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1. Introduction

It is now well-known that the linear, time-invariant structure of the traditional coin-

tegration model is often too restrictive and simplistic for modeling purposes. In most

cases, even if a simple linear cointegrating relationship exists, it is unrealistic to assume

this is not subject to any changes over the time span in which the variables are recorded.

To address this issue, there is a large literature on parameter instability and time-varying

coefficient models, see e.g. Park and Hahn (1999), Cai et al. (2009) and Xiao (2009),

whilst Quintos and Phillips (1993) and Sun et al. (2008) considered the problem of test-

ing for parameter constancy. It is worth noting that despite the various modifications,

these models are linear in spirit.

An alternative to time-varying coefficient models are nonlinear models. Granger and

Teräsvirta (1993) offers many empirical examples where nonlinear models are desirable.

Indeed, given the prevalence of nonlinear relationships in economics, it is expected that

nonlinear cointegration captures the features of many long-run relationships in a more

realistic manner. Typical non-linear cointegrationg regression model has the form

yt = f(xt) + εt, t = 1, 2, ..., n, (1.1)
0
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where {εt} is a zero mean equilibrium error, xt is a non-stationary regressor and f(·) is

an unknown function to be estimated with the observed data {yt, xt}n
t=1.

With given observations (xt, yt) which may include non-stationary components, the is-

sues on the estimation and inference of the unknown f(·) have been becoming increasing

interests in past decade. In this regard, Phillips and Park (1998) studied nonparametric

autoregression in the context of a random walk. Karlsen and Thostheim (2001) and

Guerre (2004) studied nonparametric estimation for certain nonstationary processes in

the framework of recurrent Markov chains. Karlsen, et al. (2007) developed an asymp-

totic theory for nonparametric estimation of a time series regression equation involving

stochastically nonstationary time series. Karlsen, et al. (2007) address the function

estimation problem for a possibly nonlinear cointegrating relation, providing an asymp-

totic theory of estimation and inference for nonparametric forms of cointegration. Under

similar conditions and using related Markov chain methods, Schienle (2008) investigated

additive nonlinear versions of (1.1) and obtained a limit theory for nonparametric re-

gressions under smooth backfitting. More recently, Wang and Phillips (2009a, 2010) and

Cai, et al. (2009) considered an alternative treatment by making use of local time limit

theory and, instead of recurrent Markov chains, worked with partial sum representations

of the type xt =
∑t

j=1 ξj where ξj is a general linear process. In another paper, Wang and

Phillips (2009b) considered the errors ut to be serially dependent and cross correlated

with the regressor xt for small lags. Other related current works, we refer to Kasparis

and Phillips (2009), Park and Phillips (1999, 2001), Bandi (2004), Gao, et al (2009a, b),

Choi and Saikkonen (2004, 2009) and Marmer (2008).

Whilst an extensive literature exists for the estimation theory of f(·), less attention has

been paid to studying the the error structure, which belongs to a subclass of stochastic

volatility processes. Just as it is unreasonable to assume the cointegrating relationship

remains linear and unchanged throughout time, the long-run equilibrium error is un-

likely to be homoskedastic over a long time span. It is well known that stock markets

have variances that change substantially with time, rendering them much more volatile

than many economic variables that can be used to explain their movements. In these

situations, it makes sense to incorporate time heterogeneity into error term and hence

motivates us to investigate the model (1.1) with error structure:

εt = σ(xt) ut, (1.2)

where σ(·) is a heterogeneity generating function (HGF) as called in Park (2002) and for

a filtration Ft to which xt+1 is adapted, {ut, Ft} forms a martingale difference.
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This incorporation idea is not new in stationary regression models. Various error

structures that generate heteroskedasticity can be found in e.g. Robinson (1987), Har-

vey and Robinson (1988) and Hansen (1995). On the nonstationary front, Kim and Park

(2010) investigated a linear cointegration model in which the conditional heteroskedas-

ticity of the error is generated by a smooth deterministic function of time. The error

process considered in this paper is known as a nonlinear nonstationary heteroskedastic

(NNH) process first proposed by Park (2002), where the author examined the asymptotic

behaviour of the sample statistics of NNH processes generated by integrable and asymp-

totically homogeneous functions and pointed out that NNH models offer an attractive

alternative to ARCH type volatility models because they not only demonstrate the de-

sirable properties of volatility clustering and leptokurtosis, which are common traits in

financial and economic series, but also allow for the possibility of explaining the source

of volatility in terms of economic variables. In the related works, the NNH error struc-

ture is incorporated into a stationary regression model and a linear cointegration model

by Chung and Park (2007). Without involving the cointegrating relationship, Han and

Park (2008) handled with the NNH model with an ARCH component, Han and Zhang

(2009) investigated the asymptotics for the kernel estimator of σ(x).

The main purpose of the present paper is to estimate the HGF in the model given by

(1.1) and (1.2). We consider a kernel-type estimator σ̂(x) of σ(x). It is shown that σ̂(x)

converges to σ(x) in probability uniformly over a compact set, and limit distribution

is normal under appropriate normalization. New technical mechanisms are developed

to investigate the asymptotics for σ̂(x). In particular, we establish uniform consistency

for the conventional kernel estimate of the unknown regression function and consider

the lower bound for a class of functionals of non-stationary data over a compact set.

These results are interesting in the right of themselves and will be useful in other related

research fields.

We finally remark that the two-step kernel-type estimator σ̂(x) considered in this

paper is quite natural and simple. Our main result provides a theoretical framework

which allows the extension from the stationary time series to near I(1) process. Uniform

consistency is important not only in estimation theory, but also useful in other fields like

model specification testing. Existing studies mainly focus on the observations coming

from a stationary data set. A recent work in this regard can be found in Hansen (2008),

where readers can also find a sequence of the related references. Gao, Li and Tjostheim

(2010) currently investigated uninform consistency of non-parametric kernel estimators

for non-stationary time series. In their work, the authors considered the situation that

the regressor is a recurrent Markov chain, and assumed that the error term is independent
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of the regressor. The setting on the model in this paper is different. We consider a near

integrated process with innovations being a linear process, and we remove the restriction

on the independence between the regressor and the error terms.

The remaining of the paper is organized as follows. Section 2 explains the model

in more details and defines some variables that are central to our development of the

asymptotics. Section 3 outlines the asymptotic properties of the kernel estimator for

both f and σ. Section 4 makes a conclusion. All the mathematical proofs are contained

in Section 5.

2. The model and assumptions

To estimate the HGF σ(x), we re-organize the model driven by (1.1) and (1.2) as

follows:

yt = f(xt) + σ(xt) ut, (2.1)[
yt − f(xt)

]2
= σ2(xt) + σ2(xt)(u

2
t − 1). (2.2)

As u2
t − 1 may form a martingale difference, from the observations on xt and yt − f̂(xt),

where f̂(x) is the first stage estimate of f(x) in model (2.1), the conventional Kernel

estimate of σ2(x) in model (2.2) is given by

σ̂2(x) =

∑n
t=1[yt − f̂(xt)]

2K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

, (2.3)

where K(x) is a nonnegative real function and the bandwidth parameter h ≡ hn → 0 as

n →∞.

