Representations of twisted g-Yangians

by Lucy Gow and Alexander Molev

Abstract

The twisted ¢-Yangians are coideal subalgebras of the quantum affine algebra
associated with gl,. We prove a classification theorem for finite-dimensional irre-
ducible representations of the twisted ¢-Yangians associated with the symplectic Lie
algebras sp,,,. The representations are parameterized by their highest weights or by
their Drinfeld polynomials. In the simplest case of sp, we give an explicit descrip-
tion of all the representations as tensor products of evaluation modules. We prove
analogues of the Poincaré-Birkhoff-Witt theorem for the quantum affine algebra and
for the twisted ¢-Yangians. We also reproduce a proof of the classification theorem
for finite-dimensional irreducible representations of the quantum affine algebra by
relying on its R-matrix presentation.
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1 Introduction

The Yangian Y(a) and quantum affine algebra U,(a) associated with a simple Lie algebra a
are known as ‘infinite-dimensional quantum groups’. They are deformations of the universal
enveloping algebras U(a[z]) and U(a), respectively, in the class of Hopf algebras, and were
introduced by Drinfeld [12] and Jimbo [20]. Here a[z] denotes the Lie algebra of polynomials
in a variable z with coefficients in a, while @ is the affine Kac-Moody algebra, i.e., a central
extension of the Lie algebra a[z, z7!] of Laurent polynomials in 2.

The case of a = sly (the A type) is exceptional in the sense that only in this case
do there exist epimorphisms Y(a) — U(a) and U,(a) — U,(a), called the evaluation
homomorphisms, where U,(a) is the corresponding quantized enveloping algebra. These
epimorphisms have important applications in the representation theory of both the finite-
and infinite-dimensional quantum groups. For the classical Lie algebra a (of type B,
C or D) there are ‘twisted’ analogues of the Yangian and quantum affine algebra for
which the corresponding epimorphisms do exist. Namely, the twisted Yangians Y'(oy) and
Y'(sp,,) associated with the orthogonal and symplectic Lie algebras were introduced by
Olshanski [32], while their g-analogues Y (o) and Y/ (sp,,,), called the twisted ¢-Yangians,
appeared in Molev, Ragoucy and Sorba [29]. These algebras do not possess natural Hopf
algebra structures, but they are coideal subalgebras of the A type Yangian and quantum
affine algebra, respectively. The evaluation homomorphisms have the form

Y'(gn) — U(gn), Y;(QN) - U;(QN),

where gy denotes either the orthogonal Lie algebra oy or the symplectic Lie algebra sp
(the latter with N = 2n) and U (gn) is the twisted (or nonstandard) quantized enveloping
algebra associated with gn which was defined in [15], [30] and [31].

Finite-dimensional irreducible representations of the Yangians Y(a) were classified by
Drinfeld [13]. The particular case a = sl, plays a key role in the arguments and it was done
earlier by Tarasov [36, 37]; see [28, Ch. 3] for a detailed exposition of these results. The
classification theorem for the representations of the quantum affine algebras was proved by
Chari and Pressley [7], [8, Ch. 12]. Again, the case of Uq(ﬁAIQ) is crucial, and it is possible
to prove the theorem here following Tarasov’s arguments [36, 37]. The corresponding proof
was also outlined in [28, Sec. 3.5] and we give more details below (Section 3), as the same
approach will be used for the twisted ¢-Yangians.

A classification of finite-dimensional irreducible representations of the twisted Yangians
Y(on) and Y(sp,,) was obtained in [26]; see also [28] for a detailed exposition, more
references and applications to representation theory of the classical Lie algebras. Recent
renewed interest in the representation theory of Yangians and twisted Yangians was caused
by its surprising connection with the theory of finite W-algebras (see [4], [6], [33]) and by a
generalized Howe duality (see [23], [24]). Note also the applications of the twisted Yangians
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and their g-analogues to the soliton spin chain models with special boundary conditions
1], 2]

In this paper we prove a classification theorem for finite-dimensional irreducible rep-
resentations of the twisted ¢-Yangians associated with the symplectic Lie algebras sp,,,.
The results and the arguments turn out to be parallel to both the twisted Yangians and
quantum affine algebras; cf. [8, Ch. 12] and [28, Sec. 3.5 and 4.3]. First we prove that every
finite-dimensional irreducible representation of Y| (sp,,,) is a highest weight representation.
Then we give necessary and sufficient conditions on the highest weight representations to
be finite-dimensional. These conditions involve a family of polynomials Pj(u), ..., P,(u)
in u (analogues of the Drinfeld polynomials) so that the finite-dimensional irreducible rep-
resentations are essentially parameterized by n-tuples (Pi(u), ..., P,(u)). In the case of
Y, (spy) we give an explicit construction of all finite-dimensional irreducible representations
as tensor products of the evaluation modules over Uq(a [y).

An important ingredient in our arguments is the Poincaré-Birkhoff-Witt theorem for
the quantum affine algebra Uq(é\[N), where ¢ is a fixed nonzero complex number; see
Corollaries 2.12 and 2.13 below. This allows us to derive a new proof of this theorem for
the twisted ¢-Yangians Y| (ox) and Y| (sp,,); cf. [29]. A version of the PBW theorem in
terms of the ‘new realization’ of the quantum affine algebra U,(a) over the field of rational
functions in ¢ was given by Beck [3], with the case of s, previously done by Damiani [10];
see also Hernandez [17] for a weak version of this theorem for the quantum affinizations
of symmetrized quantum Kac—Moody algebras, where ¢ is regarded as a nonzero complex
number, not a root of unity. Although it is believed that the PBW theorem (in the
strong form) holds for the quantum affine algebras over C where ¢ is considered as a fixed
nonzero complex number (with some additional conditions of the form ¢?% # 1), a proof of
the theorem appears to be unavailable in the literature; cf. [8, Prop. 12.2.2]. The existence
of PBW type bases follows also from the general results of Kharchenko [22]. Our proof of
the PBW theorem for Uq(gA [y) applies to the RT'T-presentation of this algebra.

