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ABSTRACT. This paper shows that the cyclotomic quiver Hecke algebras of
type A, and the gradings on these algebras, are intimately related to the
classical seminormal forms. We start by classifying all seminormal bases and
then give an explicit “integral” closed formula for the Gram determinants of the
Specht modules in terms of the combinatorics which utilizes the KLR gradings.
We then use seminormal forms to give a deformation of the KLR algebras of
type A. This makes it possible to study the cyclotomic quiver Hecke algebras
in terms of the semisimple representation theory and seminormal forms. As
an application we construct a new distinguished graded cellular basis of the
cyclotomic KLR algebras of type A.
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1. INTRODUCTION

The quiver Hecke algebras are a remarkable family of algebras which were
introduced independently by Khovanov and Lauda [20,21] and Rouquier [29]. These
algebras are attached to an arbitrary oriented quiver, they are Z-graded and they
categorify the negative part of the associated quantum group. Over a field, Brundan
and Kleshchev showed that the cyclotomic quiver Hecke algebras of type A, which
are certain quotients of the quiver Hecke algebras of type A, are isomorphic to the
cyclotomic Hecke algebras of type A.

The quiver Hecke algebras have a homogeneous presentation by generators and
relations. As a consequence they have well-defined integral forms. Unlike Hecke
algebras, which are generically semisimple, the cyclotomic quiver Hecke algebras are
intrinsically non-semisimple algebras. This implies that the cyclotomic quiver Hecke
algebras cannot be isomorphic to the cyclotomic Hecke algebras over an arbitrary
ring.
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The first main result of this paper shows that the cyclotomic quiver Hecke
algebras of type A admit a one-parameter deformation. Moreover, this deformation
is isomorphic to cyclotomic Hecke algebra defined over the corresponding ring.
Before we can state this result we need some notation.

Fix integers n > 0 and e > 1 and let I'. be the oriented quiver with vertex set
I =7/eZ and edges i — i+ 1, for i € I. Given i € I let i > 0 be the smallest
non-negative integer such that ¢ = 7 + eZ. For each dominant weight A for the
corresponding Kac-Moody algebra g(T'.), there exists a cyclotomic quiver Hecke
algebra R2 and a cyclotomic Hecke algebra H2. To each tuple i € I"™ we associate
the set of standard tableaux Std(i) with residue sequence i and for 1 <r < n we set

é-(1) ={e(t) =i, | teStd(i) } C Z,

where ¢,(t) € Z is the content of r in the tableau t. These definitions ensure that
é-(1) C{ke | k€Z}. All of these terms are defined in Section 3.1.

Like the cyclotomic quiver Hecke algebra, our deformation of R2 is adapted to
the choice of e through the choice of base ring O which must be an e-idempotent
subring (Definition 4.1). This definition ensures that the cyclotomic Hecke algebras
are semisimple over the field of fractions of O and that H2(O) ®e K is a cyclotomic
quiver Hecke algebra whenever K = O/m, for m a maximal ideal of O. For t € O
and k € Z let [k] = [k]+ be the corresponding quantum integer.

We can now state our first main result.

Theorem A. Suppose that (O,t) is an e-idempotent subring of a field # . Then
the algebra H2(O) is generated as an O-algebra by the elements

(P liermyu{y? | 1<r<n}u{y? |1<r<n}

subject only to the following relations:

c€E (i)
fofo_51_1 ) Zie]ﬂfioz]-a fo foyra
P FE = FO Y, uyd =ySyY,
woerrlfo ( 01/)0 + 5irir+1)fiov yr+1¢ofo (7/10 + 5i7‘7;7‘+1)fi07
w?y _ys 7" ZfS?é’f‘,’f‘—Fl,
14pr (i 1 o .
(yélip El;i - yr )(y7<"+1p (l)> y?) ioa ’Lf 23 (:) 7'T'+17
(y pr y'r+1) iO’ Zf i’F — iT+17
W2 = { WP —y0) 82, i ir i1,
07 Zf 7;7" = 7;7“+1a
fio , otherwise,
(¢O¢r+1wo - r+17/101/)r+1)f
1+p,-(1 1+p,-(1 1+p,-(1 1—p,-(i - . .
(yﬁ +pr (1)) -l—yﬁ +pr (1)) y<+-iip 1) _ y§+1p ()))fio’ if ipyn =iy = iri1,
A if ipgo = ir = irs1,
12, if ipgo = ip 4 iry1,
0, otherwise,

where p.(1) =i, — @41 and Y = t4y® + [d], for d € Z.
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Almost all of the relations in Theorem A appear in the presentation of the
cyclotomic quiver Hecke algebra R2. The KLR relations of R which are ‘deformed’
are the quadratic relations for 1/),(? , the “braid relations” of length 3 for the ¢
and the “cyclotomic relation” for y¢. Interestingly, only the “Jucys-Murphy like
elements” y© need to be modified in order to define a deformation of RA. Over a
field K = O/m, the presentation in Theorem A collapses to give the KLR algebra
R2 because the definition of an idempotent subring ensures that titer® @1 =1
and yﬁlipr(i» ®1lg = yf? Q1lg, for 1 <r <n.

Theorem A also imposes additional “cyclotomic relations” on y@, for 2 < r < n,
which do not appear in the presentation of R2. These extra relations are probably
redundant, however, we use them to show that the algebra defined by the presentation
in Theorem A is finite dimensional. In this paper we show that analogues of these
“extra” relations hold in R2, thus giving new upper bounds on the nilpotency index
of the elements y1,...,y, in the cyclotomic quiver Hecke algebras of type A.

To prove Theorem A we work almost entirely inside the semisimple representation
theory of the cyclotomic Hecke algebras H2. We show that definition of the quiver
Hecke algebra R2, and its grading, is implicit in Young’s seminormal form. With
hindsight, using the perspective afforded by this paper, it is not too much of an
exaggeration to say that Murphy could have discovered the cyclotomic quiver Hecke
algebras in 1983 soon after writing his paper on the Nakayama conjecture [27].

Our proof of Theorem A gives an explanation for the KLR relations and a more
conceptual proof of one direction in Brundan and Kleshchev’s graded isomorphism
theorem [6]. Using our framework it is possible to give a completely new proof of the
isomorphisms R2(K) = HA(K), when K is a field, however, it is more convenient
for us to use the existence of these isomorphisms to bound the dimension of the
algebras defined by the presentation in Theorem A.

For the algebras of type A the authors constructed a graded cellular basis
{thst | (5,1) € Std*(P2)} for RA [15]. Here Std*(P2) is the set of all pairs of stan-
dard tableaux of the same shape, which is a multipartition of n. The element )4
is homogeneous of degree deg, s + deg, t, where deg, : Std(P2) —Z is the combi-
natorial degree function introduced by Brundan, Kleshchev and Wang [8]. Li [23]
has shown that {1} is a graded cellular basis of R2 over an arbitrary ring. In
particular, the KLR algebra R2 is always free of rank dim H2(K), for K a field.

One of the problems with the basis {ts¢} is that, because the KLR generators 1.,
for 1 < r < n, do not satisfy the braid relations, the basis elements 15 depend upon
a choice of reduced expression for the permutations d(s), d(t) € &,, (see Section 2.4).
One of the consequences of Theorem A is that we obtain a new graded cellular basis
for H2 which is independent of such choices.

Theorem B. Suppose that K is a field. Then H2(K) has a graded cellular basis
{Bot | (s.t) € Std*(Py) }

where deg By = deg, s+deg, t, for (s,t) € Std*(P2), such that Bs; depends only on s
and t and not on the choice of reduced expressions for the coset representatives d(s)

and d(t).

For (s, t) € Std?(P2) the basis element By is uniquely determined in a way that
is reminiscent of the Kazhdan-Lusztig basis. That is, we show that there exists a
unique element BS] € H2(O) such that

BG = fut Y. @) fu,

(u,0)p(s,t)
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where p3!(z) € xK[z] and where {fs} is a seminormal basis of H» which is
adapted to the KLR setting. Moreover, if K is a field of characteristic zero then
degpst(z) < L(degu — degs + degv — deg t).

To prove the two theorems above, we define a seminormal basis of a semisimple
Hecke algebra to be a basis of H2 of simultaneous eigenvectors for the Gelfand-Zetlin
subalgebra of H2. Seminormal bases are classical objects which are ubiquitous in
the literature, having been rediscovered many times since were first introduced for
the symmetric groups by Young in 1900 [34].

This paper starts by classifying all seminormal bases in terms of seminormal
coefficient systems. As far as we are aware this is the first time a classification of
seminormal bases has appeared in the literature, however, the real surprise is that
seminormal coefficient systems encode the KLR grading.

The close connections between the semisimple representation theory and the
KLR gradings is made even more explicit in the third main result of this paper
which gives a closed formula for the Gram determinants of the semisimple Specht
modules of these algebras. Closed formulas for these determinants already exist in
the literature [4,16-18], however, all of these formulas describe these determinants
as rational functions (or rational numbers in the degenerate case). The theorem
below gives the first integral formula for these determinants.

In order to state the closed integral formulas for the Gram determinant of the
Specht module S, for A a multipartition, define

deg,(A) = Y deg,(t) € Z,
teStd(N)
where Std(A) is the set of standard A-tableaux. Let ®.(¢) € Z[t] be the eth
cyclotomic polynomial for e > 1. We prove the following (see Theorem 3.22 for a
more precise statement).

Theorem C. Suppose that "H,’} is a semisimple cyclotomic Hecke algebra over Q(t),
with Hecke parameter t. Let X be a multipartition of n. Then the Gram determinant
of the Specht module S™ is equal to

2 T @ty
e>1

for a known integer N. In particular, deg,(X\) >0, for all e € {0,2,3,4,...}.

As the integers deg,(\) are defined combinatorially, it should be possible to
give a purely combinatorial proof that deg,(A) > 0. In Section 3.3 we give two
representation theoretic proofs of this result. The first proof is elementary but
not very informative. The second proof uses deep positivity properties of the
graded decomposition numbers of H2(C) to show that the tableaux combinatorics
of H2 provides a framework for giving purely combinatorial formulas for the graded
dimensions of the simple H2-modules and for the graded decomposition numbers
of HA. Interestingly, we show that there is a close connection between the graded
dimensions of the simple H2-modules and the graded decomposition numbers
for H2. Note that in characteristic zero, the graded decomposition numbers of H2
are parabolic Kazhdan-Lusztig polynomials of type A [7], so our results show that
the tableaux combinatorics leads to combinatorial formulas for these polynomials.
Unfortunately, we are only able to prove that such formulas exist and we are not
able to make them explicit or to show that they are canonical in any way.

The outline of this paper is as follows. Chapter 2 defines the cyclotomic Hecke
algebras of type A, giving a uniform presentation for the degenerate and non-
degenerate algebras. Previously these algebras have been treated separately in the
literature. We then recall the basic results about these algebras that we need from
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the literature, including Brundan and Kleshchev’s graded isomorphism theorem [6].
Chapter 3 develops the theory of seminormal bases for these algebras in full generality.
We completely classify the seminormal bases of H2 and then use them to prove
Theorem C, thus establishing a link between the semisimple representation theory
of HA and the quiver Hecke algebra R2. Using this we prove the existence of
combinatorial formulas for the graded dimensions of the simple modules and the
graded decomposition numbers of H,’}. In Chapter 4 we use the theory of seminormal
forms to construct a deformation of the cyclotomic quiver Hecke algebras of type A,
culminating with the proof of Theorem A. Chapter 5 builds on Theorem A to give
a quicker construction of the graded cellular basis of H2(K), over a field K, which
was one of the main results of [15]. Finally, in Chapter 6 we use Theorem A to show
that H2(K) has the distinguished graded cellular basis described in Theorem B.

2. CYCLOTOMIC HECKE ALGEBRAS

This chapter defines the cyclotomic Hecke and quiver Hecke algebras of type A
and it introduces some of the basic machinery that we need for understanding these
algebras. We give a new presentation for the cyclotomic Hecke algebras of type A,
which simultaneously captures the degenerate and non-degenerate cyclotomic Hecke
algebras which currently appear in the literature, and then we recall the results from
the literature that we need, including Brundan and Kleshchev’s graded isomorphism
theorem [6].

2.1. Quiver combinatorics. Fix an integer e € {0,2,3,4...} and let T, be the
oriented quiver with vertex set I = Z/eZ and edges i« — i+ 1, fori € I. If i, € I
and ¢ and j are not connected by an edge in I', then we write i -/ j.

To the quiver I'. we attach the Cartan matrix (c;;); jer, where

9, ifi=j
-1, i jori e g,
DT 2, s,
0, otherwise,

Let ;[e be the corresponding Kac-Moody algebra [19] with fundamental weights
{A; | i € I}, positive weight lattice P7 = >°..;NA; and positive root lattice

e

Q' =@, Novi. Let (-,-) be the bilinear form determined by
(Oéi,Oéj) = Cjj and (Ai,Oéj) :(51']', for 1,7 €1.

More details can be found, for example, in [19, Chapter 1].

Fix, once and for all, a multicharge k = (k1,...,#¢) € Z* which is a sequence
of integers such that if e # 0 then k; — k;41 > n for 1 <1 < £. Define A = A (k) =
Az, +---+ Az, where & = r (mod e). Equivalently, A is the unique element of P
such that

(2.1) (M) =#{1<I<!l | k=i (mode) }, for all i € I.

All of the bases for the modules and algebras in this paper depend implicitly on the
choice of k even though the algebras themselves depend only on A.

2.2. Cyclotomic Hecke algebras. This section defines the cyclotomic Hecke
algebras of type A and explains the connection between these algebras and the
degenerate and non-degenerate Hecke algebras of type G(¢,1,n).

Fix an integral domain O which contains an invertible element £ € O*.
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2.2. Definition. Fiz integers n > 0 and ¢ > 1. Then the cyclotomic Hecke
algebra of type A with Hecke parameter & € O and cyclotomic parameters
Q1,...,Q¢ € O is the unital associative O-algebra H, = Hp(O,€,Q1,. .., Q) with

generators Ly,...,Ly,, T1,...,T,_1 which are subject to the relations
‘
H(Llle):()a (Tr‘i’l)(Tr*f):O,
=1
L.L; = LtL'r‘a T, T, =T,T, Zf |7’ — S| > 1,
TsTs+1Ts = Ts+1TsTs+17 TrLt = LtT'r‘a ift 7é T+ 17

Lr—&-l(Tr*E‘i’l):TrLr‘Fla
where 1l <r<n,1<s<n—-1andl1l<t<n.

2.3. Remark. If £ = 1 then, by definition, H,, is a degenerate cyclotomic Hecke
algebra of type G(¢,1,n). If £ # 1 then H,, is (isomorphic to) an integral cyclotomic
Hecke algebra of type G(¢,1,n). To see this define L), = ({—1)Lx+1, for 1 <k <n,
and observe that H,, is generated by L}, T1,...,T,—_1 subject to the usual relations
for these algebras as originally defined by Ariki and Koike [3]. It is now easy to
verify our claim. The presentation of #H,, in Definition 2.2 unifies the definition
of the ‘degenerate’ and ‘non-degenerate’ Hecke algebras, which corresponds to the
cases where £ =1 or £ # 1, respectively.

Let &,, be the symmetric group on n letters. For 1 <r < n let s, = (r,r + 1)
be the corresponding simple transposition. Then {si,...,s,_1} is the standard
set of Coxeter generators for &,,. A reduced expression for w € &,, is a word
W = Spy,...8, with K minimal and 1 <r; <nfor1 <j <k Ifw=s,...5,
is reduced then set T,, = T, ...T,,. Then T, is independent of the choice of
reduced expression since the braid relations hold in H,. It follows arguing as
in [3, Theorem 3.3] that H,, is free as a O-module with basis

{L{...LynTy | 0<ay,...,ap <Land w € G, }.

Consequently, H,, is free as a O-module of rank ¢"n!, which is the order of the
complex reflection group of type G(¢,1,n).

We now restrict our attention to the case of integral cyclotomic parameters. To
define these recall that for any integer k and ¢ € O the quantum integer [k]; is

K], = 14+t+--- 4t 1, if k>0,
T = 28R, iR <O

When ¢ is understood we simply write [k] = [k];.

An integral cyclotomic Hecke algebra is a cyclotomic Hecke algebra H,, with
cyclotomic parameters of the form @, = [k,]¢, for k1,..., k¢ € Z. The sequence of
integers kK = (K1,...,K¢) € Z%. is the multicharge of H,,.

Translating the Morita equivalence theorems of [11, Theorem 1.1] and [5, The-
orem 5.19] into the current setting, every cyclotomic Hecke algebras of type A is
Morita equivalent to a direct sum of tensor products of integral cyclotomic Hecke
algebras. Therefore, there is no loss of generality in restricting our attention to the
integral cyclotomic Hecke algebras of type A.

Recall that A € P;” and that we have fixed an integer e € {0,2,3,4,...}. Let
& € O* be a primitive eth root of unity if e > 0 and a non-root of unity if e = 0
and fix a multicharge k so that A = A.(k) as in (2.1).

Let H2 = H2(O) be the integral cyclotomic Hecke algebra ,, (O, &, k). Using
the definitions it is easy to see that, up to isomorphism, ## depends only on ¢
and A. In fact, by Theorem 2.14 below, it depends only on e and A. Nonetheless,
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many of the constructions which follow, particularly the definitions of bases, depend
upon the choice of k.

2.3. Graded algebras and cellular bases. This section recalls the definitions
and results from the representation theory of (graded) cellular algebras that we
need.

