, %)) in several examples.
3.8.1. Example (Semisimple algebras) Suppose that (A, ;) <1, foralli € I. Let A € P, and s, t € Std(A).
Then (15, ) = b because i* = it if and only if s = t by Lemma 2.4.1. Hence, G2 is the identity matrix for
all A € P,,. O

3.8.2. Example (Nil-Hecke algebras) Suppose that A = nA; and 8 = nq;, for some ¢ € I. Let A =
(1[1]...|1) € Py, as in §2.5, and suppose s,t € Std(X) then (g, o) = byt ys=2 . yn_1, by (3.7.2)
and Example 3.2.4. By Proposition 2.5.2, 1sp¥ = ), where u = sd(t) 1, if £(d(u)) = £(d(s)) + £(d(t)) and
otherwise 151y = 0. On the other hand, by the last paragraph of the proof of Proposition 2.5.2, or simply
by counting degrees, ¥ y! Yy 2. . yp_1 = 0 if u # ty and Yo, yT yr 2 yn1 = (1) =22} Hence,
(1s, 1) = dsrr, where t' = tad'(t) is the tableau that is conjugate to t. Hence, G2 is (—1)"("~2)/2 times the
anti-diagonal identity matrix. O

3.8.3. Example Suppose e =2, A = Ag and A = (2,2,1). Then Std(\) contains the five tableaux:

=t  ty ts ts ts
[113] [113]
t [314] [2[5] [2[4] [315] [2[5]
4] 4]
d(t) 1 S$254 S2 S4 525483
degt 2 -2 0 0 0

i 01100 01100 01100 01100 01010

We want to compute the Gram matrix G = ((1/15,1/Jt>) of S3. Now (¢y,1:) # 0 only if i* = it, by
Proposition 3.2.9(a), and if degs + degt = 0 since the bilinear form is homogeneous of degree zero. Hence, the
only possible non-zero inner products are

<1r/)t17wt2> = <’lr/)t*a¢t’\w2w4> = <1/)t%¢471/’t*¢2> = <wt47¢t2>
together with (¢, , ¥, ), (Yr,, ¥r,) and (Pr,, ¥, ). By (2.2.3), if a € {2,4} then
<¢txwa,¢twa> = <¢tA 3#/@) = i<¢t* (ya - ya+1)ﬂ/’t*> =0,

since Yy, = 0, for 1 < r < 5. To compute the remaining inner products we have to go back to the definition
of the bilinear form (3.7.2). By Definition 3.2.2, y* = 3214 so

(Ve )her = Yxhathayoys = YoxhayoVays = e (y3th2 + 1) (yss + 1) = Y,
by Proposition 3.2.9(c). Hence, (¢r,,¥r,) = 1 = (r,, ¢, ). Finally, using (2.2.3),
(s, Yes )ix = Yrthotha3hathayoys = Yiathotha(2ysys — Y3 — Y3 )20ayoya.

Now veathayz = vex (Y2101 + 1) = vea and, similarly, viayathy = —ven. Consequently veat)otpay? = 0, for a = 3,4,
so that Yathehyp? = =2, Similarly (¥, ¢y, ) = —2. Therefore, the Gram matrix of 21 is

0100 0
1000 O
Gy=10001 0
0010 0
0000 —2

Consequently, the elementary divisors of G’Z\ are 1,1,1,1,2. Therefore, if v = —1 and Z = Q then S@ = Da) is
irreducible, as is easily checked using Corollary 1.7.6. Now suppose that v = 1 and Z = g, so that £ = Fy&5.
Then the calculation of G3 shows that the Specht module S* is reducible with dimp, D]%‘? =4 <5 =dimg D@.

It follows that if e = p = 2 then D) s also a composition factor of S*, so aI(F; 2,1),(15) = 1. O

3.8.4. Example Kleshchev and Ram [78, Conjecture 7.3] made a conjecture which, in type A, is equivalent
to saying that the adjustment matrices ag of the (cyclotomic) KLR algebras are trivial when e = oo.
Williamson [128] has given an example which shows that, in general, this is not true. Williamson’s example
comes from geometry [65], however, when it is translated into the language that we are using here it corresponds
to a statement about the simple module D¥, for p = (2|2]1|1|3|3|2|2), for the cyclotomic quiver Hecke algebra
R with e = co and A = 2A; + 2Ay + 2A3 + 2A,. Fix the multicharge k = (4,4,3,3,2,2,1,1) and set
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i=(4,5,3,4,2,3,4,5,2,3,1,2,3,4,1,2). So y* = y1y9y15y19. There are 5 standard p-tableaux of degree zero
with residue sequence i, namely:

t £(d(t))
(18| (121 @3 | (3] | (51617) | [OI0LA | (56 | K3 ) 23
(0121 E18)| 63 | (3) | BI04 | (5T617) | 0918 | [T2 ) 28
([I8)|[A12)| (3 | (3) | [OIdLd | (5T617) | (112 | [5G ) 28
([I8)| (A1) 19 | (3] (91304 | (5617) | [5G | A2 ) st
([18)| (112)| (3] | (3 | (915014 | (51617 | (516 | (2 ) 31

The Gram matrix for this component of the Specht module S* is

0 0 -1 -1 0
0 0 -1 -1
-1 -1 0 -1 -1
-1 -1 -1 0 -1
0 0 -1 -1 0

Calculating this matrix is non-trivial because the lengths of the permutations d(t) are reasonably large. This
matrix was computed using the authors’ implementation of the graded Specht modules in Sage [122]. Brundan,
Kleshchev and McNamara [22, Example 2.16] obtain exactly the same matrix, up to a permutation of the
rows and columns, as part of the Gram matrix for the homogeneous bilinear form of the corresponding proper
standard module for Z,.