The general approach of this paper developed for the C' type twisted ¢-Yangians should
be applicable to the B and D types as well, although some additional arguments will
be needed in order to obtain analogous classification theorems for representations of the
algebras Y (on); cf. [19] and [27].

We are grateful to David Hernandez and Mikhail Kotchetov for discussions of the
Poincaré—Birkhoff-Witt theorem for the quantum affine algebras.

2 Poincaré—Birkhoff-Witt theorem

We start by reviewing and proving analogues of the PBW theorem for some quantum
algebras. In particular, we prove it for the RT"T" presentation of the quantum affine algebra



U, (5{ ~) and then use it to get a new proof of the theorem for the twisted ¢-Yangians.

2.1 Quantized enveloping algebra U,(gly) and its representations

Fix a nonzero complex number ¢. Following [21] and [34], consider the R-matrix presenta-
tion of the quantized enveloping algebra U,(gly). The R-matrix is given by

=q Z Eqi @B+ Ei®Ej;+(q—q ") Ey;® Ej; (2.1)

i#j i<j

which is an element of End CY @ End C¥, where the E;; denote the standard matrix
units and the indices run over the set {1,..., N}. The R-matrix satisfies the Yang-Baxter
equation

Ria Ri3 Roz = Ras R R, (2.2)

where both sides take values in End CY @ End CY @ End C" and the subscripts indicate
the copies of EndC¥, e.g., Rjs = R® 1 ete.

The algebra U,(gly) is generated by elements ¢;; and ¢;; with 1 < 4,7 < N subject to
the relations

tw:fﬂ:0, 1< ]<N,
ity = tig tyy = 1, I<i<N, (2.3)
RTVT, =TT\ R, RT\Ty =T,T\R, RT\T, = T,TR.

Here T and T are the matrices
P-YtyeB, T-YheE, 24
4,J ,J

which are regarded as elements of the algebra U,(gly) ® End C". Both sides of each of the
R-matrix relations in (2.3) are elements of U,(gly) ® End CY @ End C" and the subscripts
of T and T indicate the copies of End C" where T or T acts; e.g. T} =T ® 1. In terms of
the generators the defining relations between the ¢;; can be written as

@ tiatyy = ¢ tiptia = (4 = ¢) (Gyeq — i<;) tja tin (2.5)

where ¢, ; equals 1 if ¢ < j and 0 otherwise. The relations between the t;; are obtained by
replacing ¢;; by ¢;; everywhere in (2.5):

Q" oty — " Ty lia = (@ — ) (Opeq — Oicj) tia i (2:6)

while the relations involving both ¢;; and ¢;; have the form
0" Tiatip — ¢ tiptia = (0 — ¢ ") (Oyen tia T — Oicj Ljatip)- (2.7)
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Note that for any nonzero complex number d the mapping
Lij — dtyj, tij — d! tij (2.8)

defines an automorphism of the algebra U (gly).

Let z denote an indeterminate. Introduce the algebra U,(gly) over C(z) with the
generators t;; and ¢;; with 1 < ¢, < N subject to the relations given in (2.3) with ¢
replaced by z. Furthermore, we denote by U2(gly) the algebra defined over the ring of
Laurent polynomials C[z, z7!] with the same set of generators and relations. Then we have
the isomorphism

U(aly) @cpes 1) € = Uygly), (2.9)
where the C[z, 27 ']-module C is defined via the evaluation of the Laurent polynomials at
z=q.

The quantized enveloping algebras admit families of PBW bases depending on choices
of reduced decompositions of the longest element of the Weyl group; see Lusztig [25].
In the A type such bases were previously constructed by Rosso [35] and Yamane [38].
These constructions use the Drinfeld—Jimbo presentation of the quantized enveloping al-
gebras. In this presentation, the algebra U,(gly) over C(z) is generated by the elements
ty oottt ,t]_vl, e1,...,eny_1 and fi,..., fy_1 subject to the defining relations

tit; =t;t;, tit7t =t =1,

ti ej ti_l _ 6j Zﬁij—ﬁi,j+17 ti fj ti_l _ fj Z—5¢j+5i,j+17
ki — k! : _
[ei, f]] = (51']‘ # with k; = titi_’_ll,
[ei,ej] = [fz;f]] =0 if |Z —]l > 1,
eie; — (z+2"ee e, +eel =0 if |i—j]=1,

fiij_(Z+Zil)fifjfi+fjfi2:0 if |i—jl=1

The root vectors can be defined inductively by

€ii+1 = €4, €itli = fi,

€ij = €ip€pj — % Ep; Cip for i <p<j, (2.10)
P — . . — 71 . . ) y

€ij = CipCpj — 2 €pjCip for i >p>j,

and the elements e;; are independent of the choice of values of the index p.
An isomorphism between the two presentations of U,(gly) is given by the formulas

tii — ti; t_“ — ti_l, Eij — —(Z — z_l)eij Z-_l, tji — (Z — Z_l)ti 6]‘2' (211)

for i < j; see [11], [34]. We shall identify the corresponding elements of U,(gly) via this
isomorphism.



The quantized enveloping algebra U,(sly) can be defined as the C(z)-subalgebra of

U.(gly) generated by the elements k;, k; ', e;, f; for i = 1,..., N — 1. Similarly, if ¢ is a
nonzero complex number such that ¢ # 1, then U,(sly) can be defined as the subalgebra
of U,(gly) generated by the same elements.

We will be using the following form of the PBW theorem for the quantized enveloping

algebra associated with gly.

Proposition 2.1. The monomials
k'N,Nfl k'N,N72 k'Nfl,N72 kN2 k3o kn1 ko1
tINN-1INN—2 N1 N2 IND - T3 TNy - Bad

Iy IN  Fki2 7kin Fkos 7kan rhN_1,N
Xty - Uy tin® o Ty ta3” ooty - - tN—l,N , (2.12)

where the k;j run over non-negative integers and the l; run over all integers, form a basis
of the C[z, 271]-algebra U(gly).