Let A be a unital associative O-algebra which is free and of finite rank as an
O-module. In this paper a graded module will always mean a Z-graded module.
That is, an O-module M which has a decomposition M = P, ., Mg as an O-module.
If m € My, for d € Z, then m is homogeneous of degree d and we set degm = d.
If M is a graded O-module and s € Z let M (s) be the graded O-module obtained
by shifting the grading on M up by s; that is, M(s)y = My_s, for d € Z.

Similarly a graded algebra is a unital associative O-algebra A = @ ., Aq
which is a graded O-module such that AgA, C Agye, for all d,e € Z. It follows
that 1 € Ap and that Aj is a graded subalgebra of A. A graded (right) A-module
is a graded O-module M such that M is an A-module and MyA, C My, for all
d,e € Z, where M and A mean forgetting the Z-grading structures on M and A
respectively. Graded submodules, graded left A-modules and so on are all defined
in the obvious way.

The following definition extends Graham and Lehrer’s [12] definition of cellular
algebras to the graded setting.

2.4. Definition (Graded cellular algebras [12,15]). Suppose that A is an O-algebra
which is free of finite rank over O. A cell datum for A is an ordered triple (P,T,C),
where (P,>>) is the weight poset, T()\) is a finite set for X € P, and
C: [T T x T(N) — A; (5,6) = car,
AEP
is an injective function such that:
(GCq) {cst | 5, €T(N) for X € P} is an O-basis of A.

(GCq) If s,t € T(X), for some A € P, and a € A then there exist scalars r,(a),
which do not depend on s, such that

Cot@ = Z Tw(a)cen (mod AP?)
veT(N)

where AP is the O-submodule of A spanned by { cqp | 11> X and a,b € T(p) }.
(GC3) The O-linear map x: A— A determined by (cs)* = cs, for all X € P and
all s,t € T(N), is an anti-isomorphism of A.

A cellular algebra is an algebra which has a cell datum. If A is a cellular algebra
with cell datum (P,T,C') then the basis {cs¢ | A € P and s,t € T(\} is a cellular
basis of A with * its cellular algebra anti-automorphism.

If, in addition, A is a Z-graded algebra then a graded cell datum for A is a
cell datum (P, T, C) together with a degree function

deg: [TT(N)—2
AEP
such that

(GCy) the element cg¢ is homogeneous of degree degcg = deg(s) + deg(t), for all
A€ P ands, t € T(N).

In this case, A is a graded cellular algebra with graded cellular basis {cs}.

Fix a (graded) cellular algebra A with graded cellular basis {cs¢}. If A € P then
the graded cell module is the O-module C* with basis {¢; | t € T'(A\) } and with
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A-action
ca = Z Tt (Q)Cp,
veT(N)
where the scalars r,(a) € O are the same scalars appearing in (GCz). One of the
key properties of the graded cell modules is that by [15, Lemma 2.7] they come
equipped with a homogeneous bilinear form ( , ) of degree zero which is determined
by the equation

(2.5) (c, Cy)Con = CorCyp (mod AP
for s,t,u,0 € T(A). The radical of this form
radC* = {x € C* | (z,y) =0 for all y € C*}

is a graded A-submodule of C* so that D* = C*/rad C* is a graded A-module. It
is shown in [15, Theorem 2.10] that

{DME) | Ne P,D*#0and k € Z}

is a complete set of pairwise non-isomorphic irreducible (graded) A-modules when O
is a field.

2.4. Multipartitions and tableaux. A partition of d is a weakly decreasing
sequence A = (A1, Ag,...) of non-negative integers such that [A\| =X\ + Xy +--- =d.
An (-multipartition of n is an /-tuple A = (A ... A9 of partitions such that
IAD] 4+ |]AO| = n. We identify the multipartition X with its diagram which is
the set of nodes [A] = {(l,7,¢) | 1<c< AD for 1< < ¢}, which we think of as
an ordered (-tuple of arrays of boxes in the plane. For example, if A = (3,12]2,13, 2)

then
o= (e )

In this way we talk of the rows, columns and components of .

Given two nodes o = (I,7,¢) and 8 = (I',7',¢’) then § is below «, or « is above
B, if (I,r,¢) < (I',r',¢’) in the lexicographic order.

The set of multipartitions of n becomes a poset ordered by dominance where A
dominates p, or A > p, if

-1 i -1 i
PRIIED SRV B TLI R e
k=1 j=1 k=1 j=1
for1 <l</fandi>1. If\> pand A # pthen we write A > p. Let PA = (PA )
be the poset of multipartitions of n ordered by dominance and let (P2, <) be the
opposite poset.

Fix a multipartition A. Then a A-tableau is a bijective map t: [A\] —{1,2,...,n},
which we identify with a labelling of [A] by {1,2,...,n}. For example,

1l2]3]|{6]7]|[9]10]11] 9 [12[13] 1[3]5]
1] 3 and 511
KN

12113 10
11
are both A-tableaux when A = (3,12]2,1/3,2) as above. In this way we speak of
the rows, columns and components of tableaux. If t is a tableau and 1 < k < n set
comp,(k) =l if k appears in the {th component of t.
A A-tableau is standard if its entries increase along rows and columns in each
component. Both of the tableaux above are standard. Let Std(A) be the set of

6]8]
7
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standard A-tableaux and let Std(n) = Uyepa Std(A). Similarly set Std*(A) =
{(s,t) | s,t € Std(A) } and Std*(P2) = {(s,1) | s,t € Std(X) for some X € P2 1.

If t is a A-tableau set Shape(t) = A and let t},,, be the subtableau of t which
contains the numbers {1,2,...,m}. If t is a standard A-tableau then Shape(t,,,) is
a multipartition for all m > 0. We extend the dominance ordering to the set of all
standard tableaux by defining s > t if

Shape(s},) > Shape(t;.,),

for 1 < m < n. As before, we write s > tif s > t and s # t. We extend the
dominance ordering to Std?(P2) by declaring that (s, t) > (u,v) if 5 > u and ¢ > v.
Similarly, (s,t) > (u,0) if (s,t) > (u,0) and (s,t) # (u,v)

It is easy to see that there are unique standard A-tableaux t* and t such that
>t ty, foralte Std(A). The tableau t* has the numbers 1,2, ...,n entered in
order from left to right along the rows of t)‘m, and then tA(z), e ,t’\(z) and similarly,
ty is the tableau with the numbers 1,...,n entered in order down the columns of
t’\m, . 7’c’\(2),t’\(1). When X = (3,12|2,1]3,2) then the two A-tableaux displayed
above are t* and ty.

Given a standard A-tableau t define d(t) € &,, to be the permutation such that
t = t*d(t). Let < be the Bruhat order on &,, with the convention that 1 < w for
all w € &,,. By a well-known result of Ehresmann and James, if s,t € Std(\) then
s > tif and only if d(s) < d(t); see, for example, [24, Theorem 3.8].

Recall from Section 2.1 that we have fixed a multicharge x € Z’. The residue of
the node A = (I,7,¢) is res(A) = k; +c¢—r (mod e) (where we adopt the convention
that ¢« = 4 (mod 0), for i € Z). Thus, res(A) € I. A node A is an i-node if
res(A) = 4. If tis a p-tableaux and 1 < k < n then the residue of k in t is
res¢(k) = res(A), where A € p is the unique node such that t(A) = k. The residue
sequence of t is

res(t) = (resy(1),resi(2),...,res((n)) € I"™.

As an important special case we set i = res(t#), for u € PA.

Refine the dominance ordering on the set of standard tableaux by defining s » t
if s > t and res(s) = res(t). Similarly, we write (s,t) »(u,0) if (s,t) > (u,v),
res(s) = res(u) and res(t) = res(v) and (s,t) » (u,v) now has the obvious meaning.

Following Brundan, Kleshchev and Wang [8, Definition. 3.5] we now define the
degree of a standard tableau. Suppose that g € P2. A node A is an addable node
of pif A ¢ pand pU{A} is (the diagram of) a multipartition of n 4 1. Similarly, a
node B is a removable node of p if B € g and p\ { B} is a multipartition of n —1.
Suppose that A is an i-node and define integers

addable i-nodes of removable i-nodes of
“ - "

da(p) = #{ strictly below A strictly below A

If t is a standard p-tableau define its degree inductively by setting deg,(t) = 0,
if n =0, and if n > 0 then

(2.6) deg, (t) = deg,(t;(n—1)) + da(p),

where A = t71(n). When e is understood we write deg(t).
The following result shows that the degrees of the standard tableau are almost
completely determined by the Cartan matrix (c¢;;) of T'..

2.7. Lemma (Brundan, Kleshchev and Wang [8, Proposition 3.13]). Suppose that s
and t are standard tableaur such that s > t = s(r,r + 1), where 1 < r < n and
ielI". Leti=res(s). Then deg,(s) = deg,(t) + ¢i .,
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2.5. The Murphy basis and cyclotomic Specht modules. The cyclotomic
Hecke algebra H2 is a cellular algebra with several different cellular bases. This
section introduces one of these bases, the Murphy basis, and uses it to define the
Specht modules and simple modules of H2.

Fix a multipartition A € PA. Following [10, Definition 3.14] and [4, §6], if
s,t € Std(A) define mgy = Ty(5)-1maTy(g), where mx = uxzx where

A et AD)|

uy = H H EMH(L, — [Ri41]) and xx = Z Ty
1<i<t r=1 wEG
2.8. Theorem ([10, Theorem 3.26] and [4, Theorem 6.3]). The cyclotomic Hecke
algebra HA is free as a O-module with cellular basis

{mg | 5,t € Std(N\) for X € P2}
with respect to the weight poset (P2, ).

Proof. This theorem can be proved uniformly in all cases by modifying the argument
of [10, Theorem 3.26], however, for future reference we explain how to deduce this
result from the literature for the degenerate and non-degenerate algebras.

First suppose that ¢ = 1. Then the element my, for A € P2, coincides exactly
with the corresponding elements defined for the non-degenerate cyclotomic Hecke
algebras in [4, §6]. It follows that {ms¢ | (s,t) € P2} is the Murphy basis of the
degenerate cyclotomic Hecke algebra H2 defined in [4, §6] and that the theorem is
just a restatement of [4, Theorem 6.3] when § = 1.

Now suppose that £ # 1 and, as in Remark 2.3, let L, = (£ — 1)L, + 1 be the
‘non-degenerate’ Jucys-Murphy elements for H2, for 1 < r < n. An application of
the definitions shows that if k € Z then
w "
5 (Lr ["{D - f -1
Therefore, uy is a scalar multiple of the element u;\r given by [10, Definition 3.1,3.5].
Consequently, if (s, t) € Std?(P2) then my is a scalar multiple of the corresponding
Murphy basis element from [10, Definition 3.14]. Hence, the theorem is an immediate
consequence of [10, Theorem 3.26] in the non-degenerate case. O

(Ll —¢v).

Suppose that A € P2, The (cyclotomic) Specht module S is the cell module
associated to A using the (ungraded) cellular basis { ms¢ | (s,t) € Std*(P2)}. We
underline S* to emphasise that S? is not graded. When O is a field let D =
S*/rad 8* and set KA = {X € P2 | D* #0}. Ariki [2] has given a combinatorial
description of the set KA. By the theory of cellular algebras [12], { D* | p € K2}
is a complete set of pairwise non-isomorphic irreducible #*-modules.

The following well-known fact is fundamental to all of the results in this paper.

2.9. Lemma. Suppose that 1 <r < n and that 5,t € Std(X), for X € PA. Then
met Ly = [cr ()] mse + Z ToMsp (Mod 7—[5)‘),
o>t
veStd(A)
for some ry, € O.
Proof. If £ =1 then this is a restatement of [4, Lemma 6.6]. If £ # 1 then
mecLl, = € Omg + Z T Mt (mod HE™),

o>t

for some 7, € O, by [17, Proposition 3.7] (and the notational translations given in
the proof of Theorem 2.8). As L, = (L. —1)/(£ — 1) the result follows. O
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2.6. Cyclotomic quiver Hecke algebras. Brundan and Kleshchev [6] have given
a very different presentation of ”H,’} This presentation is more difficult to work with
but it has the advantage of showing that H2 is a Z-graded algebra.

2.10. Definition (Brundan-Kleshchev [6]). Suppose thatn > 0 ande € {0,2,3,4,...}.
The cyclotomic quiver Hecke algebra, or cyclotomic Khovanov-Lauda—

Rougquier algebra, of weight A and type T'. is the unital associative O-algebra
RA = RA(O) with generators

{wl,...,wn_l}U{yl,...,yn}u{e(i) | 16]"}

and relations

yi " e(i) =0, e(i)ei) = dye(i), Siemeld) =1,
yre(i) = e()yr, Yre(i) = e(s,i)¢r, YrYs = YsYr,
(2.11)  Yryryre(d) = (Yrtor + 0iy4,00)e(d),  yrare() = (Vryr + 044,y Je(d),
(2.12) VrYs = Ystr, if s#rr+1,
Urps = Psthy, if [r —s| > 1,
0, if by = pg1,
(Yr — yry1)e(i), if iy — Grg1,
z/;fe(i) =9 Wrr1 —yr)e(i), if iy <y,
Yr+1 = Yr)(Ur — yr1)e(d), if i S ippa
e(i), otherwise,
(Vr 191 — De(i), if ipy2 = ip — lpg1,
(Vry1ribri1 + 1e(i), if iy = iy iy,
Urthr 1 tre(i) = (?/Jr+17/1r¢r+1 +Yr — 2yp 1 + yr+2)6(i);
if ipyo = ip = ipg1,
Yrp1rrgre(i), otherwise,

fori,j € I and all admissible r and s. Moreover, R> is naturally Z-graded with
degree function determined by

dege(i) =0, degy, =2 and degipse(i) = —ci i s
fori1<r<n,1<s<mnandiel”.
2.13. Remark. The presentation of R2 given in Definition 2.10 differs by a choice of

signs with the definition given in [6, Theorem 1.1]. The presentation of R given
above agrees with that used in [22] as the orientation of the quiver is reversed in [22].

The connection between the cyclotomic quiver Hecke algebras of type I'. and the
cyclotomic Hecke algebras of type G(¢,1,n) is given by the following remarkable
result of Brundan and Kleshchev.

2.14. Theorem (Brundan-Kleshchev’s graded isomorphism theorem [6, Theo-
rem 1.1]). Suppose that O = K is a field, £ € K as above, and that A = A(k). Then
there is an isomorphism of algebras Eﬁ ~ HA,

We prove a stronger version of Theorem 2.14 in Theorem 4.32 below. For now
we note the following simple corollary of Theorem 2.14. Recall that a choice of
multicharge £ determines a dominant weight A.(k).

2.15. Corollary. Suppose that n >0, k = (k1,...,ke) € Z* and that

e>max{n+ry—k | 1<k 1<},
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Fiz invertible scalars & € K and & € K such that & is not a root of unity and
& is a primitive eth root of unity. Then the cyclotomic Hecke algebras 'H?(Oé:) and

'Hﬁ}(ge) are isomorphic Z-graded K -algebras.

Proof. Let RA(0) =2 H,,(K, &, k) and R (e) = H, (K, &, k) be the corresponding
cyclotomic quiver Hecke algebras as in Theorem 2.14. By [15, Lemma 4.1], e(i) # 0
if and only if i = res(t), for some standard tableau t € Std(P2). The definition of e
ensures that if i = i* then i, = 4,41 or i, = i,,1 £ 1 if and only if i, = 4,1 (mod e)
or i, = i,41 + 1 (mod e). Therefore, R2(0) = RA(e) arguing directly from the
presentations of the cyclotomic quiver Hecke algebras given in Definition 2.10. Hence,
the result follows by Theorem 2.14. O

Therefore, without loss of generality, we may assume that e > 0. In the appendix
we show how to modify the results and definitions in this paper to cover the case
when e = 0 directly.

Under the assumptions of the Corollary we note that the algebras %?{,ﬁo and
’H}\(’&z are Morita equivalent by the main result of [11]. That these algebras are
actually isomorphic is another miracle provided by Brundan and Kleshchev’s graded
isomorphism theorem.

The following consequence of Theorem 2.14 will be needed later.

2.16. Corollary. Suppose that 1 <r <n andie I". Then yiVT(i)e(i) = 0, where
N, (i) = # Std(i).

Proof. This is a well-known application of Theorem 2.14 and Lemma 2.9. U

3. SEMINORMAL FORMS FOR HECKE ALGEBRAS

In this chapter we develop the theory of seminormal forms in a slightly more
general context than appears in the literature. In particular, in this paper a
seminormal basis will be a basis for #% rather than a basis of a Specht module
of 7—[2 We also treat all of the variations of the seminormal bases simultaneously as
this will give us the flexibility to change seminormal forms when we use them in the
next chapter to study the connections between H2 and the cyclotomic quiver Hecke
algebra RA.

3.1. Content functions and the Gelfand-Zetlin algebra. Underpinning Brun-
dan and Kleshchev’s graded isomorphism theorem (Theorem 2.14) is the decom-
position of any HA-module into a direct sum of generalised eigenspaces for the
Jucys-Murphy elements Li,...,L,. This section studies the action of the Jucys-
Murphy elements on H2. The results in this section are well-known, at least to
experts, but they are needed in the sequel.

The content of the node v = (I,r, ¢) is the integer

Cy =K —T+c

If t € Std(A) is a standard A-tableau and 1 < k < n then the content of k in t is
cx(t) = ¢y, where t(y) = k for v € [A].