The elementary divisors of this matrix are 1,1,2,0,0, so the dimension of D*e(i) is 2 in characteristic 2
and 3 in all other characteristics. Consequently, the dimension of D#, and hence the adjustment matrix ag
for .@{\G(F ), depends on the characteristic of F' — as was first proved by Williamson geometrically. O
3.8.5. Example Consider the case when A = Ag, so that J#2 is the Iwahori-Hecke algebra of the symmetric
group. The James conjecture [55, §4] says that if F' is a field of characteristic p > 0 and A\, u € P,, then
ax,(q) = 05y if ep > n. A natural strengthening of this conjecture is that the adjustment matrix of %//3\ is
trivial whenever def § < p. For the symmetric groups, the condition def 8 < p exactly corresponds to the case
when the defect group of the block %’9 is abelian.

The James conjecture is known to be true for blocks of weight at most 4 [36,37,55,112]. Moreover, for every
defect w > 0 there exists a Rouquier block of defect w for which the James conjecture holds [56]. Starting
from the Rouquier blocks, there was some hope that the derived equivalences of Chuang and Rouquier [26]
could be used to prove the James conjecture for all blocks.

Notwithstanding all of the evidence in favour of the James conjecture, it turns out that the conjecture
is wrong! Again, Williamson [129, §6] has cruelly (or kindly, depending on your perspective) produced
counterexamples to the James conjecture. At the same time he also found counterexamples to the Lusztig
conjecture [86] for SL,,. These examples rely upon Williamson’s recent work with Elias which gives generators
and relations for the category of Soergel bimodules [32]. As of writing, the smallest known counterexample
to the James conjecture occurs in a block of defect 561 in Fg39G467874. It is unlikely that Williamson’s
counterexample can be verified using the techniques that we are describing here. %

Brundan and Kleshchev [20, §5.6] remarked that a% H(q) € N in all of the examples that they had computed.
They asked whether this might always be the case. The next examples show that, in general, afu(q) ¢ N.
3.8.6. Example (Evseev [33, Corollary 5]) Suppose that e =2, A = Ag and let A = (3,22,12) and p = (19).
Take F = I3 to be a field of characteristic 2 and let af’ = (ax,(g)) be the adjustment matrix.

As part of a general argument Evseev shows that ax,(¢) = ¢ + g~ '. In fact, this is not hard to see directly.
Comparing the decomposition matrix for FoSg given by James [54] with the graded decomposition matrices
when e = 2 given in [97], shows that d(%t =0, d]ii = 2, and that ay,(1) = 2. Now Dg = Dg e(i*) is one
dimensional, so any composition factor of Sﬁ‘z that is isomorphic to DIIF: (d), for some d € Z, must be contained
in Sﬁ‘ze(i“). There are exactly six standard A-tableau with residue sequence i#, namely:

degt

t

-1

9]

9]

5]

3]

7]

7]

1
6

7]
B

[c]ee]ro]=

|oo]en || =

[N[o]ee]ro]=

[oo[ws] —

[ [ee]no]—

[oo][a[ro] =

BN

o|a|s] ~

[co]oo]ee]wo =

u:>|c>|w|w —

1
15]
18]
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As D* is one dimensional, and concentrated in degree zero, it follows that a]f\i = dgth (¢9) =q+q'. We can

see a shadow of the adjustment matrix entry in the Gram matrix of S'e(i#) which is equal to

o 0 O 0 0 0
o 0 O 0 0 0
o 0 O 0 0 4
o 0 O o 0 -2
o 0 O 0 0 2
o 0 4 -2 2 0

The elementary divisors of this matrix are 2,2,0,0,0,0, with the 2’s in degrees +1. Therefore, the graded
dimension of Dﬁ;e(i”) decreases by g + ¢! in characteristic 2. O

3.8.7. Example Motivated by the runner removable theorems of [25,58] and Example 3.8.6, take e = 3,
F =Ty, A= (3,2%13) and p = (1*). (The partitions A and p are obtained from the corresponding partitions
in Example 3.8.6 by conjugating, adding an empty runner, and then conjugating again.) Again, we work over
Fy and consider the corresponding adjustment matrices.

Calculating with SPECHT [95] we find that d%b = 0 and that dI)F\Z = 2 . Once again, it turns out that
there are exactly six A-tableaux with 3-residue sequence i#, with five of these having degree 1 and one having
degree —1. (Moreover, the Gram matrix of S*e(i*) exactly matches the Gram matrix given in Example 3.8.6.)
Hence, exactly as in Example 3.8.6, am):i (@) =q+q = d]f\z (q).

As the runner removable theorems compare blocks for different e over the same field we cannot expect to
find an example of a non-polynomial adjustment matrix entry in odd characteristic in this way. Nonetheless,
it seems fairly certain that non-polynomial adjustment matrix entries exist for all e and all p > 0.