Proof. 1t follows easily from the defining relations of U(gly) that the monomials span the
algebra over C[z,27!]. Suppose now that there is a nontrivial linear combination of the
monomials (2.12) with coefficients in C|z, 27!] equal to zero. Applying the isomorphism
(2.11) and the relations ¢; ej, = 205 % ejp t; we then obtain a nontrivial linear combination
over C|z, z7!] of the monomials

kn,N—1 kN N-2 kn-1,N-2 kna k32 kw1 ko1
ENN-1 6N N2 EN—1,N—2 -+ EN2 -+ €327 ENT -- - €21
I In k12 kin k23 kan kn—1,n
Xt Lt ey e et egn ey (2.13)

equal to zero. Here the k;; run over non-negative integers and the /; run over all integers.
However, by the PBW theorem for the Drinfeld-Jimbo presentation of the algebra U, (gly)
(see [25], [35], [38]), the monomials (2.13) form a basis of U,(gly) over C(z). This makes
a contradiction. [

The following corollary is immediate from the isomorphism (2.9).

Corollary 2.2. Let ¢ be a nonzero complex number. Then the monomials (2.12) form a

basis of Uy(gly) over C. O

Note that in the particular case ¢ = 1 the algebra U;(gly) is commutative. Using
Corollary 2.2 we will identify it with the algebra of polynomials Py in the variables Z;;, x;
with 1 <7< j < N and x4, 2Z; with ¢ =1,..., N subject to the relations z;;z;; = 1 for all
i. Thus, due to (2.9) we have the isomorphism

Ul(gly) ®clz,.-1) C = P, (2.14)

where the C[z, 27']-module C is defined via the evaluation of the Laurent polynomials at
z=1



In the other degenerate case ¢ = —1 the algebra U_;(gly) is essentially a ‘quasi-
polynomial” algebra; see e.g. [9, Sec. 1.8]. It is well known that quasi-polynomial algebras
admit PBW bases.

We will also use an extended version of the quantized enveloping algebra considered in
27]. Denote by U&*(gly) the algebra over C|z, z27!] generated by elements t;; and ¢;; with
1 <i,7 < N and elements t;;' and £;; ' with 1 < i < N subject to the relations

tij -

~
<

=0, 1<i<j<N,
titiy =titu,  tut;' =t;'ty, =1, t;t;'=t;"t,=1, 1<i<N, (2.15)

RT\T, = TyTyR, RT T, =T,TiR, RT Ty, = TyTR,

where we use the notation of (2.3) with ¢ replaced by z in the definition of R. Although
we use the same notation for the generators of the algebras U (gly) and Ul(gly), it
should always be clear from the context which algebra is considered at any time. There is
a natural epimorphism U*(gly) — US(gly) which takes the generators ¢;; and ¢;; to the
elements with the same name. The kernel K of this epimorphism is the two-sided ideal
of the algebra U (gly) generated by the elements t;¢; — 1 for i = 1,..., N. All these
elements are central in this algebra and we have the isomorphism U (gl )/K = U(gly).

The following analogue of the PBW theorem is implied by Proposition 2.1; see also
27].

Proposition 2.3. The monomials

kn,N—1 kN N—2 JkN_1,N—2 kno k32 kN1 ko1 4l In
INN-1 NN tN_ 1 N—2- - tNg - - T3 tny - oy by -ty
rm1 rmpy rki2 FkinN yko3 rkon rhN_1,N
PG R 0 S 1 S A vl 2 S 2952 "'tN—l,N7 (2.16)

where the k;; run over non-negative integers and the l; and m; run over all integers, form
a basis of the Clz, z7'-algebra U™ (gly ). O

By specializing z to a nonzero complex number ¢ in the definition of U (gly) we
obtain an algebra U (gly) over C defined by the same set of relations (2.15). So we have
the isomorphism

U (gly) ®clz.-1 C = U (gly), (2.17)

where the C[z, 27 ']-module C is defined via the evaluation of the Laurent polynomials at
z = q. The corresponding monomials (2.16) form a basis of U (gly). In the particular
case ¢ = 1 the algebra U{*(gly) can be identified with the algebra of polynomials P in
the variables 7;;, z; with 1 <7 < j < N and Ty X5 Ty, Ty withd = 1,..., N. Thus we
have the isomorphism

Us(gly) ®cpz.1y C = PR, (2.18)



where the C[z, 27!]-module C is defined via the evaluation of the Laurent polynomials at
z=1.

Suppose now that ¢ is a nonzero complex number which is not a root of unity. A
description of finite-dimensional irreducible representations of the algebra Ug*'(gly) can
be easily obtained from the corresponding results for the algebras U,(gly) and U,(sly); see
e.g. [8, Ch. 10]. A representation L of U;Xt(g[N) is called a highest weight representation
if L is generated by a nonzero vector ¢ (the highest vector) such that

tij¢ =0 for  1<i<j<N, and
tii ¢ = NG, ti ¢ = N, for 1<i<N,

for some nonzero complex numbers A; and ;. The tuple (A1,..., Ax;Ar, ..., Ay) is called
the highest weight of L. Due to Proposition 2.3, for any N-tuples of nonzero complex
numbers A = (Ay,...,Ay) and A = (A1,..., Ay), there exists an irreducible highest repre-
sentation L(\; \) with the highest weight (\;\). This representation can be defined as a
quotient of the corresponding Verma module in a standard way.

The irreducible highest weight representations L(u), i1 = (g1, - - ., piv), over the algebra
U,(gly) are defined in a similar way with the above conditions on the highest vector
replaced by

0 for
i Ca for

1 <j <N, and
i < N.

sz
ziC

The representation L(u) is finite-dimensional if and only if there exist nonnegative integers

~+~  SH

1
1

NN

m; satisfying mq > mg > - -+ = my, elements ¢; € {—1,1} fori =1,..., N, and a nonzero
complex number d such that

,ui:dsiqmi, 221,,N

Proposition 2.4. Fvery finite-dimensional irreducible representation of U;Xt(g[N) 1S 1S0-
morphic to a highest weight representation L(\; \) such that

\i —ag®™i\ =0, i=1,...,N,

for some nonnegative integers m; satisfying my = mqg = -+ = my and a nonzero complex
number a.