3.1. Definition. Let O be a commutative integral domain and suppose that t € O*
is an invertible element of O. The pair (O,t) separates Std(P>) if

[n]:f H H [k1 — km + d]: € OF.
1<i<m<l —n<d<n

Fix a multicharge k € Z* and let H2(O) be the Hecke algebra defined over O
with parameter ¢. In spite of our notation, note that H2(O) depends only on & and



SEMINORMAL FORMS AND QUIVER HECKE ALGEBRAS 13

not directly on A = A (k). Let 2 be a field which contains the field of fractions
of O. Then HA(#) = HA(O) o .

Throughout this chapter we are going to work with the Hecke algebras H2 (O) and
HMH) = HA(O) @0 A, however, we have in mind the situation of Theorem 2.14.
By assumption e > 0, so we can replace the multicharge k with (k1 + aie, ko +

ase, ..., k¢ + age), for any integers aq,...,ay € Z, without changing the dominant
weight A = Ac(k). In view of Definition 3.1 we therefore assume that
(3.2) Kl — Kip1 > 1, for1 <l <.

Until further notice, we fix a multicharge k € Z¢ satisfying (3.2) and consider the
algebra HA(0O) with parameter ¢.

Although we do not need this, we remark that it follows from [1] and [4, The-
orem 6.11] that HA (¢ ,t) is semisimple if and only if (#,t) separates Std(PA).
Our main use of the separation condition is the following fundamental fact which is
easily proved by induction on n; see, for example, [17, Lemma 3.12].

3.3. Lemma. Suppose that O is an integral domain and t € O is invertible. Then
(O,t) separates Std(PA) if and only if

s=t dfand onlyif [cr(s)] =]c,(t)] for1<r<mn,
for all 5,t € Std(PL).

Following [28], define the Gelfand-Zetlin subalgebra of #» to be the algebra
Z(0) = (L1,...,L,). The aim of this section is to understand the semisimple
representation theory of . = Z(0). It follows from Definition 2.2 that .Z is a
commutative subalgebra of HA.

If O is an integral domain then it follows from Lemma 2.9 that, as an (%, .%)-
bimodule, Hﬁ((’)) has a composition series with composition factors which are
O-free of rank 1 upon which L, acts as multiplication by ¢, (s) from the left and as
multiplication by ¢,(t) from the right. Obtaining a better description of ., and
of HA as an (Z,.%)-bimodule, in the non-semisimple case is likely to be important.
For example, the dimension of .Z over a field is not known in general.

3.4. Proposition (cf. [3, Proposition 3.17]). Suppose that (# ,t) separates Std(P2),
where ¢ is a field and 0 # t € . Then HA(X) is a semisimple (£, £)-bimodule
with decomposition

Ho(#)= @ He,

xepp
5,t€Std(N)

where Hyy = {h € HA | L.h = [c,(s)]h and hL, = [c.()]h, for 1 <r < n} is one
dimensional.
Proof. By Lemma 2.9, the Jucys-Murphy elements L1, ..., L, are a family of JM-

elements for H2 in the sense of [26, Definition 2.4]. Therefore, the result is a special
case of [26, Theorem 3.7]. O

Key to the proof of the results in [26] are the following elements which have their
origins in the work of Murphy [27]. For t € Std(P2) define

- Ly —[d]
3.5 F =
(35) VO | Qv
[ex (][]
where & = {¢,(t) | 1 <r <nand te Std(n)} is the set of the possible contents
that can appear in a standard tableau of size n. By definition, F} € £ () and it
follows directly from Proposition 3.4 that if hy, € H,, then

(3.6) FshunFt = 55u50th5ta
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for all (s,t), (u,0) € StdQ(PT/L\). Therefore, Hyy = FyHAFy.
By Proposition 3.4 we can write 1 = Zs,test for unique esy € Hgi. Since
Fi = F{, the last displayed equation implies that Fy = ey € Hy is an idempotent.

Consequently,
LH)= P He= P HF.
teStd(PA) teStd(PL)
In particular, Fy is a primitive idempotent in £ (.%"). If follows that Z (%) is a
split semisimple algebra of dimension # Std(P2).

3.2. Seminormal forms. Seminormal bases for H2 are well-known in the literature,
having their origins in the work of Young from [34]. Many examples of “seminormal
bases” appear in the literature. In this section we classify the seminormal bases
of ’H,’}. This characterisation of seminormal forms appears to be new, even in the
special of the symmetric groups, although some of the details will be familiar to
experts.

Throughout this section we assume that J¢ is a field, 0 # ¢t € J£ and that
(A ,t) separates Std(P2). Recall the decomposition HA = D (s, estaz(pa) Hst from
Proposition 3.4. !

Define an involution on an algebra A to be an algebra anti-automorphism of A
of order 2.

3.7. Definition. Suppose that (¢ ,t) separates Std(P2) and let v be an involu-
tion on HMH). An 1-seminormal basis of HA () is a basis of the form

{fst | fst == L(fts) S Hst fOT‘ (ﬁ,t) S StdQ(PTIL\) }

For now we take * to be the unique anti-isomorphism of #2(.#") which fixes each
of the generators 11, ...,Ty_1,L1,..., L, of Definition 2.2. Then m}, = mys, for all
(s,t) € Std*(PL). The assumption that f = fi is not essential for what follows
but it is natural because we want to work within the framework of cellular algebras.

In order to describe the action of H2 on its seminormal bases, if t € Std(P2)
then define the integers

(3.8) pr(t) = cr(t) — cry1 (1), for 1 <r <mn.
Then p,(t) is the ‘axial distance’ between r and r + 1 in the tableau t.
A *-seminormal coefficient system for H2 (%) is a set of scalars
a={a(s) | 1 <r<nandseStd(n)}
in 2 such that if 1 <r < n and t € Std(P2) then
(3.9) ()i (tsy)r (1818r41) = a1 (V) (88 41) a1 (88711 81)
and, setting v = t(r,7 + 1), then o, (t) = 0 if v ¢ Std(X) and otherwise

[1+ pr(D][1 + pr(v)]
[pr(t)“pr(t’)] .

We will see that condition (3.9) ensures that the braid relations of length 3 are
satisfied by T1,...,T,,—1 and that (3.10) corresponds to the quadratic relations.
Quite surprisingly, as the proof of Theorem 3.22 below shows, (3.10) also encodes
the KLR grading on H2.

Usually, we omit the * and simply call & a seminormal coefficient system.

(3.10) ar(Har(0) =

3.11. Example A nice ‘rational’ seminormal coefficient system is given by

[Lter (O] - jf t(r,r + 1) is standard,
ar(t) =

lpr (D]
0, otherwise,

for t € Std(P2) and 1 <r < n. &
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3.12. Example By Proposition 3.18 below, the following seminormal coefficient
system is associated with the Murphy basis of H2: if t € Std(P2) set v = t(r,r + 1)
and define

1 if v is standard and t > v,
a,(t) = W, if v is standard and v > t,
0, otherwise,
for 1 <r<n. &

Another seminormal coefficient system, which is particularly well adapted to
Brundan and Kleshchev’s Graded Isomorphism Theorem 2.14, is given in Section 5.1.

3.13. Lemma. Suppose that (,t) separates Std(P2) and that {fsi} is a seminor-
mal basis of HY. Then there exists a unique seminormal coefficient system o such
that if 1 <r <n and (s,t) € Std*(P2) then

b

fstTr = ar(t)fsn - [pr(f)]

fﬁta

where v = t(r,r + 1).

Proof. The uniqueness statement is automatic, since { fs} is a basis of H2 (%), so
we need to prove that such a seminormal coeflicient system a exists.
Fix (s,t) € Std*(P2) and 1 < r < n and write

fallr = Z Ay fuo,

(u,0)€Std?(PA)

for some a,, € # . Multiplying on the left by F; it follows that a,, # 0 only
ifu=s. If k# r,7+ 1 then L; commutes with T, so it follows as, 7# 0 only if
[ck(0)] = [er(V)], for k # r,r+ 1. Using Definition 3.1, and arguing as in Lemma 3.3,
this implies that as, # 0 only if v € {t,t(r,r 4+ 1)}. Therefore, we can write

fetly = ar(t)fsn + a;“(t)fﬁt)

for some «.(t),al(t) € &, where v = t(r,r + 1). (Here, and below, we adopt the
convention that fs, = 0 if either of s or v is not standard.) By Definition 2.2,
T.L, = L,1(T —t+1) — 1, so multiplying both sides of the last displayed equation
on the right by L, and comparing the coefficient of fs; on both sides shows that

[err1 (D] (or(t) =t +1) = 1= o (t)[er ()]

Hence, o.(t) = —1/[p-(t)] as claimed. If v is not standard then we set a,.(t) = 0.
If v is standard then comparing the coefficient of fs¢ on both sides of

1 2 B
(ar(t)fsn - mfst)Tr = fstTr - fst((t 1)Tr + t)

shows that a,.(t)a,(b) = % in accordance with (3.10).
Finally, it remains to show that (3.9) holds. If 1 < r < n then 7,7, 1T, =
Ty 11T Tr41 by Definition 2.2. On the other hand, if we set t; = t(r,r + 1),

ty = f(?"+1,7“+2), tio = t1(7"-|-1,7“+2) o1 = fQ(T‘,T—‘rl) and t191 = to12 = f(’l‘,’l‘—f—?)
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then direct calculation shows that 0 = fo (T, T 41T — Trp1 T3 Tr41) is equal to

_( 1 _ 1 ar(Hor(t) ar+1(t)ar+1(t2))f
[or (O [or+1(O]  [or®]lor+1 (D2 [prga(ta)] [pr(t2)] .
1 1 1

Bl ooy ety I o vt Rl P ey DA
—a11(t) ( ! + ! - ! )f t
' [or(t2)][pr41(t2)] [or(O][pr41(1)] [or(O)][pr(t2)] o

1 1
_ar(t)ar+1(tl)<[pr(tl2)] - [pr+1(t)])f5t12

1 1
+ar+1(t)a’r(t2)<[pT+1(t21)] - [pr(t)])fﬁtm

+ (Ozr (f)ar+1 (fl)OéT (t12) — Qp41 (t)ar (t2)a7‘+1 (t21)) f5t121 .

By our conventions, if any tableau t; is not standard then fs¢, and the corresponding
a-coefficient are both zero. As the coefficient of fs¢,,, in the last displayed equation
is zero it follows that (3.9) holds. Consequently, o = {a,-(t)} is a seminormal
coefficient system, completing the proof. (It is not hard to see, using (3.10) and
identities like p,.(t1) = —p,(t) and p,(t12) = pr+1(t), that the remaining coefficients
in the last displayed equation are automatically zero.) O

Lemma 3.13 really says that acting from the right on a seminormal basis deter-
mines a seminormal coefficient system. Similarly, the left action on a seminormal
basis determines a seminormal coefficient system. In general, the seminormal co-
efficient systems attached to the left and right actions will be different, however,
because we are assuming that our seminormal bases are *-invariant these left and
right coefficient systems coincide. Thus, for (s, t) € Std*(P2) and 1 < 7 < n we also
have T} fsi = - (8) fur — mfst, where u = s(r,7 + 1).

Exactly as eigenvectors are not uniquely determined by their eigenvalues, semi-
normal bases are not uniquely determined by seminormal coefficient systems. We
now fully characterize seminormal bases — and prove a converse to Lemma 3.13.

Recall that a set of idempotents in an algebra is complete if they sum to 1.

3.14. Theorem (The Seminormal Basis Theorem). Suppose that (£ ,t) separates
Std(P2) and that o is a seminormal coefficient system for H2(#). Then HA ()
has a -seminormal basis { for | (5,1) € Std*(P2)} such that if (s,t) € Std*(PD)
then

(3~15) f:t = fis, fotlp = [Ck(t)]fst and  foT, = ar<t)fsn - ﬁfstv

where v = t(r,r+1) and fsv = 0 if v is not standard. Moreover, there exist non-zero
scalars v¢ € KA, for t € Std(P2L), such that

1
(3'16) FufstFu = 5u55tnf5ta fﬁtfun = 5tu'7tf5n7 and Fy= ry*ft’u
t

Furthermore, { Fy | t € Std(PX)} is a complete set of pairwise orthogonal prim-
itive idempotents. In particular, every irreducible H2(#)-module is isomorphic
to FsHN (), for some s € Std(P2), and FsHA () = FyHA (LK) if and only if
Shape(s) = Shape(u).

Finally, the basis { fo¢ | 5,t € Std(X) for X € P2} is uniquely determined by the
choice of seminormal coefficient system o and the scalars { v | A € PAY C .

Proof. For each XA € P2 fix an arbitrary pair of tableaux and a non-zero element
fst € Hsi. Then fy is a simultaneous eigenvector for all of the elements of .Z, where
they act from the left and from the right.
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Now, suppose that 1 < r < n and that v = (r,r 4+ 1) is standard. Then a..(t) # 0
so we can set fgp, = ﬁ(t)fst(T,. + m) Equivalently, fsT) = - (t) fso — mfst-
Then using the relations in H2 (%) and the defining properties of the seminormal
coefficient system e, it is straightforward to check that feuLi = [ck(0)]fsv, SO that
fso € Hgy. Moreover, fs, # 0 since fo = ﬁ(u)fﬁn(Tr + m)

More generally, it is easy to see that if v is any A-tableau then there is a sequence
of standard tableaux vy = s,01,...,0, = v such that v;41 = v;(r;,r; + 1), for some
integers 1 < r; < n. Therefore, continuing in this way it follows that given two
tableaux u,v € Std(A) we can define non-zero elements f,, € Hy, which satisfy
(3.15). It follows that, once fg; is fixed, there is at most one choice of elements
{ fuv | 4,0 € Std(A) }, such that (3.15) holds.

To complete the proof that the seminormal coefficient system determines a
seminormal basis we need to check that the elements f,, from the last paragraph
are well-defined. That is, we need to show that f,, is independent of the choice of
the sequences of simple transpositions which link 1t and v to s and t, respectively.
Equivalently, we need to prove that the action of H2(#) given by (3.15) respects
the relations of H2(.#). Using (3.15), all of the relations in Definition 2.2 are easy
to check except for the braid relations of length three which hold by virtue of the
argument of Lemma 3.13. Hence, by choosing elements fs¢ € Hey, for (s,t) € Std(A)
and A € P2, the seminormal coefficient system determines a unique seminormal
basis.

Using (3.6) it is straightforward to prove (3.16) so we leave these details to the
reader; cf. [26, Theorem 3.16]. In particular, this shows that F; = V%fgs is an
idempotent. To show that F, is primitive, suppose that a is a non-zero element
of FyHA(#). By (3.15), a = 2 vestd(x) Mo fov, for some ry € . Fix t € Std(A)
such that 7¢ # 0. Then fy = 1/rqaFy € FsHA(#). Using (3.15) we deduce that
FyHA () has basis { fsp | © € Std(A) }. Consequently, aH? = FyHA(¢), showing
that F,H2 () is irreducible. Therefore, F, is a primitive idempotent in H2 (7).

The last paragraph, together with (3.10), implies that if s,u € Std(A) then
F/HD = FyH2 where an isomorphism is given by fs = fui, for t € Std(\).
Consequently, if 5 and u are standard tableaux of different shape then FyH) 2
F,H2 because the multiplicity of S* = F,HA(#) in HA(#) is # Std(\) by the
Wedderburn theorem.

Finally, it remains to show that the basis {fs¢} is uniquely determined by « and
the choice of the y-coefficients { vx | A € P2 }. If 5,t € Std(\) then we have shown
that, once fs is fixed, there is a unique seminormal basis { fuy | 4,0 € Std(A) }
satisfying (3.15). In particular, taking s = t* = t and fixing fian determines
these basis elements. By (3.16) the choice of fixx also uniquely determines .
Conversely, by setting fiagx = v Fia for any choice of non-zero scalars vy €
for A € #, the seminormal coefficient system a determines a unique seminormal
basis. (]

The results which follow are independent of the choice of seminormal coefficient
system a, however, the choice of y-coefficients will be important — and in what
follows it will be useful to be able to vary both the seminormal coefficient system
and the ~y-coefficients.

The proof of Theorem 3.14 implies that the choice of y¢x determines all of the
scalars vs, for s € Std(X). In what follows we need the following result which makes
the relationship between these coefficients more explicit.

3.17. Corollary. Suppose that t € Std(P2) and that v = t(r,r + 1) is standard,
where 1 <1 < n. Then a,(0)y = ar(t)yy.
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Proof. Applying (3.15) and (3.16) several times each,

1 1 1
Yo foo = fovfoo = mfnt(Tr + m)fuu = mfntTrfnn
1 1 _ap(v)
= mfnt(ar(b)ftn - mfnn) ~a Jotfo
_ ar(v)
= Ozr(t) YeSou-
Comparing coefficients, a,(t)y, = a,(b)v; as required. O

3.3. Seminormal bases and the Murphy basis. In this section we compute the
Gram determinant of the Specht modules of H2, with respect to the Murphy basis,
as a product of primes. These determinants are already explicitly known [4,16-18]
but all existing formulas describe them as products of rational functions, or of
rational numbers in the degenerate case.

By Theorem 2.8, the Murphy basis {ms} is a cellular basis for H2 over an
arbitrary ring. In this section we continue to work with the generic Hecke algebra
HA = HA(O) with parameter ¢ and multicharge & satisfying (3.2).

As (', t) separates Std(P2), for s,t € Std(A) we can define

fﬁt = Famg Fy.

By Lemma 2.9, for = Mo+, TupMuyp (mod HE?) | for some 7y, € # where 7y, # 0
only if (u,0) > (s,t). It follows that {fs} is a seminormal basis of H(#") in the
sense of Definition 3.7.