Evseev [33, Corollary 5] gives three other examples of adjustment matrix entries which are equal to ¢+ ¢~
when e = p = 2. All of them have similar analogues when e = 3 and p = 2. Finally, if we try adding further
empty runners to the partitions A and p, so that e > 4, then the corresponding adjustment matrix entry is
zero. Interestingly, all of these partitions have weight 4. O

1

4. SEMINORMAL BASES AND THE KLR GRADING

In this final section we link the KLR grading on %2 with the semisimple representation theory of J#A
using the seminormal bases. We start by showing that by combining information from all of the KLR gradings
for different cyclic quivers leads to an integral formula for the Gram determinants of the ungraded Specht
modules.

4.1. Gram determinants and graded dimensions. In Theorem 1.7.3 we gave a “rational” formula for
the Gram determinant of the ungraded Specht modules S*, for A € P,,. We now give an integral formula for
these determinants and give both a combinatorial and a representation theoretic interpretation of this formula.

Suppose that the Hecke parameter v from Definition 1.1.1 is an indeterminate over Q and consider an
integral cyclotomic Hecke algebra #* over the field Z = Q(v) where A € P+ such that (A, a;,,) < 1, for all
i € I. Then " is semisimple by Corollary 1.6.11.

4.1.1. Definition. Suppose that A € P,,. For e > 2 and i € I define

deg s(A) = D deg.t,
teStd; ()
where Std;(A) = {t € Std(A) | i* =1i}. Set deg,(A) = D ;¢ n deg, ;(N). Forp a positive prime set Deg, () =
ZkZI degpk (}\)

By definition, deg,(X),Deg,(A) € Z. For e > 0 let ®.(x) be the eth cyclotomic polynomial in the
indeterminate x.

4.1.2. Theorem (Hu-Mathas [52, Theorem 3|). Suppose that A € Pt and (A, ;) <1, for alli € I. Let
A€ P,. Then
det G = H D, (v2)dese ),
e>1
Consequently, if v =1 then det G* = H pPegr(X),

p prime

Proving this result is not hard: it amounts to interpreting Definition 1.6.6 in light of the KLR degree
functions on Std(X). There is a power of v in the statement of this result in [52]. This is not needed here
because we have renormalised the quadratic relations in the Hecke algebra given in Definition 1.1.1.

The Murphy basis is defined over Z[v, v™']. Therefore, det G* € Z[v,v~'] and Theorem 4.1.2 implies that
deg,(A) > 0 for all A € P,, and e > 2. In fact, [52, Theorem 3.24] gives an analogue of Theorem 4.1.2 for the
determinant of the Gram matrix restricted to S™e(i), suitably interpreted, and the following is true:
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4.1.3. Corollary ( [52, Corollary 3.25]).
Suppose that e > 2, A € Py, and i € I}'. Then deg, ;(A) > 0.

The definition of the integers deg, ;(A) is purely combinatorial, so it should be possible to give a combinatorial
proof of this result. It may be possible to do this using Theorem 3.4.3, however, as we now explain, we think
that this is difficult.

Fix an integer e > 2 and a dominant weight A € PT and consider the Hecke algebra #* over a field F. If
A € P, then, by definition,

Chy S* = > daulq) Chy D* € A[T").
peKs
Let 0: A[I"] — Z[I™] be the linear map given by 9(f(q) - i) = f/(1)i, where f’(1) is the derivative of
f(q) € A evaluated at ¢ = 1. Then § Chy S* = ", deg, ;(A) -i. The KLR idempotents are orthogonal, so
dimgq DY = dimq D“ since (D#)® =~ DHF. Therefore, 9 Chy, D* = 0. Hence, applying 0 to the formula for
Ch, S* shows that

(4.1.4) > deg.;(A)-i=0Ch,$* =" Y dy,(1)dim D! -i

icln iel™ pekhd

Consequently, deg, ; = -, dy,, (1) dim D{*. So far we have worked over an arbitrary field. If I = C then
dxu(q) € N[g], by Proposition 3.5.8, so that d) (1) > 0. Therefore, deg, ;(A) > 0 as claimed. (In fact, using
Theorem 3.7.6 it is easy to see that the righthand side of (4.1.4) is independent of F', as it must be.)

Theorem 1.7.4 shows that taking the p-adic valuation of the Gram determinant of S* leads to the Jantzen
sum formula for S*. Therefore, (4.1.4) suggests that

(4.1.5) D RS =Y dhu (1)

k>0 B>

where we use the notation of Theorem 1.7.4. That is, Theorem 4.1.2 corresponds to writing the Jantzen sum
formula as a non-negative linear combination of simple modules. In fact, what we have done is not enough
to prove (4.1.5) — to do this it would be enough to prove analogous statements for the Gram determinants
of the Weyl modules of the cyclotomic Schur algebras [29]. Nonetheless, (4.1.5) is true, being proved by
Ryom-Hansen [117, Theorem 1] in level one and by Yvonne [131, Theorem 2.11] in general.

A better interpretation of (4.1.5) is given by the grading filtrations of the graded Specht modules [13, §2.4].