Proof. A standard argument shows that every finite-dimensional irreducible representation
of Us¥(gly) is isomorphic to a highest weight representation; cf. [8, Ch. 10]. Hence we
only need to determine when the representation L(\; \) is finite-dimensional. Each central
element t;;t;; of U;Xt(g[ ~) acts on L(A; A) as multiplication by the scalar \;)\;. Fix constants
c1,...,cy such that

i = \ii, i=1,...,N.



Then the mapping
lij = Cityj, tij = citi
defines an epimorphism U (gly) — U,(gly) whose kernel is generated by the elements

tiitii — N, i=1,...,N. (2.19)

Hence, identifying U,(gly) with the quotient of Ug*(gly) by this kernel, we can equip
L(\; A) with the structure of an irreducible highest weight representation of U,(gly). Its
highest weight (p1,. .., 1) is given by

,uz-:ci_l)\i, Z:]_,,N
This representation is finite-dimensional if and only if

;'\ =deiq™

for some nonnegative integers m; satisfying m; > my > .-+ > my, a nonzero complex
number d, and some elements ¢; € {—1,1} fori = 1,..., N. By our choice of the constants
c;, this is equivalent to the relations A\; A, ' = a ¢*™ with a = d?, as required. O

2.2 Twisted quantized enveloping algebras U (oy) and U/ (spy,)

The twisted quantized enveloping algebra Ug(o ~) associated with the orthogonal Lie alge-
bra oy was introduced independently in [15] and [30]. Its R-matrix presentation was given
in [31]. We follow the notation of [29] and define U, (ox) as the subalgebra of Ugy(gly)
generated by the matrix elements s;; of the matrix S = TTt, where t denotes the usual
matrix transposition. More explicitly, the elements s;; are given by

N
Sij = Z tiat_ja- (220)
a=1
Hence, (2.3) implies
si; =0, 1<i<j<N, (2.21)

Furthermore, U; (o) is isomorphic to the algebra with (abstract) generators s;; with the
condition 7,7 € {1,..., N} subject to the defining relations (2.21), (2.22) and

RSlRtISQ = SQRtlis, (223)
where
i i#] 1<j



In terms of the generators, relation (2.23) takes the form

Saj+di

] 6(1 +0;
7 Sia Sjb — ¢

* Sjb Sia = (q -q ) 0 (Bpea = Gicj) Sja St
(¢ = q7") (4 Sy Sji Sba — 4" Gy Sij Sab) (2.25)
+ (q —q 1)2 (Op<caci — 5a<i<j> Sji Sabs

q

where 6,_. or ¢ equals 1 if the subscript inequality is satisfied and 0 otherwise.

1<j<k
An analogue of the PBW theorem for the algebra U} (oy) was proved in [18]; see also
27], [29]. Yet another proof is obtained from Proposition 2.1. We regard ¢ as a nonzero

complex number.

Proposition 2.5. The monomials

ko1 k32 k31 kN1 kN2 kn,n-1
So1 S32 831 --- SN1 SN2 - SN.N-1> (2.26)

where the ki; run over non-negative integers form a basis of the algebra U (on).

Proof. Let us consider the C|z, 27 !]-subalgebra US(ox) of US(gly) generated by the ele-
ments s;; defined by (2.20) and show that the monomials (2.26) form its basis. It follows
easily from the defining relations that the monomials span the algebra; see [29, Lemma 2.1].
Suppose now that a nontrivial C |z, z7!]-linear combination of the monomials (2.26) is zero.
By Proposition 2.1 we may suppose that at least one coefficient of the combination does
not vanish at z = 1. Using the isomorphism (2.14) we then get a nontrivial C-linear com-
bination of the corresponding monomials in the polynomial algebra Py. We will come to
a contradiction if we show that the images o;; of the generators of s;;, ¢ > 7, in Py are
algebraically independent.
We have

N
= E Tiq jja-
a=1

It suffices to verify that the differentials do;; are linearly independent. Calculate the
differentials in terms of dz;, and dz;, and specialize the coefficient matrix by setting z;; =
T;j = 0;;. Then doj; = dTj; + dxy; which implies that the differentials doy; are linearly
independent even under the specialization.

This proves that the monomials (2.26) form a basis over C[z,27'] in the subalgebra
US(on). The application of the isomorphism (2.9) shows that the monomials (2.26) form
a basis over C in U} (oy). O

Finite-dimensional irreducible representations of the algebra U (o) were classified in
[19]. Moreover, that paper also contains explicit realization of the representations of ‘clas-
sical type’ via Gelfand—Tsetlin bases.
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The twisted quantized enveloping algebra Uy (sp,,) associated with the symplectic Lie
algebra sp,,, was first introduced in [31]. In order to define it, consider the 2n x 2n matrix

G given by
G=q Z Eop—12K — Z Eog,ok-1, (2.27)
k=1 k=1
that is,
0 ¢q 0 0]
-1 0 0 0
G = : : - : :
00 -+ 0 g
00 -~ —1 0]

We define Uy (sp,,) as tthe subalgebra of Us*(gl,,) generated by the matrix elements s;; of
the matrix S =T GT together with the elements

St =4t (2.28)

fori=1,3,...,2n — 1. More explicitly,

Sij = (q Zti,2a71£j2a — Z ti2alj2a—1- (2.29)
a=1 a=1
By (2.3) we have
sij=0 for i< j unless j=¢+1 with 7 odd. (2.30)

All matrix elements 5;; of the matrix S = TGT? also belong to the subalgebra. It was
proved in [29] that U] (sp,,) is isomorphic to the algebra with (abstract) generators s;;
with i,7 € {1,...,2n} and 3;,7;1+1 with i =1,3,...,2n — 1, subject to the defining relations
(2.23) (with N = 2n), (2.30) and

-1 _ -1 _ s
Sz’,[/+1 SZ,Z+1 _— 8171_’_1 Sz,l+1 — 17 1 = 17 3, ... ’2n - ].. (2.3].)