The limit behavior of σ̂(x) depends on the choice of f̂(x). The present paper adopts

the Nadaraya-Watson estimator defined by

f̂(x) =

∑n
s=1 ys K[(xs − x)/h]∑n

s=1 K[(xs − x)/h]
, (2.4)

where the kernel K(x) and the bandwidth h are chosen to be the same as in (2.3) for

the technical convenience.

Throughout the paper, let {ξj, j ≥ 1} be a linear process defined by

ξj =
∞∑

k=0

φk εj−k, (2.5)

where {εj,−∞ < j < ∞} is a sequence of iid random variables with Eε0 = 0, Eε2
0 = 1

and characteristic function ϕ(t) of ε0 satisfying
´∞
−∞ |ϕ(t)|dt < ∞. The coefficients

φk, k ≥ 0, are assumed to satisfy
∑∞

k=0 |φk| < ∞ and φ ≡
∑∞

k=0 φk 6= 0. The absolute
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summable condition is commonly used literature. In the simplest case, it includes the

example in which xt is a random walk on iid random variables. We also use the following

assumptions in the asymptotic development.

Assumption 1. xt = ρ xt−1+ξt, (x0 ≡ 0), where ρ = 1+τ/n with τ being a constant.

Assumption 2. (i) {ut,Ft, 1 ≤ t ≤ n} is a martingale difference sequence sat-

isfying E(u2
t |Ft−1) = 1, E(u4

t |Ft−1) → Λ2, a.s., where Λ2 > 1 is a constant, and

sup1≤t≤n E(|ut|4ν |Ft−1) < ∞ a.s. for some ν > 1. (ii) xt is adapted to Ft−1, t = 1, 2, ..., n.

Assumption 3. The kernel K satisfies that
´∞
−∞ K(s)ds = 1, K(·) has a compact

support and for any x, y ∈ R,

|K(x)−K(y)| ≤ C |x− y|,

where C is a positive constant.

Assumption 4. For a compact set Ω ⊂ R, there exist real constants ε > 0, 0 <

α, β ≤ 1 and C1, C2 > 0 such that, σ(x) is non-negative and

|f(y)− f(x)| ≤ C1|y − x|α, |σ(y)− σ(x)| ≤ C2|y − x|β,

for any x, y ∈ Ωε, where Ωε = {y : |y − x| ≤ ε, where x ∈ Ω}.

Assumption 1 allows for both non-stationary (τ = 0) and near non-stationary (τ 6= 0)

regressor, and is standard in the near integration regression framework. See, e.g., Phillips

(1987, 1988), Chan and Wei (1987) and Wang and Phillips (2009b).

Assumption 2 is standard as in the stationary situation in which we impose a mar-

tingale structure so that cov(ut+1, xt) = E[xtE(ut+1 | Ft)] = 0. The restrictions that

E(u2
t |Ft−1) = 1 and E(u4

t |Ft−1) → Λ2, a.s., are required because of the model structure

(2.2). These restrictions are not necessary in the investigation of the asymptotics related

to f̂(x), even on the uniform convergence. In the later situation, we use a less restricted

Assumption 2∗. See Theorem 3.2 in next section.

Assumption 3 is a standard condition on K(x) as in the stationary situation. The Lips-

chitz condition on K(x) is not necessary if we only investigate the point-wise asymptotics.

See Remark 3.3 for further details.

Assumption 4 requires a Lipschitz-type condition in a small neighborhood of the tar-

geted compact set for the functionals to be estimated. This condition is quite weak,

which may host a wide set of functionals. Typical examples include that f(x) = θ1 +

θ2x+...+θkx
k−1; f(x) = α+β xγ; f(x)) = x(1+θx)−1I(x ≥ 0); f(x) = (α+β ex)/(1+ex).

σ(x) can have the same form as in f(x), but we require that the x and the parameters
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are restricted on a space so that σ(x) is non-negative. Also notice that Assumption 4

implies that

sup
x∈Ωε

|f(x)| < ∞ and sup
x∈Ωε

σ(x) < ∞.

This fact will be repeatedly used in the proofs of main results without further explana-

tion.

3. Main results and outline of the proofs

We have the following asymptotic results for the estimation of the HGF σ(x) given

in the model (2.1) and (2.2). Except explicitly mentioned, we denote by [a] the integer

part of a positive constant a in the following.

Theorem 3.1. Under Assumptions 1-4, for any h satisfying h → 0 and nh2+4/[ν] →∞,

we have

sup
x∈Ω

|σ̂2(x)− σ2(x)| = OP

{(
nh2+4/[ν]

)−[ν]/[2(2[ν]+1)]
+ hmin{α,β}

}
, (3.1)

where Ω is defined as in Assumption 4. Furthermore, if in addition ut are independent

of xt, then for any h satisfying nh2/ log4 n →∞ and nh2+4min{2α,β} → 0,

(Tn(z1), Tn(z2), . . . , Tn(zk)) →d N(0, Σ), (3.2)

where z1, ..., zk ∈ Ω all are different,

Tn(zj) =
{ n∑

t=1

K
[
(xt − zj)/h

]}1/2
(σ̂2(zj)− σ2(zj)),

and

Σ = diag
{
σ4(z1), . . . , σ

4(zk)
}

(Λ2 − 1)

ˆ ∞

−∞
K2(s)ds.

Remark 3.1. The result (3.1) shows that σ̂2(x) is a consistent estimator of σ2(x) uni-

formly over a compact set. If the error term ut is assumed to be bounded by a constant,

the restriction on the choice of h can be relaxed and convergence rate in the result (3.1)

can be improved. Indeed, if in addition |ut| ≤ C, then for any h satisfying h → 0 and

nh2/ log4 n →∞,

sup
x∈Ω

|σ̂2(x)− σ2(x)| = OP

[
(nh2)−1/4 log n + hmin{α,β}]. (3.3)

The result (3.2) provides a distributional property of the estimator σ̂2(x), by imposing the

independence between ut and xt. Note that σ̂2(x) involves the cross terms in related to ut

and xs for all 1 ≤ s ≤ n (see (3.4) below) by through f̂(xt). It is not clear at the moment
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for how to provide an accurate estimation for these cross terms, which are required in

the investigation of distribution convergence, without the independence assumption.

Remark 3.2. To outline the essentials of the arguments in the proof of Theorem 3.1,

we split σ̂2(x)− σ2(x) as

σ̂2(x)− σ2(x)

=

∑n
t=1 σ2(x) (u2

t − 1) K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

+

∑n
t=1

[
σ2(xt))− σ2(x)

]
u2

t K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

+

∑n
t=1(f(xt)− f̂(xt))

2K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

+
2
∑n

t=1 σ(xt)ut(f(xt)− f̂(xt))K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

:= I1n(x) + I2n(x) + I3n(x) + I4n(x). (3.4)

When I2n(x) is easy to handle with, the estimates of other terms over a compact set

requires new mechanisms. In particular, we need uniform asymptotics of f̂(x) on Ωε

for a small ε. The result in this regards is presented in the following theorem, which is

interesting in itself.

The following assumption is weaker than Assumption 2.