3.18. Proposition. The basis { fs¢ | 5,t € Std(X) for XA € P2} is the -seminormal
basis of HX (') determined by the seminormal coefficient system defined in Ezam-
ple 8.12 and the choices

Ve = P‘]'t H H (k1 —7+c—Kml,

1<I<m<L (I,r,c)E[AN]
for X € P

Proof. This is equivalent to [25, Theorem 2.11] in the non-degenerate case and
to [4, Proposition 6.8] in the degenerate case, however, rather than translating the
notation from these two papers it is easier to prove this directly.

As noted above, (O, t) separates Std(P2) and for = Mai+ . TuoMuo (mod HEA) |
for some 1y, € £ where ry, # 0 only if (u,v) > (s,t). Therefore, in view of (3.16),
{fst | (5,t) € Std(P2)} is a *-seminormal basis of H2(#"). By Theorem 3.14, this
basis is determined by a seminormal coefficient system « and by a choice of scalars
{7y | A€PAY. If t > v = t(r,r + 1) then, by definition, me T, = ms,. The
transition matrix between the {ms} and {fs¢} is unitriangular so, in view of Theo-
rem 3.14, foll = foo — ﬁfﬁ. Therefore, by (3.10), the seminormal coefficient
system corresponding to the basis {fsi} is the one appearing in Example 3.12.

It remains to determine the scalars { v | A € P2} corresponding to {fs}. It
is well-known, and easy to prove using the relations in H2, that x3 = [A}za.
Therefore, by Lemma 2.9,

fatA = [Alimaux = [A]} H H [i — 74 ¢ — K] - ma (mod HE>) .
1<li<m<L (I,r,c)€[A]

Hence, v = [A]} [li<icm<e I reeplse =+ ¢ = £m] by (3.16). O

As noted after Theorem 2.8, the Murphy basis { mg | (5,t) € Std(P2)} of HA
gives a basis { m | t € Std(A) } of each Specht module S*, for A € P2. For example,
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we can set m¢ = mgg + HEA, for t € Std(M). By (2.5), the cellular basis equips
each Specht module S* with an inner product ( , ). The matrix

g = (<m5’mf>)5,tesm(>\)

is the Gram matrix of S* with respect to the Murphy basis. Similarly, the
seminormal basis yields a second basis { fi | t € Std(A) } of S*(#), where f, =
mFy = fo +HEX, for t € Std(A). The transition matrix between these two bases
is unitriangular, so by (3.16) we have

(3.19) det G* =det ((fs, f0) = [ e

teStd(N)

This ‘classical’ formula for det G* is well-known as it is the cornerstone used to
prove the classical formula for det G* as a rational function in [17, Theorem 3.35].
The following definition will allow us to give an ‘integral’ closed formula for det Q)‘.

3.20. Definition. Suppose that e € {0,2,3,4,...}, p is a prime integer and that
A€ 77,/; is a multipartition of n. Define

deg, () = Z deg, t and Deg, () = Zdegpk (A)
teStd(X) k>1

By definition, deg,(\) and Degp()\) are integers which, a priori, could be positive,
negative or zero. In fact, the next result shows that they are always non-negative
integers, although we do not known of a direct combinatorial proof of this. By
definition, the integers deg,(A) and Deg,(\) depend on & and e. Our definitions
ensure that the tableau degrees deg,(t), for t € Std(A), coincide with (2.6) when
A =A(K).

For k € N, let ®;, = ®,(t) be the kth cyclotomic polynomial in ¢. As is well-known,
these polynomials are pairwise distinct irreducible polynomials in Z[t] and

(3.21) ml = T ®at

1<d|n

whenever n > 1.

3.22. Theorem. Suppose that k; — k41 > n, for 1 <1<, and that O = Z[t,t71].
Then
det g* = !X H q)e@)dege()\)7

e>2

where L(X) =3 cspan) £(d(1))-

Proof. As remarked above, det Q)‘ = [, 7t Therefore, to prove the theorem it is
enough to show that if t € Std(A) then

y = tHdV) H D ()48,
e>1

We prove this by induction on the dominance ordering.

Suppose first that t = t*. Then Proposition 3.18 gives an explicit formula for v
and, using (2.6), it is straightforward to check by induction on n that our claim is
true in this case. Suppose then that t* > t. Then we can write t = s(r,7 + 1) for
some s € Std(A) such that s > t, and where 1 < r < n. Therefore, using induction,
Corollary 3.17 and the seminormal coefficient system of Proposition 3.18,

1+ pr(9)][1 + pr
_ ety L+ pr B, (1)1
" oI H
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By definition, [k] = —t*[—k], for any k € Z. Now p,.(s) = —p,(t) > 0 by (3.2), so

1+ @l + prl] _, L+ po(elllpr() — 1] _ §
@@ ' @ LLO"

where, according to (3.21), the integer d. is given in terms of the quiver ', by

e>1

=2, ifi, = Irt1,
g2 S,
)1, iy iy OF iy — Gy,
0, otherwise.

Applying Lemma 2.7 now completes the proof of our claim — and hence proves the
theorem. (]

3.23. Remark. We can remove the factor t/® from Theorem 3.22 by rescaling the
generators 711,...,T,_1 so that the quadratic relations in Definition 2.2 become
(T, — t2)(T, +t~2), for 1 < r < n. Note that the integer d, in the proof of
Theorem 3.14 is equal to the degree of the homogeneous generator v,.e(i) in the
cyclotomic KLR algebra R2.

Setting ¢t = 1 gives the degenerate cyclotomic Hecke algebras. As a special case,
the next result gives an integral closed formula for the Gram determinants of the
Specht modules of the symmetric groups.

3.24. Corollary. Suppose that k; — k141 > n, for 1 <1 < ¥, and that O = 7Z and

t=1. Then
det g)\ _ H pDegp(A)7

1<p prime

for X € PA.

Proof. This follows by setting ¢ = 1 in Theorem 3.22 and using the following
well-known property of the cyclotomic polynomials:

B, (1) = p, if e = p”* for some k > 1,
o 1, otherwise.

O

3.25. Corollary. Suppose that e € {0,2,3,4,5,...} and that p > 0 is an integer
prime. Then deg,(A) > 0 and Deg,(X) > 0, for all A € P5.

Proof. As the Murphy basis is defined over Z[t,t~!], the Gram determinant det Q)‘
belongs to Z[t,t~1]. Therefore, deg,(X) > 0 whenever ¢ > 1 by Theorem 3.22.
Consequently, Deg,(A) > 0. Finally, if e > 0 then degy(t) = deg.(t) for any
t € Std(P2), so deg,(A) >0 for e € {0,2,3,4,...} as claimed. O

The statement of Corollary 3.25 is purely combinatorial so it should have a direct
combinatorial proof. We sketch a second representation theoretic proof of this result
which suggests that a combinatorial proof may be difficult.

A graded set is a set D equipped with a degree function deg : D —Z. Define

deg D = Z degd € Z.
deD
If D is a graded set and z € Z let ¢°D be the graded set where an element d € D
has degree z + degd. More generally, if f(q) € N[g,q7!] let f(q)D be the graded
set which is the disjoint union of the appropriate number of shifted copies of D. For
example (24 ¢)D = DU D UgD.
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If e € {0,2,3,4,...} let Stde(A) be the graded set Std(A) equipped with the
degree function t — deg,(t), for t € Std.(A).

Fix e € {0,2,3,4,...} and consider the Hecke algebra H2(C) over C with
parameter &, a primitive eth root of unity if e > 0 or a non-root of unity if e = 0.
Let S* be the graded Specht module introduced in [8] (see Section 5.2), and
let D¥ = S*/rad S* be the graded simple quotient of S, as in [15]. Let K2
be the set of Kleshchev multipartitions so that { D*(k) | p € K} and k € Z}
is a complete set of non-isomorphic graded simple ’Hﬁ—modules. As recalled in
Section 5.2, S* comes equipped with a homogeneous basis { ¢ | t € Std(X\) }. Let
dau(q) = [S}‘:D“]q be the corresponding graded decomposition number.

Fix a total ordering < on Std(A) which extends the dominance ordering. By
Gaussian elimination, there exists a graded subset DStd.(A) of Std(A) and a
basis { C¢ | t € DStdc(A) } such that Cy = ¢ + >, L cowtho + rad S, for some
¢ € C such that ¢y # 0 only if degv = degt and res(b) = res(t). In particular,
Div D* = deg DStd.(A). Repeating this argument with each factor of the radical
filtration of S*, it follows that there exists a bijection of graded sets

Ox : Stde(A) = | | dan(g) DStde(p).
HEK]

Now if g € K2 then D* = (D*)® so that degDStd.(u) = 0. Tt follows that
deg ¢* DStd. () = zdim D*,| for z € Z. Therefore, using the bijection Oy,

deg,(A) = degStd.(A) = > deg (dA“(q) DStde(u)) = 3" d},(1)dim D,

peKs peKs

where d} , (1) is the derivative of the graded decomposition number dy,(q) evaluated
at ¢ = 1. By [7, Corollary 5.15], dxan(¢) € Nlg] when K is a field of characteristic
zero, so we get that deg,(A) > 0 and hence this gives an alternative proof of
Corollary 3.25.

In characteristic zero the graded cyclotomic Schur algebras are expected to be
Koszul (this is true when e = 0 by [14, Theorem C]). This conjecture implies that
the Jantzen and grading filtrations of the graded Weyl modules, and hence of the
graded Specht modules, coincide. Therefore, Corollary 3.25 is compatible with this
Koszulity Conjecture via Ryom-Hansen’s [30, Theorem 1] description of the Jantzen
sum formula; see also [35, Theorem 2.11].

The construction of the sets DStde(p) given above is not unique because it
involves many choices. It natural to ask if there is are natural choices for the sets
DStd. () and the bijections © so that they correspond to a basis of S* which is
uniquely determined in some way. For level 2 such bijections are implicit in [9, §9]
when e = 0 and in [14, Appendix] for e > n. It is interesting to note that the sets
DStd.(p), together with the bijections Oy, determine the graded decomposition
numbers because if s € DStd.(p) then

d)\p,(Q) _ Z qdeg t—degs,
te0y ' (s)

where we abuse notation and let ©3'(s) be the set of tableaux in Std(X) which are
mapped onto a (shifted) copy of s by ©x. In particular, we can take s = t* because
it is easy to see that t* € DStd.(u) whenever p € KA. That is, our arguments prove
the existence of a purely combinatorial formula for the parabolic Kazhdan-Lusztig
polynomials dx,.(q).
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4. INTEGRAL QUIVER HECKE ALGEBRAS

The Seminormal Basis Theorem 3.14 compactly describes much of the semisimple
representation theory of H2(#). For symmetric groups, Murphy [27] showed that
seminormal bases can also be used to study the non-semisimple representation
theory. Murphy’s ideas were extended to the cyclotomic Hecke algebras in [25, 26].
In this section we further extend Murphy’s ideas to connect seminormal bases and
the KLR grading on H2.

4.1. Lifting idempotents. As Section 3.2, we continue to assume that x satisfies
(3.2) and that (', t) separates Std(P2), where # is a field and 0 # t € #. If O is
a subring of %" then we identify H2 () with the obvious O-subalgebra of H2 (%)
so that HA(#) =2 HA(O) @0 H as # -algebras.

Let J(O) be the Jacobson radical of O, the intersection of all of the maximal
ideals of O.

4.1. Definition. Suppose that O is a subring of # andt € O*. Then (O,t), is an
e-tdempotent subring of  if the following hold:

a) (O,t) separates Std(PL);

b) [k]¢ is invertible in O whenever k £ 0 (mod e), for k € Z; and

c) [k]: € J(O) whenever k € eZ.

When e and t are understood, we simply call O an idempotent subring. Note that
if " contains the field of fractions of O then Definition 4.1(a) ensures that H2 (%)
is semisimple and has seminormal bases. We fix such a x-seminormal basis {fs:},
together with the corresponding seminormal coefficient system a and -coefficients,
until further notice.

Let (O,t) be an e-idempotent subring and suppose ¢ # d (mod ¢), for ¢,d € Z.
Then [¢] — [d] = t%[c — d] is invertible in . We use this fact below without mention.
4.2. Examples The following local rings are all examples of idempotent subrings.

a) Suppose that # = Q and t = 1. Then (J,t) separates Std(P2) and
O = Zp) is a p-idempotent subring of Q for any prime p.

b) Let K be any field and set % = K(x), where x is an indeterminate over K,
and t = 2+¢&, where ¢ is a primitive eth root of unity in K. Then O = K|[z],)
is an e-idempotent subring of 7 .

c) Let & = Q(x,&), where x is an indeterminate over Q and £ = exp(27i/e)
is a primitive eth root of unity in C. Let t = = + £. Then (¢, t) separates
Std(P2) and O = Z[z, €], is an e-idempotent subring of 7.

d) Maintain the notation of the last example and let p > 1 be a prime not
dividing e. Let ®.,(x) be a polynomial in Z[x] whose reduction modulo p is
the minimum polynomial of a primitive eth root of unity in an algebraically
closed field of characteristic p. Then O = Z[z, ]z p,a. ,(¢)) is an e-idempotent
subring of C(z).

&

Suppose that i € I"™ and set Std(i) = {t € Std(P2) | res(t) =i}. Define the
residue idempotent f° by

(4.3) e = Z F.
testd(i)

By Theorem 3.14, fi(9 is an idempotent in 7—[2(%) In the rest of this section, we fix
a seminormal basis { fs¢} of H2(#") which is determined by a seminormal coefficient
system {a,.(5)} and a choice of y. Then we have that f© = 2 testd(i) %fu.

4.4. Lemma. Suppose that O is an idempotent subring of # and thati € I'™. Then
e € £(0). In particular, fC is an idempotent in H2(O).
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Proof. This result is proved when O is a discrete valuation ring in [26, Lemma 4.2],
however, our weaker assumptions necessitate a different proof. Motivated, in part,
by the proof of [27, Theorem 2.1], if t € Std(i) define

T Ly —[d]
L I o)
ci(t)#Zc (mod e)

Since O is an e-idempotent subring, F/ € Z(0) C H2(0). By Theorem 3.14,
> sestapa) Fs is the identity element of HA () so, using (3.15), we see that

Fl= Y FF.= > auF,
s€Std(PA) s€Std(PA)
where as¢ =[], .([cx(s)] —[c])/([ck(t)] —[c]) € O. In particular, ay = 1. If s ¢ Std(i)
then there exists an integer k such that resy(s) # resi(t), so [ck(s)] — [cx(t)] € OF
and as¢ = 0. Therefore, F{ = > sesta(i) @stFs. Consequently, fOF = F| = F{f°
by (3.16). Notice that F{F, = FF| because .Z (%) is a commutative subalgebra
of HA (). Therefore,

teStd(i) t1,...,t, €Std (i)
distinct with k>0

On the other hand, since f© = ZseStd(i) F, and ay =1,

[[ W-r)= 11 > (-af=o.

teStd(i) teStd(i) sestd(i)
s#£t
because F,Fy = 0 whenever s # t by (3.16). Combining the last two equations,
1O = > (1) Fl .. F

t1,...,t, €Std(i)
distinct with k>0

In particular, f© € £(0) as we wanted to show. O

4.5. Corollary. Suppose that O is an idempotent subring of # . Then { f© | i€ I"}
is a complete set of pairwise orthogonal idempotents in H2(O).

Proof. By Theorem 3.14, { Fy | t € Std(PA)} is a complete set of pairwise orthogo-
nal idempotents in H2(#"). Hence, the result follows from Lemma 4.4. O

If p € O[Xq,...,X,] is a polynomial in indeterminates X7, ..., X, over O then
set (L) = ¢(Ly,...,Ly,) € L(0). If 5 is a tableau let ¢(s) = ¢([c1(8)],- .., [cn(s)])

be the scalar in O obtained by evaluating the polynomial ¢ on the contents of s;
that is, setting X7 = [c1(8)],..., Xn = [cn(s)]. Then, ¢(L)fsx = ¢(s)fst, for all
(s,t) € Std*(PL).

Ultimately, the next result will allow us to ‘renormalise’ intertwiners of the residue
idempotents fo for i € I, so that they depend only on e rather than on &.

4.6. Proposition. Suppose thati € I™ and ¢ € O[X1,...,Xy] is a polynomial such
that ¢(t) is invertible in O, for all t € Std(i). Then

= Y ¢ F e 2(0).

teStd(i

In particular, f € HA(0O).
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Proof. By assumption, ¢(s) is invertible in O for all s € Std(i). In particular, fi¢ is

a well-defined element of Z(.%). It remains to show that fiq5 € Z2(0).
As in Lemma 4.4, for each t € Std(i) define

Ly — ]
F = — € Z(0),
=1L g
ck(t)Zc (mod e)
and write F{ = ZseStd(i) asFs for some as¢ € O. Recall from the proof of Lemma 4.4
that a¢y = 1.