Our definition of U (sp,,) follows closer the original paper [31], while a slightly different
algebra U™ (sp,,) was studied in [29]. The latter was defined as a subalgebra of Uy (gly,)
by the same formulas (2.28) and (2.29) which lead to extra relations for the generators:
for any odd 7

Si+1,i+1 Sii — q2 Si+1,i Siji+1l = QB- (2-32)
They are implied by the relations ¢;;t; = 1 which hold in the algebra U,(gl,,) but not
in U,‘;Xt(g[%). Moreover, the elements ;4141 Sii — q> Sit+1,i Sii+1 are central in the algebra
U/ (spy,) and its quotient by the relations (2.32) is isomorphic to U™(sp,,); see also [27],
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where a slightly different notation was used. The latter algebra is a deformation of the
universal enveloping algebra U(sp,,,); see [29].

An analogue of the PBW theorem for the algebra U} (sp,,) was proved in [27]. That
paper and [29] also contain proofs of this theorem for the quotient algebra U (sp,,). Here
we give a more direct proof based on Proposition 2.3 for a slightly different order on the
set of generators.

We define a function ¢ : {1,2,...,2n} — {£1,4+3,...,+(2n — 1)} by

) if 7 is odd
) = ’ 2.33
(i) { —1+1 if 7 iseven. ( )

We say s;, < sjp if (s(i) +<(a), (7)) < (s(j) + <(b),s(j)) when ordered lexicographically.
In the next proposition we consider the corresponding ordered monomials in the gen-
erators s;; with 7 > j together with s; ;1 and Sz‘ji1+1 with odd 7.

Proposition 2.6. The ordered monomials

kon,on _kan,2n—2 kon,2n—1 ko1 _ki2 kon—1,2n kan—12n-3 Kony,2n—1
Son2n S2n2n—2 - Sop2n—1 - -+ S21 S127 -+ Sop—192n -+ S2n—1,2n-3 S2n—1,2n—15 (2.34)
where kig, ksa, ..., kon—12n TUn over all integers and the remaining powers k;; run over

non-negative integers, form a basis of the algebra U;(sp%).

Proof. Let us consider the C[z, 27 1]-subalgebra US(sp,,) of US*(gl,,) generated by the
elements (2.28) and (2.29) with ¢ replaced by z and show that the monomials (2.34) form
its basis. The application of the isomorphism (2.17) will then imply that the monomials
form a basis over C in Uj (sp,,,).

First we prove that an arbitrary monomial in the generators can be written as a linear
combination of the ordered monomials; cf. [29, Lemma 2.1]. Due to the relations

Y S S S .
Siiq1 Spp = &k ALk LSS i i=1,3,...,2n — 1,

we can restrict our attention to those monomials where all generators occur in non-negative
powers. We define the degree of a monomial s;,q, ... Si,a,, to be d = iy + -+ + i} and we
argue by induction on the degree d. Modulo products of degree less than ¢+ j, the relations
(2.25) (with ¢ replaced by z) imply:

5aj +94. Sab+0,

25T 81085 — 27T S b Siq

= (z — 2_1)26‘”(51)<a — (S¢<j)8ja8ib. (235)
Swapping here ¢ with j and a with b we can also write this in the form

z‘s"ﬁ‘;“bsmsj‘b - Z‘siﬁé"bsjbsm

= (Zil — Z) Zébj (5a<b — 5j<i)8ib3ja- (236)
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Suppose (i) + s(a) > ¢(7) + <(b). Then if <(i) + <(b) > <(j) + <(a), the equation (2.35)
allows us to write s;,55, as a linear combination of ordered monomials and monomials of
lower degree. On the other hand, if ¢(i) 4+ ¢(b) < ¢(j) + ¢(a) then the same outcome is
achieved by using (2.36). In the case <(i) +<(b) = ¢(j) + ¢(a) we have either ¢(i) > ¢(j) or
¢(i) < ¢(j) and we use (2.35) or (2.36), respectively; the equality ¢(i7) = ¢(j) is impossible
as it would imply ¢(7) 4+ s(a) = <(j) + <(b).

Now suppose that we have a pair of generators s;,, s;5 such that ¢(i)+¢(a) = <(j)+<(b),
and that ¢(i) > ¢(j). Then ¢(a) < ¢(b), and so

§(i) + <(b) > <(j) + <(a).

This means that by applying (2.35), we can write s;,5; as a linear combination of ordered
monomials. Thus, given an arbitrary monomial, we may rearrange each pair of generators
in turn to write the monomial as a linear combination of ordered monomials and monomials
of lower degree.

Suppose now that a nontrivial C[z, z~!|-linear combination of the monomials (2.34) is
zero. By Proposition 2.3 we may suppose that at least one coefficient of the combination
does not vanish at z = 1. Using the isomorphism (2.18) we then get a nontrivial C-linear

ext

combination of the corresponding monomials in the polynomial algebra Pyx".
Let 0;; denote the image of s;; in Psx*. Hence

n

Oij = g (sz‘,2a—1 Tj2a — Ti2a jj,2a—1)~
a=1

It suffices to verify that the polynomials o;; with ¢ > j and 0 ;41 with odd ¢ are algebraically

independent in Ps**. Calculate their differentials in terms of dx;, and dZ;, and specialize

the coefficient matrix by setting x;; = z;; = 5ij. Then

dZj;p1 + dx; ;4 if ¢ isodd, j is even,
d djj,i-i—l — dxi,j—i—l if ¢ is Odd, j is Odd,
T;: =
Y —dZ;;—1 +dx; ;1 if 4 iseven, j iseven,
—dTj i1 — dz; j41 if ¢ iseven, j isodd,
so that the differentials are linearly independent. ]

Finally, for the use in the next sections we reproduce the classification theorem for
finite-dimensional irreducible representations of the algebra U} (sp,,). This theorem was
proved in [27] for the quotient U;¥(spy,) of this algebra by the relations (2.32), and it is
not difficult to get the corresponding results for the algebra U} (sp,,). For the rest of this
section we suppose that ¢ is a nonzero complex number which is not a root of unity.