Assumption 2*. (i) {ut,Ft, 1 ≤ t ≤ n} is a martingale difference sequence satisfying

sup1≤t≤n E(|ut|2p|Ft−1) < ∞ a.s. for some integer p ≥ 1. (ii) xt is adapted to Ft−1,

t = 1, 2, ..., n.

Theorem 3.2. Under Assumptions 1, 2*, 3 and 4, for any h satisfying h → 0 and

nh2+4/p →∞, we have

sup
x∈Ωε

|f̂(x)− f(x)| = OP

{(
nh2+4/p

)−p/[2(2p+1)]
+ hmin{α,β}

}
, (3.5)

where Ωε is defined as in Assumption 4. If in addition |ut| ≤ C, then, for any h satisfying

h → 0 and nh2/ log4 n →∞,

sup
x∈Ωε

|f̂(x)− f(x)| = OP

{
(nh2)−1/4 log n + hmin{α,β}} . (3.6)

Remark 3.3. A better result can be obtained if we are only interested in the point-

wise asymptotics for f̂(x). Indeed, as in Wang and Phillips (2009a, b) with minor

modification, we may show that, for each fixed x ∈ Ω,

f̂(x)− f(x) = OP

{
(nh2)−1/4 + hmin{α,β}} . (3.7)
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Furthermore f̂(x) has an asymptotic distribution that is mixing normal, under minor

additional conditions to Assumption 2∗. More details are referred to Wang and Phillips

(2009a, b).

It is interesting to note that, in point-wise situation, the term hmin{α,β} can be improved

if we put a bias term in the left hand of (3.7). It is not clear if there are similar properties

in related to uniform consistency.

Remark 3.4. It is interesting to notice that, in stationary situation, the sharp rate of

convergence in (3.6) is OP [(log n/nh)1/2]. See Hansen (2008), for instance. There is

an essential difference for the rate of convergence between stationary and non-stationary

time series. The reason behind the difference is mainly because, in non-stationary case,

the amount of time spent by the process around any specific point is of order
√

n rather

than n. More explanation can be found in Remark 3.3 of Wang and Phillips (2009a).

The proof of Theorem 3.2 is quite technical. For the sake of reading convenience, we

separate the key steps into the following propositions, which are interesting in themselves.

Proposition 3.1. Under Assumptions 1, 2* and 3, for any compact set Ω∗ and h sat-

isfying h → 0 and nh2+4/p →∞,

sup
x∈Ω∗

∑n
t=1 ut K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]
= OP

[(
nh2+4/p

)−p/[2(2p+1)] ]
(3.8)

If in addition |uj| ≤ C and nh2/ log4 n →∞, the result (3.8) can be improved to

sup
x∈Ω∗

∑n
t=1 ut K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]
= oP

[
(nh2)−1/4 log n

]
. (3.9)

Proposition 3.2. Under Assumptions 1 and 3, for any compact set Ω∗ and η > 0, there

exist n0 > 0 and M0 > 0 such that, for all n ≥ n0, M ≥ M0 and h satisfying h → 0 and

nh2 log−4 n →∞,

P
(

inf
x∈Ω∗

n∑
t=1

K[(xt − x)/h] ≥
√

nh /M
)
≥ 1− η. (3.10)

Remark 3.5. Gao, Li and Tjostheim (2009) investigated a similar uninform consistency

as in Theorem 3.2 in the situation that the regressor xt is a recurrent Markov chain and

the error term ut is independent of xt. Not only the setting on the model, the techniques

used in the current paper are also different from Gao, Li and Tjostheim (2009). We

develop our own techniques by establishing the key result like (3.10). These key results

may be useful in other related fields. As in Gao, Li and Tjostheim (2009), it is possible

to extend our result from the compact set Ωε to a range that |x| ≤ Tn, where Tn → ∞.
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However, this kind of extensions may require quite different techniques. Since Theorem

3.2 is enough for the purpose of this paper, we leave the extensions for future research.

4. Conclusion

In this paper, we consider a non-linear cointegrating regression model with non-linear

nonstationary heteroskedastic (NNH) error processes. A two-stage approach is proposed

to find an estimator σ̂(x) of the heterogeneity generating function σ(x). For a wide class

of σ(x), it is shown that σ̂(x) is consistent uniformly over a compact set and has an

asymptotic distribution that is normal under appropriate normalization. New technical

mechanisms are developed to investigate the asymptotics for σ̂(x). In particular, we

establish uniform consistency for the conventional kernel estimate of the unknown re-

gression function and consider the lower bound for a class of functionals of non-stationary

data over a compact set. These results are interesting in the right of themselves and will

be useful in other related research fields.

5. Proofs of main results

This section provides proofs of the main results. We start with Proposition 3.2. The

techniques used in the proof of this proposition also provide some insights to other main

results. Throughout this section, we denote constants by C, C1, C2, ..., which may be

different at each appearance.

Proof of Proposition 3.2. Without loss of generality, assume φ0 6= 0. Otherwise

the proof follows from a routine modification. Let a < b be integers such that Ω∗ ⊆ [a, b]

and

yj = a + j (b− a)m−1
n , j = 0, 1, 2, ..., mn, (5.1)

where mn = [(nh2)1/4h−2]. Write F∗
t = σ(εs, s ≤ t) for t ≥ 1. Note that, for any M > 0,

inf
x∈Ω∗

n∑
t=1

E
(
K[(xt − x)/h] | F∗

t−1

)
≤ inf

x∈Ω∗

n∑
t=1

K[(xt − x)/h]

+ sup
x∈[a,b]

∣∣ n∑
t=1

{
K[(xt − x)/h]− E

(
K[(xt − x)/h] | F∗

t−1

)}∣∣, (5.2)
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and the second term in right hand of (5.2) is less than

max
0≤j≤mn−1

sup
x∈[yj ,yj+1]

n∑
t=1

{∣∣K[(xt − x)/h]−K[(xt − yj)/h]
∣∣

+E
(∣∣K[(xt − x)/h]−K[(xt − yj)/h]

∣∣ | F∗
t−1

)}
+ max

0≤j≤mn

∣∣∣ n∑
t=1

{
K[(xt − yj)/h]− E

(
K[(xt − yj)/h] | F∗

t−1

)}∣∣∣
:= λ1n + λ2n.

It is readily seen from nh2 log−4 n →∞ that (3.10) will follow if we prove

λ1n = OP

[
(nh2)1/4 log n

]
, (5.3)

λ2n = OP

[
(nh2)1/4 log n

]
, (5.4)

and for any η > 0, there exist n0 > 0 and M0 > 0 such that, for all n ≥ n0 and M ≥ M0,

P
(

inf
x∈Ω∗

n∑
t=1

E
(
K[(xt − x)/h] | F∗

t−1

)
≥
√

nh /M
)
≥ 1− η. (5.5)

To establish (5.3)-(5.5), we start with some preliminaries. First notice that

xt =
t∑

j=1

ρt−j ξj =
t∑

j=1

ρt−j

j∑
i=−∞

εiφj−i

= x∗t + x′t + φ0 ε0, (5.6)

where x∗t =
∑t

j=1 ρt−j
∑0

i=−∞ εiφj−i depends only on (..., ε−1, ε0) and

x′t =
t∑

j=1

ρt−j

j∑
i=1

εiφj−i − φ0 ε0 =
t−1∑
i=1

εi

t−i∑
j=0

ρt−j−i φj.