Motivated by the definition of F}, set F = %F’. Then FY € £(0) and

¢<L astqs
Fl= ) aa Pt )
seStd(i) ¢( ) seStd(i)
s#t

by (3.15). Consequently, Ff’fio = F¢ = inFf). The idempotents { F; | s € Std(i) }
are pairwise orthogonal, so

fi¢F¢: a5t¢ ast 1 F/.
(2 @ E ) - T R et

Therefore, f{F¢ € £(0), for all t € Std(i). By (3.15), ffC = f7 = fOf?, so this
implies that fi‘b( i F9) = fid) (mod .Z(0)) . Hence, working modulo .Z(0),

= I we-rr=1 11 - aﬁ‘f’ o,

teStd(i) teStd(i) seStd(i)

s7t

where the last equality follows using the orthogonality of the idempotents F, once
again. Therefore, fi¢ € Z(0), completing the proof. O

Let ¢ be a polynomial in O[Xq,...,X,] satisfying the assumptions of Propo-
sition 4.6. Then q/)(L)ffﬁ = fP = f:ﬁ(b(L) by (3.15). Abusing notation, in this
situation we write

1 1

—f° = fi Fo=fP—= € £(0).

o(L) SZ;( ey
Note that, either by direction calculation or because .Z is commutative, we are
justified in writing fioﬁ = ﬁflo

We need the following three special cases of Proposition 4.6. For 1 < r < n

define M, =1— L, +tLy41 and M) =1+tL, — L4, for 1 <r < n. Applying the
definitions, if (s,t) € Std(P2) then

(4.7) M, for =t — po(s)]for and M. for =t O[1 + p,(8)] for.

Our main use of Proposition 4.6 is the following application which corresponds to
taking ¢(L) be to L, — L,y1, M, and M), respectively.

4.8. Corollary. Suppose that O is an e-idempotent subring, 1 <r <n andi¢€ I".

1 t—cr+1(8)
a) If iy # ipyr then ——— fO = L T Re20)
) R Py el Dl s
b) Ifi, # Lthen —f0 = 3 Y e 2(0)
iy # irir + 1 then — [O = L ke .
" M testd(i) L= pr(¥) t

t—crr1(t)

1
M T 2 [+ pr(0)]

teStd(i)

C) ]fir#irJrl_l the F{EX(O)
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4.2. Intertwiners. By Theorem 2.14, if K is a field then the KLR generators
of HA(K) satisty .e(i) = e(s, -i)1,.. This section defines analogous elements
in #2(O) which intertwine the residue idempotents fC, for i € I".

4.9. Lemma. Suppose that i, = 4,41, for somei € I™ and 1 < r < n. Then
O _ O
Trfi - fi Tr-

Proof. This follows directly from the Seminormal Basis Theorem 3.14. In more
detail, note that if t € Std(i) then r and r + 1 cannot appear in the same row or in
the same column of t. Therefore,

L0 = Y S(nh-fr)- Y (ol

testd(i) 't poestd@) To
v=t(r,r+1)
by (3.15). By Corollary 3.17, if v = t(r,r + 1) then o, ()7, = a,(v)vy:. Hence,
T, fC = fOT, as claimed. O

4.10. Remark. In the special case of the symmetric groups, Ryom-Hansen [31, §3]
has proved an analogue of Lemma 4.9.

Using (3.15), it is easy to verify that T, f° # ijTT ifj=s.-i#i,for1<r<n
and i € I"™. The following elements will allow us to correct for this.

4.11. Lemma. Suppose that (s,t) € Std(PY) and 1 <r < n. Let u = s(r,r + 1).
Then (T, Ly — LyTy) far = 0 (8)t5 1) [ (8)] fu.

Proof. Using (3.15) we obtain
(T:Ly — L, T) fse = ar@)([Cr(ﬁ)] - [Cr+1(5)])fut = Oér(5)tcr+l(5) [pr(8)] futs
where, as usual, we set f, = 0 if u is not standard. (]

Applying the *involution, fo(T,L, — L, T,) = —a,()t+1(V[p,(1)] fon, where
o=t(r,r+1).

4.12. Lemma. Suppose that i, # iy41, for someie€ I™ and1 <r <n. Setj=s,-1i.
Then (T,-L, — L,.T,.)fio = fjo (T.L, — L,.TT.).
Proof. By definition, f© = Zﬁesm(i) %fﬁﬁ so, by Lemma 4.11,
1
(TrLr - LrTr)in = Z 7(TT'LT - LT'TT)fES
sestd(i) '°

_ oy el

Vs

seStd(i)
u=s(r,r+1)€Std(P2)

Note that if s € Std(i) and u = s(r,r + 1) is standard then s € Std(j). Similarly,

o)t o, ()]
Yu

ij(TrLr - LrTr) = Z
ueStd(j)

s=u(r,r+1)estd(i)

By (3.15), the tableaux in Std(i) and Std(j) which have r and  + 1 in the same
row or in the same column do not contribute to the right hand sides of either of
the last two equations. Moreover, the map s — u = s(r,r + 1) defines a bijection
from the set of tableaux in Std(i) such that r and r + 1 appear in different rows and
columns to the set of tableaux in Std(j) which have r and r+ 1 in different rows and
columns. In particular, (T;.L, — LTT,a)fiO =0 if and only if fjo (T-L,. — L, T,) =0.

qu'
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To complete the proof suppose that s € Std(i) and that u = s(r,r + 1) € Std(j).
Now, a,.(u)vs = a,(8)yy, by Corollary 3.17, and p,.(u) = —p,.(s), by definition. So

—ar (Wt Wip, )] —ar ()t [—pe(s)] _ an(s)trt D p,(s)]

Yu Vs Vs ’
Hence, comparing the equations above, (T,.L, — LTTT)in = fjo (T L, — LTTT) as
required. O

Recall the definitions of M, and M, from (4.7), for 1 < r < n. We finish this
section by giving the commutation relations for the elements M,., M/, (1+ T,) and
(T-L, — L. T;). These will be important later.

4.13. Lemma. Suppose that 1 <r <n. Then
(T,.L, — L,T.)M,, = M(T,.L, — L, T,.) and (T, —t)M, = M, (1+T,).

Proof. Both formulas can be proved by applying the relations in Definition 2.2.
Alternatively, suppose that (s, t) € Std*(P2) and set v = t(r, + 1). Then, by (4.7)
and Lemma 4.11,

fedTo Ly = Ly T) My = —an (082 [p, (8)][1+ pr(8)] foo
= fstMylv(TTLr - LTTT)7

where the last equality follows because ¢.(v) = ¢,41(t) and ¢r41(0) = ¢.(t). As
the regular representation is a faithful, this implies the first formula. The second
formula can be proved similarly. O

4.3. The integral KLR generators. In Lemma 4.9 and Lemma 4.12, we have
found elements in H2(O) which intertwine the residue idempotents f°. These
intertwiners are not quite the elements that we need, however, because they still
depend on t, rather than just on e. To remove this dependence on t we will use
Proposition 4.6 to renormalise these elements.

By Lemma 4.4, if h € H2(O) then h = Siern hfC, so that h is completely
determined by its projections onto the spaces H2(O) fio . We use this observation
to define analogues of the KLR generators in H2(0).

Recall from (4.7) that M, =1 — L, +tL,41. By Corollary 4.8, if i, # 4,41 + 1
then M, acts invertibly on fOHA(O) so 7~ fC is a well-defined element of H2(O).

As in the introduction, define an embedding I < Z;i+ 1 by defining 7 to be the
smallest non-negative integer such that ¢ =i + eZ, for i € I.

4.14. Definition. Suppose that 1 < r < n. Define elements y© = D icrn z/;?fio
in HA(O) by

(T, + 1) 0, if i = iren,
(T,Ly — LTt " fO, if iy = dpy1 + 1,
(T-L, — LTTT)ML O otherwise.

o _

If 1 <r <n then define y@ = > s cpn t 7 (Lr — [i]) 2.

PP =

The order of the terms in the definition of ¥¢ matters because M, does not
commute with 7,. + 1 or with 7, L, — L, T, (see Lemma 4.13), although M, does
commute with fio. Notice that 1€ is independent of the choice of seminormal
coefficient system because the residue idempotents fio are independent of this choice.

One subtlety of Definition 4.14, which we will pay for later, is that it makes use
of the embedding I < Z in order to give meaning to expressions like ¢t
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4.15. Remark. Unravelling the definitions, the element ¢£9 ®o 1k is a scalar multiple
of the choice of KLR generators for H2(.#") made by Stroppel and Webster [33, (27)].
Similarly, y© ®e 1 is a multiple of the KLR generator y,. defined by Brundan and
Kleshchev [6, (4.21)].

4.16. Proposition. The algebra H2(O) is generated by the elements
(8 lieryufwl |1<r<n}u{y® |1<r<n}.

Proof. Let H be the O-subalgebra of H*(0O) generated by the elements in the
statement of the proposition. We need to show that H = H2(0). Directly from
the definitions, if 1 < r < n then L, = Y ;(t"y® + [i,])f° € H. Therefore,
the Gelfand-Zetlin algebra Z(0) is contained in H. Consequently, M, € H, for
1 < r < n. By Definition 2.2, L, T, — T v L. =T.(Lyy1 — L) — 14+ (1 —t)L,41. By
Corollary 4.8(a), if i, # iy41 then —— L fo € Z(0) C H. Therefore, since M,

and fiO commute, we can write
(t7r @M, — 1) f2, if 4 = dpg1,
T8 = (=2 + 14+ (t = DLia) g SO0 ifir = dpn +1
( — w’,(?MT + 1 + (t — l)LT+1) mfl 5 OtherWise.

by Definition 4.14. Hence, T, = >, TrfiO €eH. AsTy,..., T, 1,Lq,...,L, gener-
ate H2(O) this implies that H = H2(0O), completing the proof. O

‘We now use the seminormal form to show that the elements in the statement of
Proposition 4.16 satisfy most of the relations of Definition 2.10.

4.17. Lemma. Suppose that 1 <r <n andi € I"™. Then wﬁgflo fowr , where
j=s,-1

Proof. By Lemma 4.4 and Proposition 4.6, respectively, M, and f° both belong
to £ (0), which is a commutative algebra. Therefore, ﬁ fE and f€ commute. If
iy = ip41 then

fir

v f7 = (T + 1) fl = [T+ 1) 7= 1w,

where the third equahty comes from Lemma 4.9. The remaining cases follow similarly
using Lemma 4.12. O

— (T, + )OS

As we will work with right modules we need the right-handed analogue of
Definition 4.14. Note that if i, # i,41 + 1 then fC1— = J%[Tfio € HA(O) by

Proposition 4.6. Similarly, if i, # 4,1 — 1 then f© ]\}, = 17 fl(9 € HA(0). Tt follows
that all of the expressions in the next lemma make sense.

4.18. Lemma. Suppose 1 <r <mn andi€ I". Then

fi(9 tlzy;l (TT - t), if i = Urg1,
fpw? - fO(T L LTTT)t_iTJrla Zf ir - ir+1 - 17
fl M'( LT‘T’I')7 otherwise.

Proof. By Lemma 4.17, fPy9 = fOz/JOfO where j = s, - i. Therefore,

f‘O( T )t Pr41 O

1 T i

iowf? - in(TTLT - LTTT‘)tiierijv if i, = try1 — 1,
(T Ly — LrTr)ﬁrfjo, otherwise.

To complete the proof apply Lemma 4.13. O

if i; = irq1,
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4.19. Lemma. Suppose thati,j € I™ and 1 <r,s <n. Then
SN =1 212 =012 w22 = 12v0 and yPyS = ySyP.
ieIn

Moreover, if s # r,r + 1 then YOy = yOyC, for 1 <r <n and 1 < s < n.

T

Proof. The elements fio, for i € I"™, form a complete set of pairwise orthogonal
idempotents by Lemma 4.4, which gives the first two relations. Since y,., f© € £(0)

and .Z(0) is a commutative algebra, all of the elements f°, y© and y© commute.

Now suppose that s # r,7 + 1. Then y? commutes with ﬁfio and with T.
Hence, z/;f?fioy? = yfz/;?fio, for any i € I™. Therefore, pCy® = y©u2. O

4.20. Lemma. Suppose thati e I™. Then

H (Y — [ — )2 =0.
1<i<e
K1=t1 (mod e)

Proof. By Definition 2.2, [T_, (L1 — [k1]) = 0 so that [];_, (L1 — [r1]) f€ = 0, for all
icl. Ifk; #i1 (mod e) then [iy] # [x] so that (L1 — [s]) acts invertibly on fOHA
by Proposition 4.6. Consequently, by Definition 4.14,

0= JI @@ +@] - kDL =20 I @ = k=) £
1<I<e 1<1<e
K1=11 (mod e) K1=%1 (mod e)

As t is invertible in O, the lemma follows. O

Suppose that s is a standard tableau, i = res(s) € I and 1 < r < n. Define

ti,.fc,,.(s)aT (5)

, if 4 =441,
1= p,(5) +
(4.21) Br(s) = S tern1&=trqy (8)[p.(5)], if 4 = dpy1 + 1,
—pr(s)
t o (5)[pr(5)] , otherwise,
(1= pr(s)]
and
irp1—crya(s)
! ar (5) ’ if iy = ir+17
. 1+ 0.5
(4.22) Br(s) = { —tert1)=trtrgy (s)[pp(s)], if iy = dpy1 — 1,
—M otherwise.
(14 pr(s)]

These scalars describe the action of ¢ and y© upon the seminormal basis.

4.23. Lemma. Suppose that 1 < r < n and that (s,t) € Std*(PD). Set i = res(s),
j=res(t), u=s(r,r+1) and v =t(r,r +1). Then

tirt1—crya(s)

© t = Pr 11t_5ii 17T 7 7 Jst
1/]7" fS ﬁ (ﬁ)f rlr4+ [pr(5)] f

and
tirr1—crga(t)
—— [t
[pr (V)]
Similarly, yv(?fst = [Cr(ﬁ) - ir]fs’w and fstyf? = [Cr(t) - jr]fst; for1 <r<mn.

fstw? = Br (t)fsn - 6jrj7‘+1
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Proof. Applying Definition 4.14 and (3.15),

ye for =t ([en(9)] = [ir]) for = [en(8) — 0] for.

The proof that foy® = [c-(t) — j,] fs¢ is similar. We now consider 1¢.

By (3.16), if k € I" then £ fot = i fst. We use this observation below without
mention. By Lemma 4.11, (T.L, — L,T,)fst = o (5)t+1)[p,(5)] fur. Hence,
YO for = Br(5) fur when i, # i,41 by Definition 4.14 and (4.7). Now suppose that
ir = ip41. Then, using (4.7) and (3.15),

tir tir—cr(s) 1
VO fae=(1+ Tr)Mfst = m(ar(5)fut +(1- m)fu)
tir+1—crya(s)
= Br(5) fut — Wfst,

as required. The formula for f)@ is proved similarly using Lemma 4.18 in place
of Definition 4.14. O

Note that, in general, Y@ fo¢ # (fis?®)*.
The next relation can also be proved using Lemma 4.13 and Lemma 4.18.

4.24. Corollary. Suppose that |r —t| > 1, for 1 < r,t <n. Then YO = pPp2.

Proof. Tt follows easily from Lemma 4.23 that ¢, for = ¥ty fr, for all (s, t) €
Std?(P2). Hence, by Lemma 4.4, pP9C fO = PyC fO, for all i € I™. O

4.25. Lemma. Suppose that 1 <r <mn andi€ I"™. Then

VYt S = P00 + 000, ) and yPawl f7 = (070 + i, ) -

Proof. Both formulas can be proved similarly, so we consider only the first one.
We prove the stronger result that ¥ y2, for = YV + 8i4,.,) fst, Whenever
(s,) € Std*(P2) and res(s) = i. By (4.3) this implies the lemma.

Suppose first that i, = 4,11. Then, using Lemma 4.23,

irp1—Crt1(8)
ngyg-lfst = [er41(8) — rq1] (6r(5)fut - t[pwfs{)'

On the other hand, by Lemma 4.23 and (4.21),

ir—crt(s) _;
(OVC + 1) for = en(w) = irsa] (o) fuc + (1 - t e (s) r]> i

[brt1 — Cr+1(5)}f

[pr (5)]

Therefore, YOy2,; for = (yC1C + 1) for since ¢, (1) = ¢y 41(s) and 4, = ir41.
If 4, # i,41 then the calculation is easier because

bOYC 1 fot = [erg1(8) — ri1)Br(8) fue = yC U fats

where, for the last equality, we again use the fact that ¢, (1) = ¢,11(s). O

= [er(u) = 41 Br(5) fur +

The following simple combinatorial identity largely determines both the quadratic
and the (deformed) braid relations for the ¢, for 1 < r < n. This result can
be viewed as a graded analogue of the defining property (3.10) of a seminormal
coefficient system.
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4.26. Lemma. Suppose that 1 <r < n and s,u € Std(X) with u = s(r,r + 1) and
res(s) = i€ I", for A € P2, Then

tcr(s)+c7,+1(s)—irfir+1 [1 _ Pr(ﬁ)][l + Pr(ﬁ)], Zf ir S ir+17

ter+1(8)—irg1 [1+ pr(s)], if iy = g,
Br(8)Br(u) = ter(@) =1 — p,(s)], if Uy iy,
Zir—2eng1(9) zf@ _
lor(s)]* T trtls
1, otherwise.

Proof. The lemma follows directly from the definition of f,(s) using (3.10). O

It is time to pay the price for the failure of the embedding I — Z to extend to
an embedding of quivers. Together with the cyclotomic relation, this is place where
the KLR grading fails to lift to the algebra H2(O). Recall from Definition 4.14 that

yO e =t (L, — [i,]) fC, where 1 <r <n and ie I™. For d € Z define

(4.27) yi P £ =t (L = i — ) f0 = (M0 + [ £
In particular, y§0> =9 and y§d> ®o 1x =y ®p 1 whenever e divides d € Z,
As a final piece of notation, set p,.(i) =&, —i,41 € Z, fori€ I and 1 <r < n.

4.28. Proposition. Suppose that 1 <r <n and i€ I™. Then

(7 — g ) =)0 if i S i,
(y§1+pr( D) yr+1) iO’ if tp = try1,
W27 = iy =y £2, if ir =iy,
0, if iy = Urt1,
in , otherwise.