13



A representation V of U] (sp,,,) is called a highest weight representation if V' is generated
by a nonzero vector £ (the highest vector) such that

5; £ =0 for +=1,3,....2n—1, 7=1,2,...,14, and
$2i2i-1§ = 1; €, Sai—1,2i & = 13 &, for i=1,2,...,n,

for some complex numbers p; and p). The numbers ) have to be nonzero due to the
relation (2.31). The tuple (g1, ..., fn; f, - - -, p4,) is called the highest weight of V.

Due to the PBW theorem for the algebra U/ (sp,,) (Proposition 2.6), given any two n-
tuples of complex numbers = (1, ..., pn) and @' = (@}, . .., p1),), where all 1 are nonzero,
there exists an irreducible highest weight representation V'(u; i/) with the highest weight
(5 1. Tt is defined as the unique irreducible quotient of the corresponding Verma module
M (p; p'); cf. [27]. By definition, M(u;p') is the quotient of U] (sp,,) by the left ideal
generated by the elements s;; with 7 =1,3,...,2n —1, j =1,2,...,¢, and by s9; 91 — 3,
Spi—12i — py with i =1,...,n.

Proposition 2.7. Every finite-dimensional irreducible representation of Ul (spy,) is iso-
morphic to a highest weight representation V (u; ') such that

M;+q2pl+1u1207 ?::17"'777”
for some nonnegative integers p; satisfying py < ps < -+ < Pn.

Proof. A standard argument as in [27] shows that every finite-dimensional irreducible rep-
resentation of Uy (spy,,) is isomorphic to V' (u; u') for certain p and /. In order to find out
when an irreducible highest weight representation V' (u; i) is finite-dimensional, consider
first the case n = 1. Let M(u1;py) be the Verma module over U (sp,) with the highest
vector €. The vectors s5,& with & > 0 form a basis of M (uy; ). The central element
$99511 — 2821512 acts on M (pq; 11}) as multiplication by the scalar —q2u1u’1- Hence using
the defining relations (2.25) we derive by induction on k that

s1188€ = (¢ = 1) (Ppap + ()¢ ) shy ' €.

Since p) # 0, this implies that if gy = 0 then M (uy; ) is irreducible and so the represen-
tation V' (pq; ) is infinite-dimensional.

By embedding Uj(sp,) into Uj(sp,,) as the subalgebra generated by the elements
So9i_1.2i> 32_2-1717214, S9ini 1) Sai_12i—1 and Sy o for i € {1,...,n}, we can conclude that if
the representation V' (y; 1') of Uy (sp,,) is finite-dimensional, then all components z; must
be nonzero. Furthermore, each central element s9;9;52i—12i—1 — q* 59i2i—152i—1,2i acts in
V (u; ') as multiplication by the nonzero scalar —q? ;.

On the other hand, the quotient of Uy (8p,,,) by the ideal generated by the elements
52i,2i52i—1,2i—1 — C]2 $2i,2i—152i-1,2i T CIQMiM;w t=1,...,n, (2-37)
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is isomorphic to the algebra U™ (sp,,). Indeed, the mapping s;; + c;c;sy; for nonzero
scalars ¢y, ..., cy, such that

2 1 _ 32 2 L
4 Hilt; = —q Cgi_1Cy, t=1,...,n,

defines an epimorphism U} (sp,,) — U™ (spy,) whose kernel is generated by the elements
(2.37). Thus, V (u; ') becomes an irreducible highest weight representation of the algebra
U.¥(spy,) whose highest weight A = (A, A, ..., Aan—1) in the notation of [27, Sec. 4] is
found by

Aoii1 = Cot Cop il i=1,...,n.

This implies A3, | = —qu, u; . By [27, Theorem 6.3] we must have

A 1= g™, 1=1,...,n,
for some positive integers m; satisfying m; < mg < --- < m,. This gives the desired
conditions on the highest weight (u; ). O

Remark 2.8. If ¢* # 1 then the algebra U (sp,) is isomorphic to Uy(sly). An isomorphism
can be given by

S11 fio S12 S22
¢ —q 1—g¢*

where e, f, k, k™! are the standard generators of U,(sl,) satisfying the relations

k: = q_18127 € —

9 5 kE—kt
ke =q’ek, kf=q*fk, ef —fe= -
qa—q
This isomorphism can be used to get a description of finite-dimensional irreducible repre-
sentations of UV (spy); cf. [27]. O

2.3 Quantum affine algebra U,(gly)

We start by recalling some well-known facts about the quantum affine algebra (or quantum
loop algebra) associated with gl,,. We will keep the notation ¢ for a fixed nonzero complex
number. Consider the Lie algebra of Laurent polynomials gl [X\, A™] in an indeterminate
A. We denote it by g[N for brevity. The quantum affine algebra Uq(gA[N) (with the trivial
central charge) has countably many generators t,(;;) and fi(jr) where 1 < 4,5 < N and r runs
over nonnegative integers. They are combined into the matrices

15



1

where #;;(u) and #;;(u) are formal series in ™' and u, respectively:

w =Y 0w ) =) 6 (2.39)
r=0 r=0

The defining relations are

t§;’):£j3):o, 1<i<j<N,
tWFO 70O 1 1 <igN,
R(u, v) T4 () Ta(v) = To(w) T (u) R(u,v), (2.40)
R(u,v) T1(u)Ta(v) = To(v)T1(u)R(u,v),
R(u,v) T1(w)T(v) = To(v)T1(u) R(u, ),
where R(u,v) is the trigonometric R-matrix given by
R(u,v) = (u—v) ZEn(XJEM—i-(q Yu — qu) ZE“@)E“
7 (2.41)
g = Qud By ®Ei+ (@ —qv Yy By @ Ej.
>7 1<J

Both sides of each of the R-matrix relations are series with coefficients in the algebra
Uq(gT[N) ® EndC" ® End C¥" and the subscripts of T'(u) and T'(u) indicate the copies of
EndC¥; e.g. Ty(u) = T(u) ® 1. In terms of the generators these relations can be written
more explicitly as