Write at,i = ρt−i
∑t−i

j=0 ρ−j φj and d2
t =

∑t−1
i=1 a2

t,i = E(x′t)
2. The result (7.14) in Wang

and Phillips (2009b) shows that at,i ≥ e−|τ | |φ|/4 whenever 1 ≤ i ≤ t/2 and t ≤ n is

sufficiently large. This implies that d2
t � t, where the notation an � bn denotes that there

exist constants c1, c2 > 0 such that c1 ≤ an/bn ≤ c2, and as in the proof of Corollary 2.2.

of Wang and Phillips (2009a),ˆ ∞

−∞
|Eeiλxt/

√
t|dλ ≤ C

ˆ ∞

−∞
|Eeiλx′t/

√
t|dλ < ∞, (5.7)

ˆ ∞

−∞
|Eeiλ(x∗t +x′t)/

√
t|dλ ≤ C

ˆ ∞

−∞
|Eeiλx′t/

√
t|dλ < ∞, (5.8)

uniformly for t ≥ 1. The results (5.7) and (5.8) imply that,
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F. xt/
√

t and (x∗t + x′t)/
√

t have densities ν1t(x) and ν2t(x) respectively, and both

ν1t(x) and ν2t(x) are uniformly bounded on t and x by a constant C.

See, e.g., Lukács (1970, Thm 3.2.2). Furthermore, by defining
∑j

k = 0 if j < k,

I1(λ) = E exp
{
iλ

t−1∑
q=s

εq at,q

}
, I2(λ, λ1) = E exp

{
i

s−1∑
q=1

εq

(
λ at,q − λ1 as,q

)}
, (5.9)

for s ≤ t, the same arguments as in the proof of Lemma 7.2 of Wang and Phillips (2009b)

yield that there exist γ1, γ2 > 0 such that

I1(λ) ≤

{
e−γ1 (t−s) if |λ| ≥ 1,

e−γ2λ2(t−s) if |λ| ≤ 1,
(5.10)

I2(λ, λ1) ≤ exp
{
− γ1#(Ω1)− γ2 B1 (λ1 − λB2/B1)

2
}
, (5.11)

where Ω1 (Ω2, respectively) denotes the set of 1 ≤ q ≤ s/2 such that |λ at,q−λ1 as,q| ≥ 1

(|λ at,q − λ1 as,q| < 1, respectively), and

B1 =
∑
q∈Ω2

a2
s,q and B2 =

∑
q∈Ω2

at,qas,q.

Note that Ω1 + Ω2 = s/2 and recall that as,q ≥ e−|τ | |φ|/4 for all sufficiently large s. It

is readily seen from (5.11) that

I2(λ, λ1) ≤ e−γ1
√

sI(#(Ω1)≥
√

s) + e−γ′2 s (λ1−λB2/B1)2I(#(Ω1)≤
√

s), (5.12)

for some γ′ > 0.

We are now ready to prove (5.3)-(5.5).

Start with (5.3). Recall that K(x) has a compact support. Without loss of generality,

suppose K(x) = 0 when x /∈ [c, d]. Since xt/
√

t has a uniformly bounded density ν1t(x)

by the fact F, it is readily seen from Assumption 3 that

Eλ1n ≤ 2
n∑

t=1

E max
0≤j≤mn−1

sup
x∈[yj ,yj+1]

∣∣K[(xt − x)/h]−K[(xt − yj)/h]
∣∣

≤ 2
n∑

t=1

ˆ ∞

−∞
max

0≤j≤mn−1
sup

x∈[yj ,yj+1]

∣∣K[(
√

t y − x)/h]−K[(
√

ty − yj)/h]
∣∣ν1t(y)dy

≤ 2
n∑

t=1

h√
t

ˆ |b|/h+|d|

−|a|/h−|c|
max

0≤j≤mn−1
sup

x∈[yj ,yj+1]

∣∣K(y − x/h)−K(y − yj/h)
∣∣ν1t(yh/t)dy

≤ C

n∑
t=1

h−1

√
t

max
0≤j≤mn−1

|yj+1 − yj|

≤ C
√

n m−1
n h−1 ≤ C (nh2)1/4. (5.13)
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Hence, P (λ1n ≥ (nh2)1/4 log n) ≤ C/ log n, which yields the required (5.3).

To prove (5.4), write Zjt = K[(xt − yj)/h]− E
(
K[(xt − yj)/h] | F∗

t−1

)
. We first claim

that

max
0≤j≤mn

n∑
t=1

E
(
Z2

jt | F∗
t−1

)
≤ 2

n∑
t=1

max
0≤j≤mn

E
(
K2[(xt − yj)/h] | F∗

t−1

)
= OP (

√
nh). (5.14)

In fact, by recalling that
´∞
−∞ |Eeitε0|dt < ∞, the φ0ε0 has a density, say, d(x). This,

together with (5.6) and the independence between ε0 and x1t = x∗t + x′t, yields that

sup
x∈Ω∗

E
(
K2[(xt − x)/h] | F∗

t−1

)
≤ C

ˆ ∞

−∞
K[(x1t + y)/h] sup

x∈Ω∗
d(y + x) dy. (5.15)

Hence, by noting

EK[(x1t + y)/h] =

ˆ ∞

−∞
K

(
s
√

t/h + y/h
)
ν2t(s)ds ≤ C h/

√
t,

uniformly on y ∈ R because of the fact F, it follows that

E
[

max
0≤j≤mn

n∑
t=1

E
(
Z2

jt | F∗
t−1

)]
≤ 2

n∑
t=1

ˆ ∞

−∞
EK[(x1t + y)/h] sup

x∈Ω∗
d(y + x) dy

≤ C h
n∑

t=1

t−1/2 ≤ C1

√
n h, (5.16)

where we have used the fact that
´∞
−∞ supx∈Ω∗ d(y + x) dy < ∞, as Ω∗ is a compact set.

The claim (5.14) follows from (5.16) by Markov’s inequality..