Let %{} = Homga (Y,Y'), where Y = GaueICA Y#. Then %{1\ is a graded basic algebra and the functor
Fro: Rep(Z2) —Rep(%); M+ Homga (Y, M), for M € Rep(Z2),

is a graded Morita equivalence; see, for example, [50, §2.3-2.4]. Recall that ¢, = (C)\H (q)) = dg od, is the
Cartan matrix of Z2. By Corollary 2.1.5, cx,(q) = dimq Hom gga (Y>,Y#) so that

dimg 7 = > eaulq) €N[g.q7).
A, peKs

Until further notice assume that I* = C. Then cx,(q) € Ng] by Corollary 3.5.11. Therefore, dimq %A € N[q]
so that %A isa posmvely graded algebra. Let M= @ d M, be a graded %A module. The grading filtration

of M is the filtration M = Go(M) D Gay1(M) D --- D G.(M) D 0, where
M) = D M
k>d

a < z, and dimg M = maq®+ - -+ m.q* for positive integers m, and m,. By definition, G,.(M) is graded and
it is an @{}—module precisely because %{L\ is positively graded. The grading filtration of an %Z,-module M is the
filtration given by G,.(M) = F,*(G,(F,(M))), for r € Z. As[S*] = > (@) [DH], and dxp(q) € xpn+qN[g],
it follows that S* = G¢(S?) and that G,.(S*) = 0 for 7 > def XA by Corollary 3.6.7.

For A € P, and p € K2 write dx,(q) = > >0 d(r) q", for d(T) € N.

4.1.6. Lemma. Suppose that F = C and that A € P,,. If 0 < r < def X then
&)
Gr(5Y)/Graa (8% = @D (D)™™,
e

Proof. This is an immediate consequence of the definition of the grading filtration and Corollary 3.5.11. O
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Comparing this with (4.1.5) suggests that J,.(S*) = G,.(5*), for r > 0. Of course, there is no reason to
expect that J,(S™) is a graded submodule of S*. Nonetheless, establishing a conjecture of Rouquier [82, (16)],
Shan has proved the following when A is a weight of level 1.

4.1.7. Theorem (Shan [119, Theorem 0.1]). Suppose that F is a field of characteristic zero, A = Ag, and that
X € P,. Then J.(8*) = G,(S*) is a graded submodule of S and [J,(S*)/J,+1(S*) : D*(s)] = b,.d%.., for
all p € KA and r > 0.

Shan actually proves that the Jantzen, radical and grading filtrations of graded Weyl modules coincide for
the Dipper-James v-Schur algebras [28]. This implies the result above because the Schur functor maps Jantzen
filtrations of Weyl modules to Jantzen filtrations of Specht modules. There is a catch, however, because Shan
remarks that it is unclear how her geometrically defined grading relates to the grading on the v-Schur algebra
given by Ariki [6] and hence to the KLR grading on %2. As we now sketch, Theorem 4.1.7 can be deduced
from Shan’s result using recent work.

Since Shan’s paper cyclotomic quiver Schur algebras have been introduced for arbitrary dominant weights
[6,50,121], thus giving a grading on all of the cyclotomic Schur algebras introduced by Dipper, James and the
author [29]. The key point, which is non-trivial, is that the module categories of the cyclotomic quiver Schur
algebras are Koszul. When e = oo this is proved in [50] by using Corollary 3.5.11 and [18] to reduce parabolic
category O for the general linear groups, which is known to be Koszul by [12,13]. Maksimau [92] follows the
recipe in [50] to prove Koszulity of Stroppel and Webster’s cyclotomic quiver Schur algebras for arbitrary e by
using [116] to reduce to affine parabolic category . Maksimau has to work much harder, however, because he
first has to explicitly identify the parabolic Kazhdan-Lusztig polynomials that give the graded decomposition
numbers of Z2.

As the module categories of the cyclotomic quiver Schur are Koszul, an elementary argument [13, Proposi-
tion 2.4.1] shows that the radical and grading filtrations of the graded Weyl modules of these algebras coincide.
By definition, the analogue of Lemma 4.1.6 describes the graded composition factors of the grading (=radical)
filtrations of the graded Weyl modules — compare with [50, Corollary 7.24] when e = oo and [92, Theorem 1.1]
in general. The graded Schur functors of [50,92] sends graded Weyl modules to graded Specht modules,
graded simple modules to graded simple Z2-modules (or zero), grading filtrations to grading filtrations and
Jantzen filtrations to Jantzen filtrations. Combining these facts with Shan’s work [119] implies Theorem 4.1.7
when A = Ay. We note that the v-Schur algebras were first shown to be Koszul by Shan, Varagnolo and
Vasserot [120]. It is also possible to match up Shan’s grading on the v-Schur algebras with the gradings
of [6,121] using the uniqueness of Koszul gradings [13, Proposition 2.5.1]. As these papers use different
conventions, it is necessary to work with the graded Ringel dual.

The obstacle to extending Theorem 4.1.7 to dominant weights A € PT of higher level is in showing that the
Jantzen and radical (=grading) filtrations of the graded Weyl modules of the cyclotomic quiver Schur algebras
coincide. As the cyclotomic quiver Schur algebras are Koszul it is possible that this is straightforward. It
seems to the author, however, that it is necessary to generalize Shan’s arguments [119] to realize the Jantzen
filtration geometrically using the language of [116].

4.2. A deformation of the KLR grading. Following [52], especially the appendix, we now sketch how to
use the seminormal basis to prove that Z2 = £ over a field (Theorem 3.1.1). The aim in doing this is not
so much to give a new proof of the graded isomorphism theorem. Rather, we want to build a bridge between
the KLR algebras and the well-understood semisimple representation theory of the cyclotomic Hecke algebras.
In §4.3 we cross this bridge to construct a new graded cellular basis { Bs} of #* which is independent of the
choices of reduced expressions that are necessary in Theorem 3.2.6.