(4750 = 0) ) 3(0) + (47 = @) (s + 0 Bic) a0 ()

° i B (2.42)
= (¢ u — ¢"*v) tj(v) tia(u) + (¢ — @) (W dacp + V 6asp) tja(v) tipn(u)
for the relations involving the tz(;),
(a7 u = ¢"90) tia(u) Tp(v) + (67" = @) (wdinj + v 8ic) Ea(u) T (v) (2.43)
= (g7 u — ¢"*0) 1jp(0) Eia() + (¢ = @) (wach + v uz0) ja(v) tin(w)
for the relations involving the t(T) nd
(50— 50 B (a(0) + (07 = @) (06 + ) o) (0) o
= (q7%"u — ") tjp(0) Eialu) + (47" = @) (Wact + v Gazp) tja(v) Ein (w)
for the relations involving both tz(;) and fi(;).
Note that the last relation in (2.40) can be equivalently written in the form
R(u,v) T1(u) To(v) = To(v) Ty (u) R(u,v). (2.45)
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Indeed, we have the identity
R(u,v) Ry (u,0) = (qu — ') (" 'u— qu) 191,

where R,-1(u,v) is obtained from R(u,v) by replacing ¢ with ¢~'. Therefore, the last
relation in (2.40) can be written as

Ry (u,v) Ty(v) Ty (v) = T (u) Ta(v) Ry-1(u,v).

Now conjugate both sides by the permutation operator

N

ij=1
then swap u and v to get (2.45), as
R(u,v) = =P R,~1(v,u) P.

In terms of the generators the relation (2.45) takes the form

)

(% — g tm@ @-m (47 = @) (WBisy + i) tialu) Fn(v) (2.47)

= (g7 u — ¢"v) Ejp(0) tia(u) + (¢ — @) (U Fact + v Fasp) Eja (V) tip(u).

1

Let f(u) and f(u) be formal power series in u~* and u, respectively,

fw)=fo+ fiv "+ fou+...,
fw)=fo+ fiut o +...,

such that fy fo = 1. Then it is immediate from the defining relations that the mapping

T(u)— fW)T(u),  T(u)— f(u)T(u) (2.48)

defines an automorphism of the algebra Uq(é\[ N)-
We will also use an involutive automorphism of the algebra U,(gly) given by

T(u) — T(u™ 1), T(u) — T(ut), (2.49)
where t denotes the matrix transposition. The first two sets of relations in (2.40) are
obviously preserved by the map (2.49). In order to verify that the R-matrix relations are
preserved as well, apply the transposition ¢; in the first copy of End C¥ to each of them,
followed by the transposition ¢, in the second copy of End C¥. Then conjugate both sides
by the permutation operator (2.46), replace v and v by v~ and u™! respectively, and
observe that

uv PR"? (v u™) P = R(u,v).
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Another involutive automorphism is defined by the mapping

tij(u) = eity(u),  tii(u) = &iti;(u), (2.50)

where each ¢; equals 1 or —1.
It follows easily from the defining relations (2.40) that the mapping

tij(uw) = tn_jy1n—ip1(u), tij(w) — tn_ji1n—it1(u) (2.51)

defines an involutive anti-automorphism of the algebra Uq(a (y)-

Ding and Frenkel [11] used the Gauss decompositions of the matrices T'(u) and T'(u)
to construct an isomorphism between the RTT-presentation (2.40) and Drinfeld’s “new
realization” of Uq(QT[N); see also [14]. However, the version of the PBW theorem given
by Beck [3] for the new realization of the quantum affine algebras U, (@) over the field of
rational functions in ¢ does not immediately imply a PBW-type theorem for the RTT-
presentation. Our next goal is to prove the PBW theorem for the RTT-presentation of the
algebra Uq(é\[N), where ¢ is an arbitrary fixed nonzero complex number.

As before, we let z denote an indeterminate. Introduce the algebra UE(E[N) over
Clz, 27! by the respective generators and relations given in (2.40) with ¢ replaced by
z. Then we have the isomorphism

Uz<§[N> ¢ [2,271] C = Uq(a[N)v (252)

where the C[z, 27 ']-module C is defined via the evaluation of the Laurent polynomials at
z = q. The next proposition takes care of the weak part of the PBW theorem. We use a
particular total order on the generators of the algebra for which the argument appears to
be the most straightforward. For the purposes of representation theory a different order is
more useful and we will take care of that one in Corollary 2.13 below.

We associate the triple (i,a,r) to each nonzero generator t( " or fg) of Us(gly). If
(i,a,7) < (J,b,s) in the lexicographical order then we will say that each generator as-
sociated with (i, a,r) precedes each generator associated with (4, b, s). Moreover, we will

(r)

suppose that ¢,/ precedes t( for each triple (i, a, ) such that both generators are nonzero.

Proposition 2.9. The ordered monomials in the generators span the algebra U‘;(gA[N) over
Clz, z71.

Proof. Let r and s be nonnegative integers. Multiply both sides of the relation (2.42) with
q replaced with z by

o0

ZZ% 1655, -1
‘5uu—z 6

z
k=1

18



s

(T)t(s)

and equate the coefficients of u="v™°. ia Lip

This provides an expression for the product ¢

with ¢ > j as a C|[z, z7!]-linear combination of the elements of the form t( ) () Further-
more, taking ¢ = j in (2.42) with ¢ replaced with z we obtain

(27%u — 2%%0) iy (V) tia(u)

= (27— 20) tig(W) ti (V) — (27 = 2) (U acp + V as) tia(V) ta(u). (2.53)

This allows us to express the product tg)tgz) with b > a as a C[z, 27 !]-linear combination
of the elements of the form tgij)tf.f}. Taking a = b in (2.53), we find that the generators tg;)
and tl(j) commute for any 7 and s.