Proof. Once again, by (4.3) it is enough to prove the corresponding formulas for
(19)? for, where (s, t) € Std*(P2) and i = res(i).

Suppose that i, = i,11. Let u = s(r,r + 1) and j = res(u). By Lemma 4.23,
t2u—2cr+1(s) ﬁr(s)tir_cT(s) ﬁr (S)th_CT(u)
ey ; Vi

[or(s)]? [or (w)] [or(s)] !

Note that p,.(5) = —p,(u) and i, = j,, so that tm=¢rW[p,(u)] = —tr=&)[p,(s)].
Hence, using Lemma 4.26, (19)2 fs¢ = 0 when i, = i,y as claimed.
Now suppose that i, # i,41. Then, by Lemma 4.23 and Lemma 4.26,

(wg)Qfst = Br(s)ﬁr(u)fst
perlerten® it [l = p &)1+ pols))fors i iy S i,

W) ot = ( + Br(8)B, () — (

- tcr+1(5)_ir+1 [1 —|— pr(s)]fsh lf i'r‘ — i'r‘+17
er(8)=tr [1 = pr(5)] fots if 4y < dpy1,
fots otherwise.

As in Lemma 4.23, if d € Z then y7<“d>fst = [er(s) — ir + d]fst. So, if 4 — i,y then

D) — O ) far = (len(8) + 1= i) = e (8) = i) fon
_ tc,«+1(5)*ir+1 [1 + pr(5)]f5’t = (w?)zfﬁt-

The cases when ¢, — 4,41 and i, < 4,41 are similar. O

Set BO wowr+lwo ¢r+1¢07/’r+1; for 1 <r<n-— 1.
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4.29. Proposition. Suppose that 1 <r <n and s,t € Std ()\), with s € Std(i) for
ieI™. Then

1+4p,-(i 1+4p.-(i 1+p.-(i 1—pn(i . . .
(yﬁ +pr (1)) + yi_:gp 1) _ yiﬁp 1) _ 3/£+1p (1)>)f5{7 i ipsn = iy 2 iry1,
o0, 7t1+pr(l)f5t7 if ipyg = iy — pg1s
B'r fst - . . .
fstv Zf Yp42 = Up < Up41,
0, otherwise.

Proof. We mimic the proof of the braid relations from Lemma 3.13.

Define (not necessarily standard) tableaux u; = s(r,7 + 1), us = s(r + 1,7 + 2),
Uyjp = ul(r + 1,7+ 2), Ugp = u2(7’,7’ + 1) and ujo; = 1112(7’,7' + 1) = Us1a. To
ease notation set ¢ = 4, j = 9,41 and k = i,42. The relationship between these
tableaux, and their residues {res;(u) | » < s <r+2} = {i,j,k}, is illustrated in
the following diagram.

s~ (1,5, k) )
S/ \HA
uy ~ (4,4, k) uz ~ (i, k, j)
5r+1l Jsr
U ~ (]7kvl) Ugg ~~ (kala])

Uy21 = Uiz ~ (K, 7,1)

Note that if any tableau u € {uy,us, u12.u21, U321 } is not standard then, by definition,
fut = 0 so this term can be ignored in all of the calculations below.

We need to compute BY fy. To start with, observe that by Lemma 4.23, the
coefficient of f,,,,¢ in BY fs is equal to

Br(8)Brs1(u1)Br(w12) — Bry1(5)Br (uz) Brayr (u21).

By definition, the scalars [p,(s)] and [1 — p,(s)] are determined by the positions of r
and r + 1 in s, so it is easy to see that

pr(8) = pre1(u21),  pr(u1) = pre1(iar),  pr(u2) = prgr(ur),
pr(i2) = pri1(s),  pr(u21) = pry1(az),  pr(ti21) = prya(u2).

Observe that a,.(s)ay41(u1)a-(12) = apy1(s)a(U2)ar+1(u21) by (3.9). Keeping
track of the exponent of ¢, (4.21) and (4.30) now imply that 8,(s) 8,1 (u1)Br(u12) =
Br41(8)Br(u2)Br+1(u21). Note that (3.9) is crucial here. Therefore, the coefficient
of fuypyt in BE fsr is zero for any choice of 4, j and k. As the coefficient of fy,,, ¢
in BY f. is always zero we will omit f,,,,¢ from most of the calculations which
follow.

There are five cases to consider.

(4.30)

Case 1. 1, j and k are pairwise distinct.
By Lemma 4.23 and the last paragraph,

B?fﬁt = (5r(5)5r+1(u1)5r(u12) - ﬂr+1(5)5r(u2)[3r+1(uzl))fumt =0,

as required by the statement of the proposition.
Case 2. i=j#k.
In this case, using Lemma 4.23,

ti*Cr+1(5) ti*Cr+2(u21)

o, [ tmom® v
B foe = ( Bry1(5)Br(uz) + Bry1(5) Br (112) [Pr11(u21)]

rX5) ) fua
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Now ¢ = ¢,41(u21) and ¢, 41(5) = cr12(t21), as in (4.30). Hence, BY fo¢ = 0 when
i=j#k.

Case 3. i#j=k.

This is almost identical to Case 2, so we leave the details to the reader.

Cased. i=k#j.

Typographically, it is convenient to set ¢ = ¢.(s), ¢ = ¢,4+1(8) and ¢’ = ¢r42(s).
According to the statement of the proposition, this is the only case where B fi¢ # 0.
Using Lemma 4.23, we see that

By fe = ( Br(s) [or41(u1)] Br(u1) + Bria(s) (o (12)] Br+1(u2)>fst.
= %( - ﬁT’(E)BT(ul) + B”‘+1(5)ﬁ7‘+1(u2))fst~

Expanding the last equation using Lemma 4.26 shows that
t°[L = pr(&[L + pr(8)] =t [L = prra(9)][L + prsa(s)]
tc”—c’+j[c _ CN]
_ (L4 pr(s)] = [1 = pry1(s)]
A
[l —pr(s)] =t [1+ prya(s)]
t¢" [c — ']
0, otherwise.

fst, @57,

fsts ifi — j,

fﬁh if i <_ja

(Note that, by assumption, the case i = j does not arise.) If i < j then a
straightforward calculation shows that in this case

Bf?fst:—<[c’—j+2]+[c’—j]—[c+1—j]—[c”+1—j])f5t

= —(y{er @O gy O (er@) oy Utor Oy g

where the last equality uses Lemma 4.25 and the observation that, because e = 2, we
have {1+ p,(i)} = {0,2} and {i, 7} = {0,1}. A similar, but easier, calculation shows
that if i — j then BE fo = —t'777 fo = —t1F7r (0 f  and if i < j then B for = for.
If i # j and i /- j then we have already seen that BY fo = 0, so this completes the
proof of Case 4.

Case 5. 1=j5=k.
We continue to use the notation for ¢, ¢/, ¢” from Case 4. By Lemma 4.23 (compare
with the proof of Lemma 3.13), B? fs is equal to

_( tSi—ZC’—c” _ t3i7C’72c” + tiic,/BT(s)BT(ul) - e’ ﬁT+1(5 ﬁr+1(u2 )f
lor (&) lor1()]  lori1(s)][or(s)] [ort1(u1)] lor(u2)] st

t—¢ —¢ tfc/—c” t—Qc

N
+ Zﬁr(5)<[p,+1<u1mm () R ) | et ) Bl ey ) [ o o) )f““

—c'—c —c'"—c e —

27
+ ﬁr“(s)([m(s)][m(uz)] @@~ @) ) fust

1 Br(8) B (1) (Griyy — ) fo
7 Bra (8)8 (u2) (e — ey ) Fun
Using (4.30) it is easy to see that the coefficients of fy,,¢ and fy,,¢ are both zero. On
the other hand, if ¢ # 1 then the coefficient of t%Br(s)fult in B?fst is
t—1 n t—1 t—1
(tc/_tc)(tc_tc//) (tc_tcl)(tc/_tc//) (tcl_tc//)(tc_tcll)’
which is easily seen to be zero. The case when ¢t = 1 now follows by specialisation.
Similarly, the coefficient of fy,¢ in B? fst is also zero. Finally, using Lemma 4.26 and
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(4.30), the coefficient of fs in BY fo is zero as the four terms above, which give the
coefficient of fs; in the displayed equation, cancel out in pairs. Hence, BY fs = 0
when i = j = k, as required.

This completes the proof. O

We need one more relation, which is a deformation of Corollary 2.16.

4.31. Lemma. Suppose that2 <r <n andi€ I"™. Then

IT &€ —le® -] =o.

testd(i)
Proof. This is an immediate consequence of (4.3) and Lemma 4.23. d

4.4. A deformation of the quiver Hecke algebra. Using the results of the last
two sections we now describe H2(O) by generators and relations using the ‘O-KLR
generators’ of HA(O).
Suppose that (O, t) is an idempotent subring of J#. So far we have not used the
assumption that [de] € J(O), for d € Z. This comes into play in the next theorem.
Note that the relations for y$,...59 in the next theorem are not quite the same
as those in Theorem A from the introduction.

4.32. Theorem. Suppose that (O,t) is an e-idempotent subring of # . Then the
algebra H2(O) is generated as an O-algebra by the elements

(P liermyu{y? | 1<r<n}u{y® |1<r<n}
subject only to the following relations:

II @W-l-uh=0= [ @ -l -0, for2<r<n,

1<I<¢ teStd(i)
k1=t1 (mod e)

fiofjo = 0y 7, Zielnfio =1, yo 2 = f2yC,

O O O O o, 0 o, 0
d}r fi = Jsi¥r s Yr Ys = Ys Yr
o, 0 O 0,0 O O O rO O, 0 O
wr yT—‘rlfi = (yr ’l/)r + 5irir+1)fi 5 yr-‘rld)r fi = (7/}7" Yy + 5irir+1)fi y
bRy =yl vy, ifs#rr+1,
14pn(i 1—py(i . )
(e =y ) I, i S,
(i T — g2 ) 12, if ir = i,
(@] O 1—p,(i o .
(d)r )2fi = (y7<~+1p ) _ y?) ioa Zf Uy <= Up41,
0, Zf ir - ir+1;
fioa otherwise,
14p.-(i 14p.-(i 14p.-(i 1—pn(i s . .
(yﬁ +pr(1)) + yfn_:gp ) _ yﬁ_:gp ) _ y7<n+1p (1)>)fio’ if iy = bp 2 Gry1,
BOf.O — _t1+pr(l)fioa Zf 7:1”+2 == ir — ir-l—la
n fio, Zf ir+2 == ir — Z.r+17
0, otherwise,

where we set yi¥ = tdy® + [d], for d € Z.

Proof. Let R, (O) be the abstract algebra defined by the generators and relations in
the statement of the theorem. By the results in the last two sections, the elements
given in Definition 4.14 satisfy all of the relations of the corresponding generators of
R, (O). Hence, by Proposition 4.16, there is a surjective O-algebra homomorphism
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0:R,,(0) — HA(O), which maps the generators of R,(O) to the corresponding
elements of H2(0).

If w € G, then set 1/18 = wg ...1/)8, where w = sy, ... 8y,
for w. In general, ¢9 will depend upon the choice of reduced expression, however,
using the relations in R, (O) it follows that every element in R,,(O) can be written as
a linear combination of elements of the form f(y)i,e(i), where f(y) € O[y9, ..., y9],
w € &, and i € I". Hence, because of the first two relations in the statement of
the theorem, R, (O) is finitely generated as an O-module.

Now suppose that m is a maximal ideal of O and let K = O/m = On/mOy
and ( =t+m. Then 1 +(+---+ ¢! =0in K, since [e] € J(O) C m. Note
also that 1+ ¢ +---+ (1 £ 0if k ¢ €Z since O is an e-idempotent subring.
Consequently, yﬁde) ® 1 = y9 ® 1k, for all d € Z. It is easy to see that all of
the shifts 1 & p,.(i) appearing in the statement of theorem are equal to either 0 or
to e. Therefore, in view of Corollary 2.16, upon base change to K the relations
of R,(On) ®0,, K coincide with the relations of the quiver Hecke algebra R2(K),
see Definition 2.10 and Theorem 2.14. Consequently, R,,(On) ®0,, K = RA(K), so
that dim R,,(On) ®0,, K = dim H(K) by Theorem 2.14.

By the last paragraph, if K = O/m, for any maximal ideal m of O, then
dim R,,(On) ®0, K = dimH2(K) = ¢"n!. Moreover, by the second paragraph
of the proof, R, (On) is a finitely generated Op-algebra. Therefore, Nakayama’s
lemma applies and it implies that R, (Oy) is a free Op-module of rank ¢"n!. Hence,
the map On : R, (On) — HA(On) is an isomorphism of Op-algebras. It follows
that 6 is an isomorphism of O-algebras, as required. O

is a reduced expression

4.33. Remarks. (a) All of the relations in Theorem 4.32 are deformations of the
relations in Definition 2.10 except for the relations

[T @2 —le®-aDf =0,

teStd(i)

for 2 < r < n. These relations are needed to ensure that R, (O), as defined in
the proof of Theorem 4.32, is finitely generated as an O-algebra. This is crucial
to the proof of Theorem 4.32 because without this we cannot apply Nakayama’s
Lemma (and hence Theorem 2.14). It should be possible to prove Theorem 4.32
directly, without appealing to Nakayama’s Lemma and Theorem 2.14, by adapting
the arguments of [6, Theorem 3.3].

(b) In proving Theorem 2.14, Brundan and Kleshchev [6] construct a family of
isomorphisms RA — HA(#) that depend on a choice of polynomials @,.(i) which
can be varied subject to certain constraints. In our setting this amounts to choosing
certain invertible ‘scalars’ ¢,(i), which are rational functions in L, and L1, and
defining

w@f_@ — (TT + 1)%.]20? if ir = ir+17
rot (T.L, — LrTr)qr(i)in7 otherwise,

such that the corresponding §-coefficients still satisfy the constraints of Lemma 4.26.
To make this explicit, if i, # ;41 and s € Std(i) then Lemma 4.23 becomes

tirr1—Cry1 (s)

Ofi=a, t 7 Qi T AT
¢r fst = Qi (5)[/07"(5)]%”(5)]0“ 0 T [pr(ﬁ)}
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where ¢, (s) € . is the scalar such that g.(i) fst = ¢-(s) fs¢t and where u = s(r,r+1).
Therefore, in order for Lemma 4.26 to hold we require that

fir—ing if iy S iy,

i1 op - .
m, lf (73 — ZT+13

QT(E)QT(U) = i if .
=G o = 1

Tl o 7 i

and that these scalars satisfy a “braid relation” as in (3.9). If the ¢, (i) satisfy these
two identities then it is easy to see that argument used to prove Theorem 4.32
applies, virtually without change, using these more general elements. The key
point is that Lemma 4.26 still holds. The corresponding identities in Brundan and
Kleshchev’s work are [6, (3.28), (3.29), (4.34) and (4.35)].

We end this section by using Theorem 4.32 to give an upper bound for the
nilpotency index of the KLR generators yi,...,y,. As in the introduction, if
1<r<nandiel” set

&) ={c(t) =% | teStd(i)}
and define E,. (i) = #&,(i). For example, &1 (i) C {k1 —i1,..., k¢ — 1} and F4(i) =
(A, a;,). In general, &.(i) C {ke | k € Z} since ¢, (t) =i, (mod e) if t € Std(i).

4.34. Proposition. Suppose that 1 <r <n and i€ I"™. Then

IT @w?—1ehse =o.

c€&r(i)
Proof. By Lemma 4.4 and Lemma 4.23,

H (v —[DfP = Z H ftt

ce&n(i) teStd( )ceé” () 7‘
= Z H —ir] = []) fu =0,
teStd(i) ' cesn (i)
where the last equality follows because cr(t) — iy € &-(1), for all t € Std(i). O

Even though Proposition 4.34 is very easy to prove within our framework, it has
several very interesting consequences. The first is that because H2(0) = R, (0),
where we use the notation from the proof of Theorem 4.32, we can improve upon
the presentation of H2(O) given by Theorem 4.32 and so prove Theorem A from

the introduction.

4.35. Corollary. Suppose that (O,t) is an e-idempotent subring of # . Then, as an
O-algebra, HA(O) is generated by the elements { f© | i€ I" }u{y? | 1 <r<n}u
{99 | 1 <7 < n} subject only to the relations in Theorem A.

Secondly, we obtain the corresponding result for the cyclotomic quiver Hecke

algebra RA. Note that, in general, E,.(i) < N,(i) = # Std(i), so the next result
improves upon Corollary 2.16.

4.36. Corollary. Suppose thati€ I"™ and 1 <r < n. Then y, 7'(i)e(i) =0 in RD.

When e = 0 Brundan and Kleshchev [6, Conjecture 2.3] conjectured that y’ = 0,
for 1 < r < n. Hoffnung and Lauda proved this conjecture as the main result in
their paper [13]. Using Corollary 4.36 we obtain a quick proof of this result and, at
the same time, a generalization of it to include the case when e > n.

4.37. Corollary. Suppose that e =0 or e >n. Then y- =0, for 1 <r < n.
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Proof. If e = 0 then we may assume that e > 0 by Corollary 2.15. Consequently, it
is enough to consider the case when e > n. By definition, if 1 <[ < ¢ then a node
a = (a,b,1) € X, for X € P2, has residue 4, if and only if i, = b —a + #; (mod e) .
Since e > n, and |a — b| < n, it follows that the content b — a + x; of « is uniquely
determined by 4, and [. That is, all of the nodes of residue i, in a given component
of any multipartition A € P2 have the same content. Hence, E,.(i) < ¢. As
yt =", yle(i) the result is now a consequence of Corollary 4.36. O

5. INTEGRAL BASES FOR H2(0)

Now that we have proved Theorem A, we begin to use the machinery of seminormal
forms to study the cyclotomic quiver Hecke algebras R2. In this chapter we
reconstruct the ‘natural’ homogeneous bases for the cyclotomic Hecke algebras
HA(K) and their Specht modules over a field.