Throughout this section we consider a cyclotomic Hecke algebra 7" defined over a field F' which has Hecke
parameter v € F'* of quantum characteristic e > 2. As in §1.2, the dominant weight A € P* is determined by
a multicharge k € Z*. We set up a modular system for studying " = A (F).

Let x be an indeterminate over F' and let O = F[z](;) be the localization of F[z] at the principal
ideal generated by x. Let K = F(z) be the field of fractions of O. Let J£° be the cyclotomic Hecke
algebra with Hecke parameter ¢t = x + v, a unit in O, and cyclotomic parameters Q; = ' + [x;]¢, for
1 <1</ Then K = #° @0 K is a split semisimple algebra by Theorem 2.4.8. Moreover, by definition,
AN = HNF) =2 H#° @0 F, where we consider F as an O-module by letting  act on F as multiplication
by zero.

As the algebra #K is semisimple it has a seminormal basis {fs} in the sense of Definition 1.6.4. With
our choice of parameters, the content functions from (1.6.1) become c¢Z(s) = 2=zl + [k; + ¢ — b]; =
2= gl 4 [cZ(s)] if s(1,b,¢) = r, for 1 < k < n. Then, L, fo = cZ(s) fs, for (s,t) € Std*(P,,). By Corollary 1.6.9,
the basis {fs} determines a seminormal coefficient system a = { a,(t) | t € Std(P,) and 1 <r <n} and a
set of scalars {1 | t € Std(P,) }.
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For i € I" let Std(i) = {s € Std(P,) | i* =i} be the set of standard tableaux with residue sequence i.
Define

(4.2.1) £= > F.

teStd(i)

By definition, f° € #K but, in fact, f© € 5#°. This idempotent lifting result dates back to Murphy [105]
for the symmetric groups. For higher level it was first proved in [101]. In [52] it is proved for a more general
rings O.

4.2.2. Lemma ( [52, Lemma 4.4]). Suppose thati€ I"™. Then f° € H#°.

We will see that f© ®o 15 is the KLR idempotent e(i), for i € I". Notice that 1 =Y, f© and, further,
that fiofjo = 5ijfio, for i,j € I, by Theorem 1.6.7.

As detailed after Theorem 3.1.1, Brundan and Kleshchev construct their isomorphisms %2 —~ A using
certain rational functions P,(i) and @, (i) in Flyi,...,yn]. The advantage of working with seminormal forms
is that, at least intuitively, these rational functions “converge” and can be replaced with “nicer” polynomials.
The main tool for doing this is the following result which generalizes Lemma 4.2.2.

Let M, = 1=t~ 'L, +tL, 41, for 1 <r < n. Then M, fo = MZ(s) fs, where M7 (s) = 1—t=1cZ (s)+tcZ, (s).
The constant term of M7 (s) is equal to 1)2“%(5)_1[1 — c&(s) + c%, 1 (s)]y # 0. Consequently, M, acts invertibly
on fg whenever s € Std(i) and 1 — 4, +i,41 # 0 in I = Z/eZ. This observation is part of the proof of part (a)

of the next result. Similarly, set pZ(s) = ¢Z(s) — ¢Z,(s). Then pZ (s) is invertible in O if 4, # i,41.

4.2.3. Corollary (Hu-Mathas [52, Corollary 4.6]). Suppose that 1 <r <mn andie€ I™.
S 1 1
&) If ir # irsy 1 then 3 = eg(.) Zehe a0
S 1

1
b) If ir #irga then ———— 0= % —
Ly = Lria sesa(i) P (s)

F, e x#P°.

The invertibility of M, fC, when i, # i,11 + 1, allows us to define analogues of the KLR generators of %2
in 22°. The invertibility of (L, — L,41)fC is needed to show that these new elements generate °.

Define an embedding I < Z;i — % by letting 7 be the smallest non-negative integer such that i = 7 + eZ,
foriel.

4.2.4. Definition. Suppose that 1 < r < n. Define elements © = Y icrn YO £ in L by

wr(?fio = (T’!‘L’I' - LTTT)t_%Tinv Zf i?' = ir+1 + 1;
(T.L, — LrTr)ﬁ O otherwise.

i 1 ’

2ip cp . .
(Tr+t71)§\4T © Zflr = lr+1,

If 1 <r <n then define y© = Y icrn t=2 =N (L — i) P

We now describe an O-deformation of cyclotomic KLR algebra %#2. This is a special case of one of the
main results of [52] which allows greater flexibility in the choice of the ring O.