By virtue of (5.14), it follows from |Zjt| ≤ C, nh2 log−4 n → ∞ and an exponential

inequality for martingale given by de la Pena (1999) that, for any 0 < δ < 1,

P (λ2n ≥ (
√

nh)1/2 log n)

≤ P
[
λ2n ≥ (

√
nh)1/2 log n, max

0≤j≤mn

n∑
t=1

E
(
Z2

jt | F∗
t−1

)
≤
√

nh logδ n
]

+ o(1)

≤
mn∑
j=0

P
[ n∑

t=1

Zjt ≥ (
√

nh)1/2 log n,

n∑
t=1

E
(
Z2

jt | F∗
t−1

)
≤
√

nh logδ n
]

+ o(1)

≤ C(nh2)1/4h−2 exp
{
−

√
nh log2 n

2
√

nh logδ n + C(
√

nh)1/2 log n

}
+ o(1)

≤ C(nh2)1/4h−2 e−C1 log1−δ n + o(1) = o(1), (5.17)

which implies the required (5.4).
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The proof of (5.5) is more laborious. First note that, as in the proof of (5.15),

inf
x∈Ω∗

E
(
K[(xt − x)/h] | F∗

t−1

)
= inf

x∈Ω∗

ˆ ∞

−∞
K[(x1t + y − x)/h]d(y) dy

≥
ˆ
|y|≤A0

K[(x1t + y)/h] inf
x∈Ω∗

d(y + x) dy,

where A0 is a constant chosen such that I :=
´
|y|≤A0

infx∈Ω∗ d(y + x) dy > 0. Since

P
(

inf
x∈Ω∗

n∑
t=1

E
(
K[(xt − x)/h] | F∗

t−1

)
≥
√

nh /M
)
≥ P (Γn ≥

√
nh /M),

where

Γn =

ˆ
|y|≤A0

n∑
t=1

K[(x1t + y)/h] inf
x∈Ω∗

d(y + x) dy,

(5.5) will follow if we prove

Γn√
nh

→D Γ, (5.18)

where Γ is a random variable satisfying P (Γ > 0) = 1. To prove (5.18), we first assume

that

Con: K(x) is continuous and K̂(x) has a compact support,

where K̂(x) =
´∞
−∞ eixtK(t)dt. (5.19)

This restriction will be removed later. Under condition (5.19), we have K(x) = 1
2π

´∞
−∞ eiλxK̂(−λ)dλ.

This implies that, for each A > 0,

Γn =

ˆ
|y|≤A0

[
V1yA + V2yA

]
inf

x∈Ω∗
d(y + x) dy

:= Γ1nA + Γ2nA, (5.20)

where, with cn =
√

n/h,

V1yA =
1

2π cn

n∑
t=1

ˆ
|λ|≥A

eiλ(x1t+y)/
√

nK̂(−λ/cn)dλ,

V2yA =
1

2π cn

n∑
t=1

ˆ
|λ|<A

eiλ(x1t+y)/
√

nK̂(−λ/cn)dλ
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Recall that 0 < I =
´
|y|≤A0

infx∈Ω∗ d(y + x) dy ≤
´

infx∈Ω∗ d(y + x) dy < ∞, since Ω∗ is

a compact set. It is readily seen that, to prove (5.18), it suffices to show that

sup
|y|≤A0

E|V1yA| = o(
√

n h), (5.21)

and on a richer probability space which also holds a standard Brownian motion W (t)

such that

sup
|y|≤A0

∣∣V2yA√
nh

− 1

φ
LG(1, 0)

∣∣ = oP (1), (5.22)

as n →∞ first and then A →∞, where G(t) = W (t) + κ
´ t

0
eκ(t−s)W (s)ds and LG(r, x)

is a local time of the Gaussian process G(t) expressed as

LG(t, x) =
1

2π

ˆ ∞

−∞
e−i ux

ˆ t

0

eiuG(s)ds du. (5.23)

Here and below the right hand of (5.23) is understood as a limitation in L2 of LN
G (t, x),

as N →∞, defined as

LN
G (t, x) =

1

2π

ˆ N

−N

e−i ux

ˆ t

0

eiuG(s)ds du.

The process {Lζ(t, s), t ≥ 0, s ∈ R} is said to be the local time of a measurable process

{ζ(t), t ≥ 0} if, for any locally integrable function T (x),ˆ t

0

T [ζ(s)]ds =

ˆ ∞

−∞
T (s)Lζ(t, s)ds, all t ∈ R, (5.24)

with probability one. For more details in these regards, we refer to Berman (1969).

By recalling x1t = x∗t + x′t and the independence between x∗t and x′t, we have that

E|V1yA|2 ≤ Ch2

n

n∑
s,t=1

ˆ
|λ|≥A

ˆ
|λ1|≥A

|K̂(−λ/cn)| |K̂(−λ1/cn)|
∣∣Eei(λ x1t−λ1 x1s)/

√
n
∣∣ dλ dλ1

≤ Ch2

n

n∑
s,t=1

ˆ
|λ|≥A

ˆ
|λ1|≥A

|K̂(−λ/cn)| |K̂(−λ1/cn)|
∣∣Eei(λ x′t−λ1 x′s)/

√
n
∣∣ dλ dλ1

≤ Ch2

n

n∑
s≤t

ˆ
|λ|≥A

I1

( λ√
n

)
|K̂(−λ/cn)|dλ

ˆ
|λ1|≥A

I2

( λ√
n

,
λ1√
n

)
|K̂(−λ1/cn)|dλ1,

(5.25)
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where I1(s) and I2(s, t) are defined as in (5.9). It follows from (5.12) thatˆ
|λ1|≥A

I2

( λ√
n

,
λ1√
n

)
|K̂(−λ1/cn)|dλ1

≤ e−γ1
√

s

ˆ
|K̂(−λ1/cn)|dλ1 + C

ˆ
e−γ′2sλ2

1/ndλ1

≤ C
[
cne

−γ1
√

s + (n/s)1/2
]
.

It follows from (5.10) thatˆ
|λ|≥A

I1

( λ√
n

)
|K̂(−λ/cn)|dλ

≤ e−γ1(t−s)

ˆ
|λ|≥

√
n

|K̂(−λ/cn)|dλ + C

ˆ
A≤|λ|≤

√
n

e−γ2λ2(t−s)/ndλ

≤ C
[
cne

−γ1(t−s) +

ˆ
A≤|λ|≤

√
n

e−γ2λ2(t−s)/ndλ
]
.

Taking these estimates into (5.25), simple calculations show that

sup
x∈ω∗

E|V1yA|2 ≤ Ch2

n

n∑
t−s=0

[
cne

−γ1(t−s) +

ˆ
A≤|λ|≤

√
n

e−γ2λ2(t−s)/ndλ
]

n∑
s=1

[
cne

−γ1
√

s + (n/s)1/2
]

≤ Ch2
[
cn +

ˆ
A≤|λ|≤

√
n

n∑
t−s=0

e−γ2λ2(t−s)/ndλ
]

≤ C
√

nh + nh2

ˆ
|λ|≥A

ˆ 1

0

e−γ2λ2x dx dλ

= o(nh2),

as n →∞ first and then A →∞, which yields the required (5.21).

To establish (5.22), first notice that {εj, j ∈ Z} can be redefined on a richer probability

space which also holds a standard Brownian motion W (t) such that

sup
0≤t≤1

|x[nt],n −G(t)| = oP (1). (5.26)

where xk,n = xk/(
√

nφ) and G(t) = W (t) + κ
´ t

0
eκ(t−s)W (s)ds. Indeed, on a richer

probability space,

sup
0≤t≤1

∣∣ 1√
n

[nt]∑
j=1

εj −W1(t)
∣∣ = oP (1).
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See, e.g., Csörgö and Révész (1981). Using this result in replacement of the fact that
1√
n

∑[nt]
j=1 εj ⇒ W (t) on D[0, 1], the same technique as in the proof of Phillips (1987) [also

see Chan and Wei (1987)] yields that

sup
0≤t≤1

∣∣ 1√
n

[nt]∑
j=1

ρ[nt]−jεj −G(t)
∣∣ = oP (1).