5.1. The 1-basis. Theorem 4.32 links the KLR grading on H2 = R2 with the
semisimple representation theory of H2(J#). We next want to try and understand
the graded Specht modules of H2 [8,15,22] in terms of the seminormal form. We
start by lifting the homogeneous basis {15} of H? to HA(O). This turns out
to be easier than the approach taken in [15]. Throughout this section, O is an
e-idempotent subring of .

By Theorem 4.32, there is a unique anti-isomorphism * of H2(0) such that

W) =v7, W) =y and (f0) = f°,
forl<r<n, 1<s<nandi€ [" Lemma 4.23 shows that, in general, the
automorphisms * and * do not coincide.

Recall from Definition 3.7 that a x-seminormal basis of H2(#) is a basis { fs(} of
two-sided eigenvalues for £ such that fo = f, for all (s,t) € Std*(P2). We define
a x-seminormal coefficient system to be a set of scalars {5, (t)} which satisfy the
identity in Lemma 4.26 and the “braid relations” of (3.9) (with « replaced by 5).

The main difference between a *-seminormal basis and a *-seminormal basis is
that T, fsi = (fisTr)* for a *-seminormal basis whereas V¢ fo = (fis9?)* for a
*-seminormal basis.

5.1. Lemma. Suppose that {f} is a *-seminormal basis of H2(#). Then there
exists a unique x-seminormal coefficient system {B,(t)} such that if 1 <r <n and
(s,t) € Std(P2) then

tirer—crra(b)

0= v 51’ el [ [\ /St
f5t¢r BT(U)fE rirt [pr(t)] ft

where v = t(r,r + 1) and t € Std(i), for i € I"". Conversely, as in Theorem 3.14, a
x-seminormal coefficient system, together with a choice of scalars { v | X € P},
determines a unique x-seminormal basis.

Proof. By (4.21), a set of scalars {3, (t)} is a -seminormal coefficient system if and
only if {a,-(f)} is a *-seminormal coefficient system, where

Br(O)terO=ir[1 — p (0], if ip = ipy1,

57“ (t)tir —crg1(t)

O‘r(t) = W’ if if’ = 7:7’4-1 + 13
—'BT MO0 = pr(t)] otherwise
] therwise.

Therefore, as seminormal coefficient systems are determined by the action of the
corresponding generators of H2 on its right regular representation, the result follows
from Theorem 3.14 and Lemma 4.23. O
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Henceforth, we will work with *-seminormal bases.

Exactly as in Theorem 3.14, if {fs} is a x-seminormal basis then there exists
scalars ¢ € J# such that fs¢fue = dutyefso, for (s,t), (u,0) € StdQ(P,’}). Repeating
the argument of Corollary 3.17, these scalars satisfy the following recurrence relation.

5.2. Corollary. Suppose that t € Std(P2) and that v = t(r,r +1) is standard, where
1<r<n. Then /Br(n)'}/t = 51“({)'%-

Motivated by [15], we now define a new basis of H2(O) which is cellular with
respect to the involution x. Fix A € P2 and let i* = (i,...,i}), so that i} =
resgx (1) for 1 < r < n. Following [15, Definition 4.7], define

() = { ‘ « is an addable i}-node of the multipartition}
A= Shape(t}).) which is below (£*)~'(r) ’

forl1 <r<n.

Up until now we have worked with an arbitrary seminormal basis of H2 (). In
order to define a ‘nice’ basis of H2(O) which is compatible with Theorem 4.32 we
now fix the choice of v-coefficients by requiring that

(5.3) Yex = H H [Ca - Cr(t)\)}v
)

r=1aecdx(r

for all A € P2. Together with a choice of seminormal coefficient system, this
determines v, for all t € Std(P2) by Corollary 5.2. By definition, v is typically
a non-invertible element of O. Nonetheless, if i € I" then f7 = 3 gi46) 5 fos
belongs to HA(O) by Lemma 4.4.

We also fix a choice of seminormal coefficient system by requiring that 3,.(s) = 1
whenever 5 > t = 5(r,r + 1), for s € Std(P2) and 1 < r < n. More precisely, if i € I
and s € Std(i) then we define

(5.4)
1, ifs>tori. -+ ipy1,
7%7 if t> s and i, = 4,41,
Br(s) = { ter(&)Ferta(s)=ir—irp [1—pr()][1+ pr(s)], iftesand iy S iy,
tcr(s)*’zr[l — pr(s)], if t> s and i, < 441,
terr1@=irt1[] 4 p.(s)], ift>sand i, — tpqq.

where 5 € Std(P2) and t = s(r,r + 1) is standard, for 1 < r < n. The reader is
invited to check that this defines a x-seminormal coefficient system. As the definition
of 9@ is independent of the choice of seminormal coefficient system this choice is
not strictly necessary for what follows but it simplifies many of the formulas.

By Lemma 5.1, this choice of x-seminormal coefficient system and ~y-coefficients
determines a unique x-seminormal basis {fs¢} of H2(2#"). We will use this basis to
define new homogeneous basis of #2. The first step is to define

yo I = H H 7 ([ea) — L) £R

r=1aca/(r)

n
PON N
=T I 0 ea = - w?)AR,
r=1aca/(r)
where the second equation follows by rewriting Li fC in terms of v fC as in the
proof of Proposition 4.16. In particular, these equations show that y(’} f{Q Ro 1k is a

monomial in ¥, ...,y, and, further, that it is (up to a sign) equal to the element y*
defined in [15, Definition 4.15].
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The next result is a essentially a translation of [15, Lemma 4.13] into the current
setting for the special case of the tableau t*.

5.5. Lemma. Suppose that A € 777/}. Then there exist scalars as € & such that
yéfﬁ\) = fop + Z s fas-
sptX

In particular, ygfi(,? is a non-zero element of H2(O).

Proof. By Lemma 4.4, fS =", ,Y%fﬁs, so that y3 fS = ZseStd(i’*) Qs fss, for some
as € A, by (3.15). It remains to show that ax = 1 and that as # 0 only if 5 p t*.
Using (3.15), and recalling the definition of 4 from (5.3),

“dfon === I] T el = () finn = fin

r=1 acd(r)

To complete the proof we claim that there exist scalars aq(k) € £, 1 < k < n, such
that

k
A
I I t“0ca - L= > aslk)fe
r=lacdx(r) seStd (i)
sy B
where ap (k) = 1. We prove this by induction on k. If & = 1 then the result is
immediate from (3.15). Suppose that & > 1. By induction, it is enough to show that

([ca] = Li)fss = ([ca] = [cr(8)]) fos = 0
tj‘k, for s € Std(i*). Fix such a tableau s.
Since s (x—1) > tl\(k—l) we must have (s;3)") = () whenever | > compx (k), so the
node a = s~ (k) must be below (t*)71(k). Therefore, a € @\ (k), and cx(s) = cq
for this a, and forcing as(k) = 0 as claimed. This completes the proof. O

whenever s,_1) » ti‘(k_l) and 5|5 ¥

For each w € &,, we now fix a reduced expression w = s,, ...s,, for w, with
1<r; <nforl<j <k, and define PO = 91 1/12 By Theorem 4.32 the
elements ¢ do not satisfy the braid relations so, in general, & will depend upon
this (fixed) choice of reduced expression.

5.6. Definition. Suppose that A € PL. Define
Yot = (V) WO SRV
for s,t € Std(X).
We can now lift the graded cellular basis of [15, Definitions 5.1] to H2(O).
5.7. Theorem. Suppose that O is an idempotent subring. Then
{v& | s,t € Std(p) for pe Py}
is a cellular basis of HA(O) with respect to the involution *.

Proof. In view of (3.15) and Lemma 4.23, Lemma 5.5 implies that
(58) wsot = fot + Z Ay fuv,

(u,0)»(s,t)
for some ay, € . Therefore, {9 | (s,t) € Std*(P2)} is a basis of HA(#). In
fact, these elements are a basis for HA(O) because if h € HA(O) then we can
write h = Y ryp fuo, for some ry, € # . Pick (s,t) to be minimal with respect to
dominance such that r5¢ # 0. Then r5¢ € O because h € ’Hﬁ((’)) Consequently,
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h — e, € HA(O) so, by continuing in this way, we can write h as a linear
combination of the -basis.

It remains to show that the w—basis is cellular with respect to the involution *.
By definition, if A € P2 then yo and f commute and they are fixed by the
automorphism x. Therefore, ( ,t) =2, for all 5,t € Std(A). By Lemma 5.1, the
x-seminormal basis {fs¢} is a cellular basis with cellular involution *. It remains to
verify (GCsz) from Definition 2.4. As in Theorem 3.14, the seminormal basis { fyy}
is cellular. Therefore, if (s,t) € Std*(A\) and h € H2(O) then, using (5.8) twice,

W’d(s)) Vo = Wd(s) ( t’\t"’zat’ft" ) ?/’d(s)) Z ay fira

o>t vEStd(A)
= (Wq)" Y. b, = Y bt (mod HEY),
veEStd(A vEStd(A

where ay,al, € # and b, € O with the scalars b, being independent of s. Hence,
(GCs) holds, completing the proof. O

If K = O/m for some maximal ideal m of O then H}(K) = H}(0) ®p K. Set
Yst = Y9 ® 1k.

5.9. Corollary ( [15, Theorem 5.8]). Suppose that K = O/m for some mazimal
ideal m of O. Then { s | 5,t € Std(p) for u € P2} is a graded cellular basis of
HA(K) with deg)s¢ = degs + degt, for (s,t) € Std(PL).

By (5.8) the basis elements in {5} are scalar multiples of the basis elements
constructed in [15, Theorem 5.8].

5.2. Graded Specht modules and Gram determinants. By Theorem 5.7,
{49} is a cellular basis of H2(O) so we can use it to define Specht modules for
HA(O) which specialise to the graded Specht modules in characteristic zero and in
positive characteristic.

5.10. Definition. Suppose that A € P2. The Specht module S*(O) is the right
HA(0)-module with basis { ¢ | t € Std(A) }, where p© =3, + HE(O).

By Theorem 5.7 and [15, Corollary 5.10], ignoring the grading, S*(0) ®0 K
can be identified with the graded Specht module S* of H» defined by Brundan,
Kleshchev and Wang [8]. The action of H2(#") on a graded Specht module is
completely determined by the relations for these modules which are given in [22].
In contrast, in view of (5.8) and Theorem 4.32, the action of H2 () on the Specht
module S*(0O) is completely determined by the (choice of) seminormal form.

We now turn to computing the determinant of the Gram matrix

A (<¢fa¢?>)5,t68td(>\)'

A priori, it is unclear how the bilinear form on S*(0) is related to the usual
(ungraded) bilinear from on the Specht module which is defined using the Murphy
basis which we considered in Theorem 3.22. The main problem in relating these
two bilinear forms is that the cellular algebra involutions * and x, which are used to
define these bilinear forms, are different.

Note that the cellular algebra involutions * and % on H2(O) naturally extend
to involutions on the algebra H(.#"). The key point to understanding the graded
bilinear form is the following.

5.11. Lemma. Suppose that t € Std(n). Then (F()* = Fj.
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Proof. By definition, F} is a linear combination of products of Jucys-Murphy ele-
ments, so it can also be written as a polynomial, with coefficients in ¢, in y©, fC,
for1<r<mnandie I As (yO) =y, (fO) = fC,for 1 <r <nandic ",

the result follows. O

Recall that if t € Std(A) then ¥ =3, + HE™ is a basis element of the Specht
module S*(O). In order to compute det G*, set fi = ¢ Fy, for t € Std(X). Recall
that SM#) = S*(O) ®p A .

5.12. Lemma. Suppose that X € P2, Then { fi | t € Std(\) } is a basis of S*(H).
Moreover, det G* = det ((fs, fi)) = [sestan) V-

Proof. By definition, fi = fi + (H2(#))®>. Therefore, fi € S*(#) and f, =
PP + Y ont rmw? by (5.8), for some scalars ry, € . Set r¢ =1 and U = (rw).
Then { f¢ | t€ Std(A)} is a J-basis of S*(£) and G* = (U1 ((fs, f))U !
Taking determinants shows that det G* = deg (( fs) ft)) since U is unitriangular. To
complete the proof observe that (fs, fi) foair = forsfur = dst¥sfirer (mod HEA)
where we are implicitly using Lemma 5.11. The result follows. O

Lemma 5.12 is subtly different from (3.19) because, in spite of our notation,
the ~¢’s appearing in the two formulas satisfy different recurrence relations.

5.13. Lemma. Suppose that t € Std(X), for X € PA. Then v = u®,(t)38V) | for
some unit ug € O*.,

Proof. We argue by induction on the dominance order on Std(\). If t = t* then
(5.3) ensures that v = utx<1>e(t)dege(t>\), for some unit upx € O. Now suppose
that t* > t. Then there exists a standard tableau s € Std(\) such that s > t and
t=s(r,r + 1), where 1 < r < n. Arguing exactly as in Corollary 5.2 shows that

Br(s)vt = Br(t)7s. Therefore, v, = ngg s = Br(t)7vs. Hence, the lemma follows by
induction exactly as in the proof of Theorem 3.22. O
5.14. Remark. Looking at the definition of a *-seminormal coefficient system shows
that the quantities g;g)), which are used in the proof of Lemma 5.13, are independent
of the choice of *-seminormal coefficient system. This shows that the choice of
*-seminormal coefficient system made in (5.4) really is only for convenience.

By general nonsense, the determinants of G* and QA differ by a scalar in 2.
The last two results readily imply the next theorem, the real content of which is
that this scalar is a unit in O.

5.15. Theorem. Suppose that A € P2, Then det G* = ud,(t)38 N for some unit
u € O*. Consequently, det G = u’ detgk, for some unit v’ € O*.

Ifi € I and A € P2 let Std;(A) = {t € Std(A) | res(t) =1i}.

The Specht module S* over @ decomposes as a direct sum of generalised
eigenspaces as an .Z(O)-module: S = Dicrn S where S} = SAfP. The weight
space S has basis {9 | t € Std;j(A)} and the bilinear linear form (, ) on S*
respects the weight space decomposition of S*. Set

deg, ;(A) = Z deg t.
teStd;(A)

and let G be restriction of the Gram matrix of S» to S, for i € I". Then we have
the following refinement of Theorem 5.15.

5.16. Corollary. Suppose that A € P2 and i€ I™. Then deg G = u; P, (t)degeaN),
for some unit u; € O*. Moreover, deg, ;(A) > 0.
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6. A DISTINGUISHED HOMOGENEOUS BASIS FOR H.

The v-basis of HA(0), the homogeneous bases of H2 constructed in [15], and the
homogeneous basis of the graded Specht modules given by Brundan, Kleshchev and
Wang [8], are all indexed by pairs of standard tableaux. Unfortunately, unlike in
the ungraded case, these basis elements depend upon choices of reduced expressions
for the permutations corresponding to these tableaux. In this section we construct
new bases for these modules which depend only on the corresponding tableaux.

6.1. A new basis of H*(0). To construct our new basis for H2 we need to work
over a complete discrete valuation ring. We start by setting up the necessary
machinery.

Recall that the algebra H2 is defined over the field K with parameter ¢ and that
e > 1 is minimal such that [e]¢ = 0. Let x be an indeterminate over K and let
O = Klz](y) and t = x +¢. Then (O, 1) is an idempotent subring by Example 4.2(b)
and K (z) is the field of fractions of O. Note that O is a local ring with maximal
ideal m = z0. R

Let O be the m-adic completion of O. rE\hen O is a complete discrete valuation
ring with field of fractions K((z)) Let # = K((x)) be the m-adic completion
of K(z). Then O is an idempotent subring of A .

Define a valuation on 7 * by setting v, (a) = n if a = uz™, where n € Z and
uw e O is a unit in O. We need to work with a complete discrete valuation ring
because of the following fundamental but elementary fact which is proved, for
example, as [32, Proposition I1.5].

6.1. Lemma. Suppose that a € . Then a can be written uniquely as a convergent
series
a= Z anx™, with a,, € K,
neZ
such that if a # 0 then a, # 0 only if n > v,(a). Moreover, a € O if and only
if ap, =0 for all n < 0.

In particular, z ! K[z=1] N 0= 0, where we embed z~'K[z~!] into  in the
obvious way.

6.2. Theorem. Suppose that (s,t) € Std*(P2). There exists a unique element
BS € HA(O) such that

Bg:fﬁt—’_ Z pitu(l'il)fum
(u,0)€Std*(P})
(u,0)»(s,t)
where pit(z) € zK[x]. Moreover, { BY | (s,t) € Std*(PM)} is a cellular basis
of Hy(O).