4.2.5. Theorem (Hu-Mathas [52, Theorem A]). As an O-algebra, the algebra S£° is generated by the elements
(P liermyu{y? | 1<r<n}u{y? |1<r<n}

subject only to the following relations:

H Y —a' = [ — i) fC =0,
1<i<e
ki =i1 (mod e)

fiof_jo = 5ijfi07 Eie["fio =1, y?fio = ioy?,

(U P L v uS = sy,

1/)?3/7(?+1in = (2/97#? + 5irir+1)fio y?+1¢9fio = (w,(?y? + 5irir+1)fio
b2y =y, if s#r,7r+1,
PP = 9dwy, if [r—s| > 1,
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1+p, 1—p,(i . .
(st *” y9+1)(y§+1” W gV, if iy S i,
1+pn( s .
(yv< g yv("9+1) iO’ if iy = Upg1,
0\2 ;O _ - o .
(d)r )2fi = ( 7(~ L yv(?) ioa Zfzr ey,
0, if i = lrt1,
1e, otherwise,
1+p,(i 1+p, 1+py, 1—p,(i s . .
(yﬁ +pr(i)) +y7§ +2f1 1) yi +lﬂ @) _ y7§+1p (1)>)fi(')7 if iyin = iy 2 ipi1,
_t1+pr(i f_@ Zf ir+2 - ir — 7zvﬂ—i-l
PP — 2P ) O = v . ‘ S
( i i T+1) fioa Zf ZT+2 = lp Zr+1a
0, otherwise,

where p.(1) = & — ip11 and y§d> = t24y9O + t71d], for d € Z.

In fact, the statement of Theorem 4.2.5 is slightly different to [52, Theorem A]. This is because we are
using a different choice of modular system (K, O, F) and because Definition 1.1.1 renormalizes the quadratic
relations for the generators 7. of %O, for1<r<n.

The strategy behind the proof of Theorem 4.2.5 is quite simple: we compute the action of the elements
defined in Definition 4.2.4 on the seminormal basis use this to verify that they satisfy the relations in the
theorem. To bound the rank of the algebra defined by the presentation in Theorem 4.2.5 we essentially count
dimensions. By specializing = = 0, we obtain Theorem 3.1.1 as a corollary of Theorem 4.2.5.

To give a flavour of the type of calculations that were used to verify that the elements in Definition 4.2.4
satisfy the relations in Theorem 4.2.5, for s € Std(i) and 1 < r < n define

s)t2ir

( e
NE o HeTie
(4.2.6) Br(s) = ¢ an(s)pZ(s)t=2r, if i, =i,y + 1,
z
]S)Zp(rs)(s), otherwise,

Then Theorem 1.6.7 easily yields the following.

4.2.7. Lemma. Suppose that 1 < r < n and that (s,t) € Std*(P,). Seti=1,j =1, u=s(r,r +1) and
v=t(r,r+1). Then

o —
d)r fst - ﬂr(s)fut 1 1T+1 pZ(S) fst

Moreover, if s(I,b,c) = r then y§d> foo = t71(t2lebrd=igl 4 [2(s) +d — iy]) for, for L <7 <n and d € Z.

Armed with Lemma 4.2.7, and Definition 1.6.6, it is an easy exercise to verify that all of the relations in
Theorem 4.2.5 hold in £°. For the quadratic relations, Lemma 4.2.7 implies that (©)2fs = 0 if s € Std(i)
and 4, = i,y whereas if i, # i,;1 then (©)%fs = B,(s)B-(u)fst, where u = s(r,r + 1). The quadratic
relations in Theorem 4.2.5 now follow using (4.2.6) and Lemma 4.2.7. For example, suppose that 4, — 4,41
and s € Std(i). Pick nodes (I,b,¢) and (I',V',¢') such that s(l,b,¢) = r and s(I',V’,¢’) = r + 1. Then, using
Lemma 4.2.7 and Definition 1.6.6,

(WV9)2 for =t B,(8) Bp(u) for =t MP () for
= ¢~ (1 4 2o b gl 21 g (s — tfl[c%(U)Dfst
= ¢ 1% (tQ(C_b'H)xl — 2 2e O] g (s) — cr+1(s)]) fst-

On the other hand, using Lemma 4.2.7 again,

(P — O Ve =t7" (t2(c"’+1‘“+1)x‘ — 2V =) [ (s) + 1 dga] — [y (s) — ir+1])fst
— 1% (t2<6*b+1>xl — 2V e ()] 4 () — c%H(s)]) fst

= (¢9)2fst-

Therefore, (0)2f° = (yﬁlﬂ) r0) _ v, 1) fC when i, — i,.1. These calculations are not very pretty, but nor
are they are hard — and they are very effective. The proof of the (deformed) braid relations is similar. As
indicated by Remark 2.2.5, the quadratic relations play a role in the proof of the braid relations.

Draft version as of October 5, 2013



GRADED CYCLOTOMIC HECKE ALGEBRAS OF TYPE A 43

4.3. A distinguished homogeneous basis. One of the advantages of Theorem 4.2.5 is that it allows us to
transplant questions about the KLR algebra 22 into the language of seminormal bases. In Definition 1.6.6
we defined a *-seminormal basis which provides a good framework for studying the semisimple cyclotomic
Hecke algebras. The algebra /" comes with two cellular algebra automorphisms, * and *, where * is the
unique anti-isomorphism fixing the homogeneous generators and * is the unique anti-isomorphism fixing the
inhomogeneous generators.

4.3.1. Definition (Hu-Mathas [52, §5]). A x-seminormal coefficient system is a collection of scalars
B={p-(t) | teStd(P,) and 1 <r <n}

such that B,.(t) = 0 if v = t(r,r + 1) is not standard, if v € Std(P,) then B.(v)5,-(t) is given by the
product of the particular choice of coefficients in (4.2.6) and if 1 <r < n then B,(t)fr+1(tsy)Br(tSrSrt1) =
Br+1(t)ﬁr(t5r+1)ﬁr+1(tsr-&-lsr)-

Exactly as in Corollary 1.6.9, the *-seminormal coefficient systems determine *-seminormal bases { f«}
which, similar to Definition 1.6.4 consist of non-zero elements fg € Hg such that fi = fis, for (s,t) € StdQ(Pn).
The left (and right) the action of 9@ on fy is exactly as in Lemma 4.2.7 but for a general x-seminormal
coeflicient system 3.