The result (5.26) can now be obtained by the same argument, with minor modifications,

as in the proof of Proposition 7.1 in Wang and Phillips (2009b). On the other hand,

simple calculations show that

sup
|λ|≤A,|y|≤A0

∣∣eiλy/
√

nK̂(−λ/cn)− K̂(0)
∣∣ = o(1)

as cn →∞. This, together with (5.26) and the fact that Γ2nA can be rewritten as

Γ2nA√
nh

=
1

2π

ˆ
|λ|<A

eiλy/
√

nK̂(−λ/cn)
1

n

n∑
t=1

eiλφxk,n dλ

=
1

2π

ˆ
|λ|<A

eiλy/
√

nK̂(−λ/cn)

ˆ 1

0

eiλ φ x[tn],ndt dλ

yields that, for any A > 0,

sup
|y|≤A0

∣∣V2yA√
nh

− K̂(0)

2π

ˆ
|λ|≤A

ˆ 1

0

eiλφ G(t)dt dλ
∣∣

≤ C sup
|λ|≤A,|y|0

∣∣eiλy/
√

nK̂(−λ/cn)− K̂(0)
∣∣ +

|K̂(0)|
2π

ˆ
|λ|≤A

ˆ 1

0

∣∣eiλ φ (x[nt],n−G(t)) − 1
∣∣dtdλ

≤ o(1) + O(1) sup
0≤t≤1

|x[nt],n −G(t)| = oP (1).

This proves (5.22) since K̂(0) =
´

K(x)dx = 1 and

1

2π

ˆ
|λ|≤A

ˆ 1

0

eiλφ G(t)dt dλ →P
1

2π

ˆ ∞

−∞

ˆ 1

0

eiλφ G(t)dt dλ =
1

φ
LG(1, 0),

by the expression (5.23).

Finally, we remove the restriction (5.19). This only need to notice that, for any ε > 0,

there exist K+
δ0

(x) and K−
δ0

(x) such that K−
δ0

(x) ≤ K(x) ≤ K+
δ0

(x), both K+
δ0

(x) and

K−
δ0

(x) satisfy (5.19),
´∞
−∞(|K+

δ0
(x)|+ |K−

δ0
(x)|)dx < ∞ and

ˆ ∞

−∞

[
K+

δ0
(x)−K−

δ0
(x)

]
dx < ε. (5.27)

The constructions of K+
δ0

(x) and K−
δ0

(x) are similar to the proof of Theorem 4.2.1 in

Borodin and Ibragimov (1995). We omit the details.
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This completes the proof of (5.5), and hence also for Proposition 3.2. �

Proof of Proposition 3.1. By virtue of (3.10), it only need to prove that

sup
x∈Ω∗

n∑
t=1

ut K[(xt − x)/h] = OP

[
(nh2)

p+1
2(2p+1) h−

2
2p+1

]
, (5.28)

and if addition |ut| ≤ C, then, for some δ > 0,

sup
x∈Ω∗

n∑
t=1

ut K[(xt − x)/h] = oP

[
(nh2)1/4 log1−δ n

]
. (5.29)

To prove (5.28), we adopt the same partition as in (5.1), but with

mn = [(nh2)
p

2(2p+1) h−
4p

2p+1 ].

It follows that

sup
x∈Ω∗

∣∣ n∑
t=1

ut K[(xt − x)/h]
∣∣

≤ max
0≤j≤mn−1

sup
x∈[yj ,yj+1]

n∑
t=1

|ut|
∣∣K[(xt − x)/h]−K[(xt − yj)/h]

∣∣
+ max

0≤j≤mn

∣∣ n∑
t=1

ut K[(xt − yj)/h]
∣∣

:= λ3n + λ4n. (5.30)

Recall that xt is adapted to Ft−1 and sup1≤t≤n E(|ut| | Ft−1) < ∞. As in the proof of

(5.13), we have

Eλ3n ≤
n∑

t=1

sup
1≤t≤n

E(|ut| | Ft−1) E max
0≤j≤mn−1

sup
x∈[yj ,yj+1]

∣∣K[(xt − x)/h]−K[(xt − yj)/h]
∣∣

≤ C
√

nm−1
n h−1. (5.31)
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Under E|ut|2p < ∞, the well-known martingale moment inequality yields that

Eλ2p
4n ≤

mn∑
j=0

E
∣∣ n∑

t=1

ut K[(xt − yj)/h]
∣∣2p

≤ C
mn∑
j=0

E
{ n∑

t=1

K2[(xt − yj)/h]
}p

≤ C mn max
0≤j≤mn

{ n∑
t=1

K[(xt − yj)/h] +
∑

1≤s<t≤n

K[(xs − yj)/h] K[(xt − yj)/h]

+
∑

1≤t1<t2<...<tp≤n

K[(xt1 − yj)/h] K[(xt2 − yj)/h]...K[(xtp − yj)/h]
}

, (5.32)

where we have used K(x) ≤ C. Note that, given on Fs, (xt − xs)/
√

t− s has a density

hs,t(x) which is uniformly bounded by a constant C. See the proof of Proposition 7.2

of Wang and Phillips (2009b, page 1934 there). Simple calculations show that, for

1 ≤ j ≤ p,

E
{
K[(xtj − yj)/h] | Ftj−1

}
=

ˆ ∞

−∞
K[

√
tj − tj−1y/h + (xtj−1

− yj)/h]htj−1,tj(y)dy

≤ Ch
√

tj − tj−1

ˆ ∞

−∞
K[y + (xtj−1

− yj)/h]dy

≤ C1h/
√

tj − tj−1.

Taking his estimate into (5.32) and using the conditional arguments repeatedly, we obtain

Eλ2p
4n ≤ C mn

{ n∑
t=1

h√
t

+
∑

1≤s<t≤n

h2

√
s

1√
t− s

+
∑

1≤t1<t2<...<tp≤n

hp

√
t1

1√
t2 − t1

...
1

√
tp − tp−1

}
≤ C mn (nh2)p/2, (5.33)

as nh2 →∞. It follows from (5.31) and (5.33) that

λ3n + λ4n = OP

[√
nm−1

n h−1 + m1/(2p)
n (nh2)1/4

]
= OP

[
(nh2)

p+1
2(2p+1) h−

2
2p+1

]
,

which yields (5.28).

The proof of (5.29) is similar to (5.28), but with

mn =
[(nh2)1/4h−2

log1−δ/2 n

]
.
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In this case, we still have (5.30), and by (5.31)

λ3n = OP (
√

nm−1
n h−1) = oP

[
(nh2)1/4 log1−δ n

]
.