Proof. The existence of an element Bﬁ with the required properties follows di-
rectly from (5.8) and Lemma 6.1 using Gaussian elimination. (See the proof of
Proposition 6.4, below, which proves a stronger result in characteristic zero.) To
prove uniqueness of the element BS], suppose, by way of contradiction, that there
exist two elements B and B, in H2(O) with the required properties. Then
BE — Bl =Y ruofuw € Hﬁ(@) and, by assumption, ry, € 27 K[z 7] with 7y, # 0
only if (1, 0) » (s,t). Pick (a, b) minimal with respect to dominance such that r45 # 0.
Then, by Theorem 5.7, if we write Bﬁ — Bl as a linear combination of i-basis
elements then 1/)3, appears with coefficient r45. Therefore, 745 € 2 1 K[z71]N 0= 0,
a contradiction. Hence, BY = B, as claimed.
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By (5.8), the transition matrix between the B-basis and the 1)-basis is unitrian-
gular, so {BQ} is a basis of H2(O). To show that the B-basis is cellular we need
to check properties (GC;)—(GC3) from Definition 2.4. We have already verified
(GCy) Moreover, (GC3) holds because (B9)* = BY by the uniqueness statement in
Proposition 6.4 since { fyp } is *-seminormal basis. It remains to prove (GCs), which
we do in three steps.

Step 1. We claim that if h € HA(O) and t € Std(A) then

BRh = Z byBR, (mod H;?),
veStd(A)
for some scalars b, € O which depend only on t, v and h (and not on t*).
To see this first note that 13, = fixi+ Y yp¢ @ofire by (5.8), for some a, € K(x).
Therefore, it follows by induction on the dominance order that if t € Std(A) then

B& = fo + Zptnft*u (mod IHEA) )
op-t

for some py, € 271 K[z7!]. As the seminormal basis is cellular, and the transition
matrix between the seminormal basis and the B-basis is unitriangular, our claim
now follows.

Step 2. As the Specht module S is cyclic there exists an element DO € HA(O)
such that B, = B 2 DY (mod HE>). We claim that

t —
BE = (D2)* B » DP (mod HE),

st —

for all s,t € Std(A).

To prove this claim, embed 7-[,’}((5) in H,’}(%f/\) Note that foxe fup = 0 if u # &,
so we may assume that DP =" i fir, (mod HE?), for some gip, € . Then

B3, = B3 aDY = Z Yrgwfeo  (mod HiR).
veStd(A)

Therefore, gy = %pm, where p, € 0o + 2 LK [z71] is as in Step 1. In particular,
Gt = % and gg, # 0 only if v p t. Consequently,

(DO) Bi;"t"l)g9 = Z GsuGio fuer frr [y = Z PYtQAQmIQtufun
(u’n)sté(ﬁit)) (u,0) > (s,t)
u,beSt

= for + Z DsuPto fuv (mOd ’HEA) .

(1,0)p(s,1)
By construction, (DS)*BR D € HA(é) Consequently, our claim now follows
using the uniqueness property of BY since psypw € * 1 K[z 7!] when s # u or t # v.
Step 3. We can now verify (GCs). If h € HA(O) then, using steps 1 and 2,
BGh=(DO)BRh= > b(DO)BR,= Y. byBSy  (mod HEY),
veStd(N) veStd(A)
where b, depends only on t, v and h and not on s. Hence, the B-basis satisfies all

of the cellular basis axioms and the theorem is proved. O

By Theorem 6.2, if (s,t) € Std(P2) then BG € HA(O), however, our notation
suggests that BS € H2(0), where O = K[z ](m) The next result justifies our
notation and shows that we can always work over the ring O.

6.3. Corollary. Let O = K(z](,). Then { BS | (s,t) € Std*>(P})} is a graded
cellular basis of HA(O).
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Proof. Fix (s,t) € Std*(P2). Then it is enough to prove that BG € HA(O). First
note that by construction the x-seminormal basis is defined over the rational function
field K (z), so B is defined over the ring R = K () N O since if (u,v) € Std*(P2)
then p3t (z71) € K[z71] C K(x) by Theorem 6.2. Every element of K(z) can be
written in the form f(x)/g(x), for f(z),g(x) € K[x] with ged(f, g) = 1. Expanding
f/g into a power series, as in Lemma 6.1, it is not difficult to see that if f/g € O
then g(0) # 0. Therefore, R C O so that BY is defined over O as claimed. O

By similar arguments, D® € HA(O), for all t € Std(P2).
If K is a field of characteristic zero then we can determine the degree of the
polynomials pSt # 0, for (u,v) B (s,t) € Std*(PL).

6.4. Proposition. Suppose that K is a field of characteristic zero. Suppose that
(u,0) > (5,1) for (s, 1), (u,0) € Std*(PL). Then pst(z) € K[z] and

deg pl(z) < %(degu — degs + degv — degt).
In particular, pSt(x) # 0 only if degu + degb > degs + deg t.

uv

Proof. We argue by induction on the dominance orders on P2 and Std(P2). Note
that degp(x) = d if and only if v, (p(x_l)) = —d. For convenience, throughout the
proof given two tableaux s,u € Std*(P2) set deg(s,u) = degs — degu. Therefore,
the proposition is equivalent to the claim that v, (pfj,) > deg(s,u) + deg(t, v).

Suppose first that A = (n[0]...]0). Then s = t* = t and ¥Q » = firer so there
is nothing to prove. Hence, we may assume that that A # (n|0]...|0) and that the
proposition holds for all more dominant shapes.

Next, consider the case when s = t* = t. By the proof of Lemma 5.5, if
s € Std(i*) and s B t* then 33 fos = u,yx fss for some unit u, € O*. Therefore,
by Lemma 5.13, there exist units us € O* so that in H2(O)

Py u/ BN
P8 = BT f = foo + > ug®(t)3e8 9 5
7.
5

5Bt s X

Since t = x + £, the constant term of ®.(t) is ®.(£) = 0, so x divides P.(¢) and
Vz(@e(t)deg(t)\’s)) = deg(t*, 5) since the coefficient of z in ®,(t) is non-zero. (If K
is field of positive characteristic this may not be true.) Expanding each unit us
into a power series, as in Lemma 6.1, the coefficient of fss can be written as bs + ¢
where b; € x7!K[z7!] and ¢; € O. In particular, if bs # 0 and c¢s # 0 then
ve(cs) > 0> v, (bs) and v, (cs) > vz (bs) > deg(t*, s). Pick t minimal with respect
to dominance such that ¢, # 0. Note that v, (c) > deg(t*,t), with equality only
if by = 0. Using induction, replace wgtA with the element Apxgx = 1#39\ —¢BY.
By construction Agxp € ’Hﬁ(@) and, by (5.8), the coefficient of fi in Apx
is by € 27 K[z If (u,0) B (t,t) then, fu, appears in BY with coefficient pi (z 1)
and, by induction, v, (pt, (7)) > 3 (deg(t,u) + deg(t,v)). Therefore,

Vg (Ctp,itn (5071)) = V:t(Ct) + Vg (p:tn (xil)) > deg(t)\v t) + %(deg(t’ u) + deg(t’ t)))
= 1(deg(t*,u) + deg(t*, v)).

It follows that if fy, appears in Axx with non-zero coefficient a,, then v, (ay,) >
1 (deg(t*, u) + deg(t*,v)). If Ax» now has the required properties then we can
set B = Apvn. Otherwise, let (s,t) be a pair of tableau which is minimal with
respect to dominance such that the coefficient of fs¢ in Agpa is of the form bgy + co¢
with cs¢ # 0, ve(cst) >0, bey € 27 K [z71] and v, (bsy) > %(deg(t)‘,ﬁ) + deg(tk,t)).
Replacing A with A — ¢ B and continuing in this way we will, in a finite
number of steps, construct an element BéA  with all of the required properties.



44 JUN HU AND ANDREW MATHAS

By the uniqueness statement in Theorem 6.2, Bg » = Bixx so this proves the

/
At
proposition for the polynomials p:‘:,tA (x71).

Finally, suppose that (s,t) € Std*(A) with (¢*,¢}) > (s,t). Without loss of
generality, suppose that s = a(r,r + 1) where a € Std(i), for i € I, and a > s.
Using Lemma 4.23,

vOBG = Y pa@ )Y fu

(u,0) > (a,t)
at s -1 tirtr—cry1(u)
= Y e (B0 e ),
(1,0) B (a,t) [pr(w)]

By induction, v, (pft) > 1(deg(a,u) + deg(t,v)). Therefore, using Lemma 5.13 (as
in the proof of Theorem 3.22), it follows that if ¢, # 0 is the coefficient of f,, in
the last equation then v, (cy) > 3 (deg(s,u) + deg(t,v)). Hence, the proposition

follows by repeating the argument of the last paragraph. O

6.2. A distinguished homogeneous basis of H2(K). This section uses Theo-
rem 6.2 to construct a new graded cellular basis of % (K). The existence of such a
basis is not automatically guaranteed by Theorem 6.2 because the elements B ® 1,
for (s,t) € Std?(P2), are not necessarily homogeneous.

The isomorphisms K = O/z0 = 0 /3:(5 extend to K-algebra isomorphisms

HA(K) = HA(0) @0 K = HMNO) @5 1k.
We identify these three K-algebras.

6.5. Lemma. Suppose that (s,t) € Std*(PL). Then

Bﬁ ® 1 = Vs + Z Qoo
(u,0)p(s5,t)

for some ayp € K. In particular, the homogeneous component of BS, ® 1 of degree
degs + degt is non-zero.

Proof. This is immediate from Theorem 6.2 (and Corollary 5.9). O

Recall from Step 2 in the proof of Theorem 6.2 that for each v € Std(\) there
exists an element DY € HA(O) such that BE = (D€)* B DP (mod HE™).

st —
6.6. Definition. Suppose that X € ’P,/L\.
a) If v € Std(X) let D, be the homogeneous component of DS @ 1k of degree
degv — deg t*.
b) Define Bpxgx to be the homogeneous component of BgtA ® 1x of degree
2degt*. More generally, if 5,t € Std(X\) define Bsg = DB Dy.

By Theorem 6.2, (Bgtk)* = Bg,ﬁA which implies that Bf\x = Bp. Conse-

quently, if s,t € Std(A) then B}, = By. If Bg # 0 then, by construction, By
is homogeneous of degree degs 4+ degt. Unfortunately, it is not clear from the
definitions that B¢ is non-zero.

6.7. Proposition. Suppose that (s,t) € Std(P2). Then

Bag=ta+ Y. buthw  (mod HY?),

(u,0)p(s,t)

for some by, € K. In particular, B¢ # 0.
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Proof. Fix A € P2 and suppose that 5,t € Std(A). If s = t = t* then By is
the homogeneous component of Bg > ® 1k of degree 2deg t, so the result is just

Lemma 6.5 in this case. Now consider the case when s = t* and t is an arbitrary
standard A-tableau. Then, since B x = ¢3x (mod HE*),

B, @1k = (¥8n @ 1) (D ® 1k) (mod HE™).
Looking at the homogeneous component of degree deg t* + deg t shows that

By = Bpp Dy = o + ZatAuwt"n (mod #;;%),

opt

by Lemma 6.5. Set bgx, = apn, with by = 1. Similarly,

D;@Dtxtx = D;thtx = Bgt’\ = Z butA'l/JutA (mod 7'[5/\),

ups

where by = ag, with bgx = 1. By Corollary 5.9, {ty,} is a graded cellular basis
of HA(K) so, working modulo H>™,

Ba=DiBppDi= Y bpayDithpg = > Y borobuathun

opt vptups
= ths¢ + Z buir by Pun (mod ,HgA) :
(u,0)»(s,t)
Setting by, = byxber, completes the proof. O

6.8. Remark. If K is a field of characteristic zero then it follows from Proposition 6.4
that Bﬁot ® 1k is a linear combinations of homogeneous components of degree greater
than or equal to deg s+ degt. As a consequence, B¢ is the homogeneous component
of BY ® 1k of degree degs + degt. As far as we can see, if K is a field of positive
characteristic then it is not true in general that B, is the homogeneous component
of BS ® 1k of degree degs + degt.

We can now prove Theorem B from the introduction.

6.9. Theorem. Suppose that K is a field. Then { B | (s,t) € Std*(P2)} is a
graded cellular basis of H2(K) with cellular algebra automorphism .

Proof. By Proposition 6.7 and Corollary 5.9, { B | (s,t € Std*(P2)} is a basis
of HA(K). By definition, if (s,t) € Std*(P2) then By is homogeneous of degree
degs + degt and B} = Bys. Therefore, the basis {Bs} satisfies (GCy), (GCs) and
(GC4) from Definition 2.4. Finally, since By¢ = DfBpp D¢ (mod HEX), (GCy)
follows by repeating the argument from Step 3 in the proof of Theorem 6.2. O

The graded cellular basis { B¢ | (s,t) € Std*(P2) } of HA(K) is distinguished
in the sense that, unlike 1), the element Bg; depends only on (s, t) € Std? (77;}) and
not on a choice of reduced expressions for the permutations d(s) and d(t).

APPENDIX A. SEMINORMAL FORMS FOR THE LINEAR QUIVER

In this appendix we show how the results in this paper work when e = 0 so that
& € K is either not a root of unity or £ =1 and K is a field of characteristic zero.
Interestingly, all of the results in this appendix apply equally well when e = 0 or
when e > n. The main difference is that in order to define a modular system we
have to leave the case where the cyclotomic parameters Q1, ..., Q, are integral, that
is, when Q; = [k;] for 1 <1 < ¢. This causes quite a few notational inconveniences,
but otherwise the story is much the same as for the case when e > 0. We do not
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develop the full theory of “O-idempotent subrings” here. Rather, we show just one
way of proving the results in this paper when e = 0.

Fix a field K and 0 # £ € K of quantum characteristic e. That is, either £ =1
and K is a field of characteristic zero or £ # 1 for d € Z. The multicharge k € Z°
is arbitrary.

Let O = Z[z,{](5) be the localisation of Z[z,&] at the principal ideal generated
by z. Let # = Q(z,¢) be the field of fractions of O. Define HA(O) to be the
cyclotomic Hecke algebra of type A with Hecke parameter ¢t = £, a unit in O, and
cyclotomic parameters

Qi = 2! + [k, for 1 <1<,

where, as before, [k] = [k]; for k € Z. Then HA(#) = HMO) ®p K is split
semisimple in view of Ariki’s semisimplicity condition [1]. Moreover, by definition,
HA(K) = HAO) ®0 K, where we consider K as an O-module by setting x act
on K as multiplication by zero.

Define a new content function for H2(Q) by setting

C, =tz + [k + ¢ — 7],
for a node v = (I,7,¢). We will also need the previous definition of contents below.
If t € Std(P2) is a tableau and 1 < k < n then set Ci(t) = C,, where 7 is the
unique node such that t(y) = k.
As in Section 2.5, let { mg¢ | (5,t) € Std*(P2)} be the Murphy basis of H2(O).
Then the analogue of Lemma 2.9 is that if 1 <r < n then

megt L, = C, (t)mst + Z TupMuyy,
(u,0)>(s,t)

for some 7,, € O. As in Section 3.1 define a *-seminormal basis of H2(.#) to be a
basis { fst} of simultaneous two-sided eigenvectors for Ly, ..., L, such that fJ = fis.

Define a seminormal coefficient system for H2(O) to be a set of scalars
o = {a,(s5)} which satisfies (3.9) and such that if s € Std(P}) and u = s(r,r +1) €
Std(P2) then

(1—-Cr(s) +tCr(u)(1 4+ tCr(s) — Cr(u))

A]. r r = )
B el P (s) P ()
where P,(s) = C,.(u) — C,(s), and where a,.(s) = 0 if u ¢ Std(P2).

As in Theorem 3.14, each seminormal basis of H2(.#) is determined by a
seminormal coefficient system o = {«,(s)}, such that

1+ (t—1)Cryi(s)
P(s)
together with a set of scalars {yx | A € P2 ). Notice that I = Z, since e = 0, so if

i € I" then t € Std(i) if and only if ¢,(t) = 4, and, in turn, this is equivalent to the
constant term of C,.(t) being equal to [i,], for 1 <r < n. Arguing as in Lemma 4.4,

=Y —henio)

teStd(i)

Trfst = ar(s)fut +

fst where u = s(r,r + 1),

With these definitions in place all of the arguments in Chapter 4 go through with
only minor changes. In particular, if 1 < r < n and i € I"™ then Definition 4.14
should be replaced by

(Tr + 1)ﬁrfioa if i, = irJrl
V212 =(T.L, — L, T,) f° if 4, = ipy1 + 1,
(T-L, — L,«Tr)]\/%f.o7 otherwise,

1



SEMINORMAL FORMS AND QUIVER HECKE ALGEBRAS 47

and y@ f€ = (LT — Cr(t))fio where, as before, M, =1 — L, +tL,;1. With these

1

new definitions, if s € Std(i), for i € I"™, and 1 < r <n then Lemma 4.23 becomes

Odyinin
w?fst = Br(5)f5t + - futv

P,(s)
where u = s(r,r + 1) and
an(s) e
1—cr(s)+fa,+1(s)’ if i = irya,
B,(s) = < a,(s)P.(s), if ip =dpy1 + 1,
ar (s)Pr(s) otherwise.

1-C,(s)+tCri1(s)’
Observe that if u = §(r,r 4 1) is a standard tableau then, using (A1), the definitions
imply that

P,.(s)lp,.‘(u)a if 40 = dpy1,
(1 - Cr(s) + tCr(u))(]- + tCr(s) - Cr(u))v if ir = ir+17

B,(s5)Br(u) = { (1 +tCy(s) — Cy.(u)), if i, — 4pyq1,
(1=Cr(s) +tCyr(u)), if iy < dpy1,
1 otherwise.

)

Comparing this with Lemma 4.26, it is now easy to see that analogues of Propo-
sition 4.28 and Proposition 4.29 both hold in this situation. Hence, repeating the
arguments of Section 4.4, Theorem A also holds. Similarly, the construction of the
bases in Chapter 5 and Chapter 6 now goes though largely without change.
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