Definition 4.3.1 gives us extra flexibility in choosing a x-seminormal basis. By [52, (5.8)] there exists a
x-seminormal basis {fs} such that the 1-basis of Theorem 3.2.6 lifts to a ¢©-basis {¢)S} with the property
that

(432) 1/’_3 = fst + Z Tuvfuvv

(u,v)p(s,t)

for some r,, € K. In this way we recover Theorem 3.2.6 and with quicker proof than given initially in [49].
More importantly, by working with #° we can improve upon the 1-basis.

4.3.3. Theorem (Hu-Mathas [52, Theorem 6.2, Corollary 6.3]). Suppose that (s,t) € Std*(P,). There exists
a unique element BS € #° such that

Bs(,t) = fst + Z pfﬁ/(‘r_l)fuvu
(u,v)EStd?(Py)
(u,v)p(s,t)
where p%t (r) € xK[z]. Moreover, { B | (s,t) € StdQ(Pn)} is a cellular basis of H°.

The existence and uniqueness of this basis essentially come down to Gaussian elimination, although for
technical reasons it is necessary to work over the xO-adic completion of O. Proving that {BS} is cellular is
trickier.

As we will see, because we are using a x-seminormal basis, the basis { B} behaves well with respect to the
KLR grading on s#*. The main justification for using this seminormal basis as a proxy for choosing a “nice”
basis for j‘fj{\, a part from the fact that it works, is that Theorem 2.4.8 shows that the natural homogeneous
basis of the semisimple cyclotomic quiver Hecke algebras is a x-seminormal basis.

In characteristic zero the polynomials pSt () satisfy 0 < degpSt (z) < %(deg u — degs + degv — degt),
whenever (u,v) » (s,t) by [52, Proposition 6.4]. Moreover, if s,t,u, v are all standard tableaux of the same
shape then pl,(z) = pi(x)pl(z), where 0 < degpj(x) < 3(degu — degs) and 0 < degp! < 1 (degv — degt)
whenever u > s and v > t, respectively.

As the basis {Bf} is defined over O we can reduce modulo the ideal 2O to obtain a basis {BY ®0 1k}
of N = #(K). This basis is hard to compute and we do not know whether it is homogeneous in general.
Nonetheless, it is possible to construct a homogeneous basis { Bs;} of #* from {BY}. By definition, if A € P,
then B is the homogeneous component of Bt(?\tA ® 1x of degree 2degt*. In general, for s,t € Std(A) there
exists homogeneous elements Ds, D; € %”,LA such that Bsg = D} By Dy In characteristic zero, B is the
homogeneous component of BY ® 1 of degree degs + degt, and all other components are of larger degree.
In general, this appears to depend on the characteristic. For any field, by (4.3.2) and Theorem 4.3.3,

(434) Bis =Ygt + Z awPuy,

(u,v)»(s,t)
for some ay, € K which are non-zero only if i* = i%, i¥ = i* and degu + degv = degs + degt. Therefore, this
basis resolves the ambiguities of Proposition 3.2.9(b). More importantly, we have the following.

4.3.5. Theorem (Hu-Mathas [52, Theorem 6.9]). Suppose that K is a field. Then { By | (s,t) € Std*(P,) }
is a graded cellular basis of % with weight poset (Py,,t>), cellular algebra automorphism x and with deg Bg =
degs + degt, for (s,t) € Std*(P,). Moreover, if (s,t) € Std*(P,) then B + #>> depends only on's and t
and not on the choice of reduced expressions for the permutations d(s),d(t) € &,,.
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By construction, the basis {Bs depends on the field F. Moreover, if F' is a field of positive characteristic
then By depends upon the choice of the elements Ds and Dy, which are uniquely determined modulo jff*.
This is why Bg + 2> is uniquely determined by s and t.

4.4. A conjecture. The construction of the basis {B} of #° in Theorem 4.3.3, together with the degree
constraints on the polynomials pgf (z) in characteristic zero, are reminiscent of the Kazhdan-Lusztig basis [66].
We do not have an analogue of the bar involution, however, a possible replacement for this is that the basis
elements Bg are homogeneous. Motivated by this analogy with the Kazhdan-Lusztig basis we now define
analogues of cell representations for the B-basis.

As the basis { Bt} of Theorem 4.3.5 is graded cellular we obtain a new homogeneous basis { By | t € Std(A) }
of the graded Specht module S*. Define the pre-order =p on Std(A) to be the transitive closure of the
relation = 5 where t> v if there exists a € %’fl\ such that Bia = ) rsBs with r, # 0. (So = p is reflexive and
transitive but not anti-symmetric.) Let ~p be the equivalence relation on Std(A) determined by > p so that
t ~p v if and only if t =5 v =p t. For example, t* =p t =p ty, for all t € Std(\).