So it only need to prove, for any 0 < δ < 1,

P
[
λ4n ≥ (nh2)1/4 log1−δ/2 n

]
→ 0. (5.34)

This follows from the same arguments as in the proof of (5.17). In fact, as in (5.16), we

have

E
{

max
0≤j≤mn

n∑
t=1

K2[(xt − yj)/h]
}

≤ E
[

max
0≤j≤mn

n∑
t=1

E
(
K2[(xt − yj)/h] | F∗

t−1

)]
≤ C

√
n h,

which implies that

max
0≤j≤mn

n∑
t=1

K2[(xt − yj)/h] = OP (
√

n h). (5.35)

Hence, by recalling nh2/ log4 n →∞,

P (λ4n ≥ (
√

nh)1/2 log1−δ/2 n)

≤ P
[
λ4n ≥ ((

√
nh)1/2 log1−δ/2 n, max

0≤j≤mn

n∑
t=1

K2[(xt − yj)/h] ≤
√

nh logδ/2 n
]

+ o(1)

≤
mn∑
j=0

P
[ n∑

t=1

ujK[(xt − yj)/h] ≥ (
√

nh)1/2 log1−δ/2 n,

n∑
t=1

K2[(xt − yj)/h] ≤
√

nh logδ/2 n
]

+ o(1)

≤ mn exp
{
−

√
nh log2−δ n

2
√

nh logδ/2 n + C(
√

nh)1/2 log1−δ/2 n

}
+ o(1) = o(1),

which yields (5.34). �

Proof of Theorem 3.2. We may write f̂(x)− f(x) as

f̂(x)− f(x) =

∑n
t=1 σ(x)utK[(xt − x)/h]∑n

t=1 K[(xt − x)/h]
+

∑n
t=1 [σ(xt)− σ(x)] utK[(xt − x)/h]∑n

t=1 K[(xt − x)/h]

+

∑n
t=1 [f(xt)− f(x)] K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]

:= Θ1n(x) + Θ2n(x) + Θ3n(x). (5.36)
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It follows from (3.8) that

sup
x∈Ωε

|Θ1n(x)| = OP

[(
nh2+4/p

)−p/[2(2p+1)] ]
,

since supx∈Ωε
|σ(x)| ≤ C, by Assumption 4. Note that, for any x ∈ Ωε, there exists a

C0 > 0 such that K[(xt−x)/h] = 0 if |xt−x| ≥ hC0. It is readily seen from Assumption

4 that, whenever n is sufficiently large,

sup
x∈Ωε

|Θ3n(x)| ≤ C1

∑n
t=1 |xt − x|α K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]
≤ Chα.

Similarly, by noting that |ut| − E(|ut| | Ft−1) forms a martingale difference satisfying

Assumption 2∗, we have

sup
x∈Ωε

|Θ2n(x)| ≤ Chβ sup
x∈Ωε

∑n
t=1 |ut|K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]

≤ Chβ
{

sup
t≥1

E(|ut| | Ft−1) + sup
x∈Ωε

∑n
t=1

[
|ut| − E(|ut| | Ft−1)

]
K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]

}
≤ C1h

β. (5.37)

Taking these estimates into (5.36), we derive (3.5). The proof of (3.6) is similar except

using (3.9) instead of (3.8). We omit the details. �

Proof of Theorem 3.1. First for (3.1), which is similar to that of (3.5). We still use

the decomposition in the (3.4). Recall sup1≤t≤n E(|u2
t |2[ν]|Ft−1) < ∞ a.s., where [ν] ≥ 1.

It follows from (3.8) that

sup
x∈Ω

|I1n(x)| = OP

[(
nh2+4/[ν]

)−[ν]/[2(2[ν]+1)] ]
,

since supx∈Ωε
|σ(x)| ≤ C, by Assumption 4. Since Assumption 4 also implies that, for

any x, y ∈ Ωε,

|σ2(y)− σ2(x)| ≤ 2|σ(y)− σ(x)| sup
x∈Ωε

|σ(x)| ≤ C |y − x|β,

similarly to the estimate of (5.37), we have

sup
x∈Ω

|I2n(x)| ≤ Chβ

∑n
t=1 u2

t K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

= OP (hβ). (5.38)
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Note that h → 0 and, for any x ∈ Ω, there exists a C0 > 0 such that K[(xt−x)/h] = 0 if

|xt − x| ≥ hC0. This, together with (3.5), implies that, whenever n is sufficiently large,

sup
x∈Ω

|I3n(x)| ≤ C sup
x∈Ωε

|f̂(x)− f(x)|2

= OP

{(
nh2+4/[ν]

)−[ν]/(2[ν]+1)
+ h2min{α,β}

}
. (5.39)

Similarly, we have

sup
x∈Ω

|I4n(x)| ≤ C sup
x∈Ωε

|f̂(x)− f(x)| sup
x∈Ωε

|σ(x)|
∑n

t=1 |ut|K[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

= OP

{(
nh2+4/[ν]

)−[ν]/[2(2[ν]+1)]
δ−1
n + hmin{α,β}

}
. (5.40)

Taking these estimates into (3.4), we obtain the required (3.1).

We next prove (3.2), and to do so by showing

k∑
j=1

bjTn(zj) →d N(0, σ2
1), (5.41)

for any (b1, . . . , bk) ∈ Rk, where σ2
1 = (Λ2 − 1)

´∞
−∞ K2(u)du

∑k
j=1 b2

jσ
4(zj). Define

∆n(x) =
n∑

t=1

K[(xt − x)/h], Znt(x) = σ2(x)K[(xt − x)/h]∆−1/2
n (x)

and Ynt =
∑k

j=1 bjZnt(zj). Recall (3.4). We may write

k∑
j=1

bjTn(zj) =
n∑

t=1

(u2
t − 1) Ynt +

k∑
j=1

bj ∆1/2
n (zj)

[
I2n(zj) + I3n(zj) + I4n(zj)

]
.

Recall (5.35), that is, ∆n(x) = OP (
√

nh) for each fixed x ∈ Ω. The result (5.41) will

follow if we prove

n∑
t=1

(u2
t − 1) Ynt →d N(0, σ2

1) (5.42)

and for each fixed x ∈ Ω,

Ijn(x) = oP [(nh2)−1/4], j = 2, 3, 4. (5.43)

First prove (5.42). Write Fnj = σ(u1, ..., uj, x1, ..., xn), 1 ≤ j ≤ n. Recalling that ut

is independent of xt, it is readily seen that Fnj ⊆ Fn,j+1 for 1 ≤ j ≤ n, n ≥ 1, and

{(u2
t −1) Ynt,Fnt}n

t=1 forms a martingale difference sequence. By the classical martingale

limit theorem (see, e.g., Corollary 3.1 of Hall and Heyde (1980)), it suffices to show that,
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for any ν > 1

n∑
t=1

|Ynt|2ν →P 0, (5.44)

and
n∑

t=1

Y 2
nt E

[
(u2

t − 1)2 | Ft−1

]
→P σ2

1. (5.45)

Note that infx∈Ω ∆−1
n (x) = oP (1) by (3.10). The proof of (5.44) is simple. Indeed it is

readily seen that

n∑
t=1

|Ynt|2ν ≤ C
k∑

j=1

n∑
t=1

|Znt(zj)|2ν

≤ C
k∑

j=1

|σ(zj)|2ν∆−ν
n (zj)

n∑
t=1

K[(xt − zj)/h]

≤ C1

k∑
j=1

∆1−ν
n (zj) = oP (1),

which yields (5.44).