Let Std[A] be the set of ~p-equivalence classes in Std(X). The set Std[A] is partially ordered by > p,
where T>=gVift =gvforsomete TandveV. Write T =gvift =gviorsomete T and T =g v if
T>=pvandv¢T. Define SR, to be the vector subspace of S* with basis { B, | T =p v}. Similarly, let Sp._
be the vector space with basis { By | T =g v}. The definition of > ensures that S%L and S{-‘> are both

graded JZ-submodules of S* and that Sp_ C SW)'\E' Therefore, S = SW)'\E /S, is a graded #*-module. By

choosing any total order of Std[A] which is compatible with = p it is easy to see that S* has a filtration with
subquotients being precisely the modules S, for T € Std[A].

For A € P, let T* = {t € Std(\) | t ~p t* }. In view of (3.7.2), if s,t € Std(\) and (Bs, B;) # 0 then
s~pth ~ptsothat s,t € T*. Therefore, dim D* < |T*|. Of course, if A ¢ K2 then this bound is not sharp
because D* = 0 whereas [T*| > 1.

4.4.1. Conjecture. Suppose that F is a field of characteristic zero and that X € P,,. Then S3 is an irreducible
AN -module, for all T € Std[A].

Conjecture 4.4.1 is not supported by a great deal of evidence. It is easy to check that the conjecture
is true in the trivial cases considered in Example 3.8.1 and Example 3.8.2. With considerably more effort,
using [24, Lemma 9.7] and results of [50, Appendix], it is possible to verify the conjecture when A is a
weight of level 2 and e > n. In all of these cases, the conjecture can be checked because Bs = s, for all
(s,t) € Std*(P,,).

As discussed in [52, §3.3], and is implicit in (4.1.4), by fixing a composition series for S* and using a
Gaussian elimination argument, it is possible to construct a basis {C;} of S¥ such that each module appearing
in the composition series has a basis which is contained in {C;} and such that if t € Std(X) then Cy = /x plus
a linear combination of “higher terms” with respect to some total order on Std(A). This defines a partition of
Std(A) = X1 U---U X,, where the tableaux in the set X}, are in bijection with a basis of the kth composition
factor. That is, we have defined an equivalence relation on Std(A), which is associated with a composition
series, so that the analogue of Conjecture 4.4.1 holds for this equivalence relation. Our conjecture is an
optimistic attempt to make this equivalence relation on Std(A) explicit and canonical.

If 7 C Std(A) define Ch, 7 = 3, ¢%8* - it € A[I"]. Then, by definition, Ch, S = Ch, T.

4.4.2. Proposition. Let F be a field of characteristic zero and assume that Conjecture 4.4.1 holds.
a) Suppose that pu € K. Then DF = S%‘H, Consequently, Chy D* = Ch, T#.
b) For each T € Std[X], for X € P, there exists a unique (v, dt) € KX xN such that Ch, T = ¢%7 Ch, DV,

Moreover,
dap(q) = Z g’
TeStd[A]

vT=p
Proof. By Corollary 3.2.7, D* # 0 since g1 € K2. The irreducible module D* is generated by By + rad S* =
Y +rad SH, so D¥ =2 S¥ since both modules are irreducible by Conjecture 4.4.1 For part (b), S = D¥(d),
for some v € K2 and d € Z, because S7 is irreducible by Conjecture 4.4.1. Therefore, Ch, S3 = ¢¢ Ch, D¥.
The uniqueness of (v1,dr) = (v,d) € K2 x Z follows from Theorem 3.7.1 and Theorem 2.1.4. Moreover,
d > 0 by Corollary 3.5.11. As every composition factor of S* is isomorphic to S for some T € Std[A] the
formula for dx,(¢) is now immediate. O

Proposition 4.4.2 shows that Conjecture 4.4.1 encodes closed formulas for the characters and graded
dimensions of the irreducible #*-modules and for the graded decomposition numbers of . For this
result to really be useful we need to both verify Conjecture 4.4.1 and to explicitly determine the equivalence
relation ~pg. Our last result is a small step in this direction.
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4.4.3. Lemma. Suppose that s,t € Std(X) and that t = s(r,r + 1) such that i3, # i3 £ 1, where 1 <r <n
and A € P,,. Then s ~p t.

Proof. 1t follows from (4.3.4), and Theorem 3.6.2, Bstp, = ¢y + Y, ayhy = By + Y, by By, where a,,b, € F
are non-zero only if £(d(u)) < £(d(s)). Therefore, s =g t. If 5| # it then e(i®)y? = 1 by (2.2.3), so it follows
that s ~p t.

Now consider the more interesting case when i ; = i’ or, equivalently, i%. = i}.. Then, using (2.2.2),

Biyri1 = (Bswr - Z buBu)yr-H = Bs(yrtr +1) — ZbuBuyr+1-

In view of Proposition 3.2.9(c), Bs appears on the righthand side with coefficient 1. Hence, t > s implying
that s ~p t as claimed. O

The B-basis, and hence Conjecture 4.4.1 and all of the results in this section (except that dv € Z in
Proposition 4.4.2), make sense over any field. We restrict Conjecture 4.4.1 to fields of characteristic zero
because it would be foolhardy to venture into the realms of positive characteristic without some evidence.
This said, whether or not Conjecture 4.4.1 is true in characteristic zero, we strongly believe that in all
characteristics there exists a “canonical” graded cellular basis {Cy} of 22 such that the analogous version of
Conjecture 4.4.1 holds for the ~¢ equivalence classes.
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