In order to prove (5.45), first notice that, for any a, b and 1 ≤ j ≤ k,

φ√
nh

n∑
t=1

{
a K[(xt − zj)/h] + b K2[(xt − zj)/h]

}
→D

ˆ ∞

−∞

[
aK(x) + bK2(x)

]
dx LG(1, 0),

by Proposition 7.2 of Wang and Phillips (2009b)1. This implies that (recalling
´

K(x)dx =

1) { φ√
nh

n∑
t=1

K[(xt − zj)/h],
φ√
nh

n∑
t=1

K2[(xt − zj)/h]
}

→D

{
LG(1, 0),

ˆ ∞

−∞
K2(x)dx LG(1, 0)

}
,

and hence by the continuous mapping theorem,∑n
t=1 K2[(xt − zj)/h]∑n
t=1 K[(xt − zj)/h]

→P

ˆ ∞

−∞
K2(x)dx.

1Proposition 7.2 of Wang and Phillips (2009b) requires
´∞
−∞ |K̂(t)|dt < ∞, where K̂(t) =´∞

−∞ eitxK(x)dx. But this condition is only used in the proof of tightness, not for the finite dimen-
sional distribution convergence.
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On the other hand, for fixed zi 6= zj, we have

K[(xt − zi)/h]K[(xt − zj)/h] = 0,

whenever n is sufficiently large, as K(x) has a compact support. Simple calculations

show that

n∑
t=1

Y 2
nt =

k∑
j=1

b2
jσ

4(zj) ∆−1
n (zj)

n∑
t=1

K2[(xt − zj)/h]

+2
∑

1≤i<j≤k

bibjσ
2(zi)σ

2(zj)∆
−1/2
n (zi)∆

−1/2
n (zj)

n∑
t=1

K[(xt − zi)/h]K[(xt − zj)/h]

→P

ˆ ∞

−∞
K2(x)dx

k∑
j=1

b2
jσ

4(zj). (5.46)

This, together with the fact that

E
[
(u2

t − 1)2 | Ft−1

]
= E

[
u4

t | Ft−1

]
− 1 →a.s. ∆2 − 1,

yields (5.45). The proof of (5.42) is now complete.

We next prove (5.43). The result (5.43) with j = 2 follows from (5.38) and nh2+4β → 0.

To prove (5.43) with j = 3 and 4, for x ∈ Ω, write

∆1n(x) =
n∑

t=1

(f(xt)− f̂(xt))
2K[(xt − x)/h], (5.47)

∆2n(x) =
n∑

t=1

σ(xt)ut(f(xt)− f̂(xt))K[(xt − x)/h]. (5.48)

We may rewrite ∆2n(x) as

∆2n(x) =
n∑

s,t=1
s 6=t

us ut σ(xs)σ(xt) ∆−1
n (xt)K[(xs − xt)/h]K[(xt − x)/h]

+K(0)
n∑

s=1

u2
s σ2(xs) ∆−1

n (xs)K[(xs − x)/h]

+
n∑

s,t=1
s 6=t

ut σ(xt) [f(xs)− f(xt)]∆
−1
n (xt)K[(xs − xt)/h]K[(xt − x)/h]

= ∆2n1(x) + ∆2n2(x) + ∆2n3(x), say. (5.49)
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Let Ξn = I
{

infx∈Ω∗
∑n

t=1 K[(xt − x)/h] ≥
√

nh /M
}
, where M ≥ M0 is chosen as in

(3.10). Note that, for x ∈ Ω,

K[(xs − xt)/h]K[(xt − x)/h] = 0, (5.50)

if |xt − x| ≥ C0h or |xs − xt| ≥ C0h for some C0 > 0. By virtue of the independence

between ut and xt, it is readily seen that, there exists ε > 0 such that

E
{
∆2

2n1(x)Ξn

}
= E

{
Ξn

n∑
s,t=1
s 6=t

u2
s u2

t σ2(xs)σ
2(xt) ∆−2

n (xt)K
2[(xs − xt)/h]K2[(xt − x)/h]

}

≤ C sup
x∈Ωε

σ4(x)E
{

Ξn

n∑
t=1

∆−1
n (xt)K

2[(xt − x)/h]
}

≤ CM√
nh

E
n∑

t=1

K2[(xt − x)/h] ≤ C1M, (5.51)

whenever n is sufficiently large. By virtue of this fact and (3.10), for any η > 0, there

exists a M0 > 0 such that for M ≥ M0,

P
[∆2n1(x)

∆n(x)
≥ (nh2)−1/4/M

]
≤ P

{
inf

x∈Ω∗

n∑
t=1

K[(xt − x)/h] ≤
√

nh /M
}

+
M

(nh2)1/2
E

{
∆2

2n1(x)Ξn

}
≤ η +

C1M
2

δ2
n(nh2)1/2

, (5.52)

which yields ∆2n1(x)
∆n(x)

= oP [(nh2)−1/4]. Similarly, ∆2n2(x)
∆n(x)

= oP [(nh2)−1/4]. As for ∆2n3(x),

it follows from (5.50) and Assumption 4 that

E∆2
2n3(x) = E

{ n∑
t=1

u2
t σ2(xt) ∆−2

n (xt)K
2[(xt − x)/h]

( n∑
s=1
s 6=t

[f(xs)− f(xt)]K[(xs − xt)/h]
)2}

≤ C sup
x∈Ωε

σ2(x) h2α E

n∑
t=1

K2[(xt − x)/h]

≤ C1

√
nh1+2α. (5.53)
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Similar to the proof of (5.52) we have ∆2n3(x)
∆n(x)

= oP [(nh2)−1/4], since h → 0. Taking these

estimates into (5.49), we proves

I4n =
2∆2n(x)

∆n(x)
= oP [(nh2)−1/4].

It is quite similar to show that

I3n =
∆1n(x)

∆n(x)
= oP [(nh2)−1/4].

Indeed, we may rewrite ∆1n(x) as

∆1n(x) ≤
n∑

t=1

∆−2
n (xt) K[(xt − x)/h]

( n∑
s=1
s 6=t

[f(xs)− f(xt)]K[(xs − xt)/h]
)2

+
n∑

t=1

∆−2
n (xt) K[(xt − x)/h]

( n∑
s=1

σ(xs) us K[(xs − xt)/h]
)2

:= ∆1n1(x) + ∆1n2(x). (5.54)

It follows from the similar arguments as in (5.53) that

∆1n1(x) ≤ Ch2α

n∑
t=1

K[(xt − x)/h] = OP (
√

nh1+2α) = oP [(nh2)1/4],

whenever nh2+8α → 0, which yields ∆1n1(x)
∆n(x)

= oP [(nh2)−1/4]. Note that, as in (5.51),

E
{
∆1n2(x)Ξn

}
= E

{
Ξn

n∑
s,t=1
s 6=t

σ2(xs) u2
s ∆−2

n (xt) K2[(xs − xt)/h]K[(xt − x)/h]
}

≤ C sup
x∈Ωε

σ2(x)E
{

Ξn

n∑
t=1

∆−1
n (xt)K[(xt − x)/h]

}
≤ CM.

As in the proof of (5.52), we have ∆1n2(x)
∆n(x)

= oP [(nh2)−1/4]. Taking these estimates into

(5.54), we obtain the required I3n(x) = ∆2n1(x)
∆n(x)

= oP [(nh2)−1/4]. The proof of (5.43) is

now complete, and hence that of Theorem 3.1. �
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