Applying similar arguments to the relations (2.43) and (2.44) with ¢ replaced with
z and using induction on the length of monomials we conclude that any monomial in
the generators of U%(gly) can be written as a C|[z, z~']-linear combination of the ordered
monomials. [

Recall now that the algebra UE(ET[N) possesses a Hopf algebra structure with the co-
product
A U2(gly) — UZ(gly) ® UZ(aly),
where the tensor product is taken over C|[z, 27!], defined by

N

k=1
The quantized enveloping algebra U2(gly) is a Hopf subalgebra of UE(E[N) defined by the
embedding
(0)

tij — by’ tij f,-(]Q)- (2.55)

Moreover, the mapping
m:Tu)—T+Tu, Tu)—T+Tu (2.56)

defines a C|z, z~!]-algebra homomorphism U;(;T[N) — US(gly) called the evaluation ho-
momorphism.

In our proof of the PBW theorem for the quantum affine algebra we will follow the
approach used in [5] to prove the corresponding theorem for the Yangian for gly; see also
[16] for the super-version of the same approach.

We will need a simple lemma which is easily verified by induction. Let z,...,xz; be
indeterminates. For r = 0,...,l —1 and £ = 1,...,[ consider the elementary symmetric
polynomials in [ — 1 variables, where the variable x; is skipped:

ek = €r(T1y .o\ Tpy .. Xy) = E Tiy oo Ty

summed over indices i, # k with 1 <43 < --- <1, <L
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Lemma 2.10. We have

€o1 €o2 - €ol
€11 €12 ce €11
det | . , _ .| = H (x; — ;). (2.57)
: : o : 1<i<j<l
€l—11 €1-12 - €1-1]

In particular, the determinant is nonzero under any specialization of variables x; = a;,
1=1,...,1, where the a; are distinct complex numbers. ]

For each positive integer [ introduce the C|[z, 27 !]-algebra homomorphism
= Ul(aly) — Us(gly)™

by setting
=1%o AU, (2.58)

where

A=Y U2(gly) — US(gly)®

denotes the coproduct iterated [ — 1 times. The explicit formulas for the images of the
generators of U2(gly) under the homomorphism x; have the following form:

Ky - tg) — Z Z tiil X ti1i2 X...x Eipl—lipl R...x t_ipr—lipr RK... til—lj’

P1<-<Pr 11,50

~ ~ ~ - (2.59)
Ry - tz(;) — Z Z tiil X ti1i2 X...Q0 tipl—lipl XK...Q tipr—lipr X...Q til—lj’
P1<<Pr 11,...,9
where the indices i1,...,4; in each formula run over the set {1,..., N} and the indices

{p1,...,p-} C {1,...,1} indicate the places taken by the barred generators ¢ (resp. un-
barred generators ty,;) in the first (resp. second) formula. The images of tz(.;) and fi(;) under
the homomorphism «; are zero unless [ > r.

With the order on the generators of Uz(gA[N) introduced before Proposition 2.9 consider

the corresponding ordered monomials. The zero generators tg?) for + < j and fi(;)) foriv > g
(0)7(0)
t

will be excluded. Moreover, using the relation ¢;,°¢;;” = 1 we will suppose that for each
1 =1,..., N each monomial contains either a nonnegative power of tg? Jor a positive power

of fi(io). With these conventions we have the following version of the PBW theorem.

Theorem 2.11. The ordered monomials in the generators tz(;) and fi(;) form a basis of the
algebra U(gly) over C[z, z7Y].

Proof. Due to Proposition 2.9, we only need to verify that the ordered monomials are
linearly independent. We will argue by contradiction. Suppose that a nontrivial linear
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combination of the ordered monomials is zero. Let m be the minimum nonnegative integer
such that for all generators t ) and t occurring in the combination we have 0 < r < m.
Consider the homomorphlsm K1 deﬁned in (2.58) with [ = 2m + 1 and apply it to the
linear combination. We then get the respective nontrivial C|z, z~!]-linear combination of
elements of the algebra U2(gly)®' equal to zero. By Proposition 2.1 we may suppose that
at least one coeflicient of the combination does not vanish at z = 1.

On the other hand, due to (2.14) we have the isomorphism

UZ(QKN)@ AC[z,2-1] C =~ ’P]%l

Taking the image of the linear combination under this isomorphism we get a nontrivial
C-linear combination of elements of the polynomial algebra Pf\?l equal to zero.

We will regard P as the algebra of polynomials in [ sets of variables {:Ey;], @U;]}, where
the parameter k € {1,...,[} indicates the k-th copy of Py in the tensor product. Thus,
the proof of the theorem is now reduced to verifying the following claim. Consider the
elements y ) and yZ ) of the algebra P’ defined by the relations

12 _ !
Y = E E 2l Lokl gl
j 111 1122 zpl 1ipy Ipp—1ipy i_1J

P1<-<Pr 11,050

(1] 52l 2P [pr] =1
yw = E E Tiiy Tivig -+ Tiy yiy + Ty o+ Tig_y o

P1<-<Pr 11,50

with the same conditions on the summation indices as in (2.59) together with the relations
[s] _

Ty = :U =0 for < j. We need to verify that modulo the relations
yff)_y](l)_ov 1<Z<j N
um =1, 1<i<N,
the polynomials yg), gjf;) with 1 < 4,5 < N and 0 < r < m are algebraically independent.

(r)

It will be sufficient to show that the correspondlng differentials dyij),dyij are linearly

independent. In order to do this, we calculate the matrix of the map
(o}, dz)) — (dyf), dg}))

and show that its determinant is nonzero even when the variables are specialized to

=ls] _ -1
= 0;Cs) T = 0;cs, (2.60)
where ¢y, ..., ¢ are distinct nonzero complex numbers.

If i > j then under the specialization (2.60) we have
l —
dy(r) Z Her? et d:tl[-j-}
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forr=20,1,...,m, and

_(r) -1 -2 ) —2 [s]
dy;;’ =ci...q E cs e (e e 07 day;

for r =1,...,m. Similarly, for ¢ < j we have

!
_(r) 1 -1 2 2\ 718
dijy;’ = ¢ ... g cser(cl,...,cz,. - ¢p) dTy;

s=1

forr=20,1,...,m, and

dyzj = chel N .,c?)djgj]
for r = 1,...,m. Note that since z/)z = 1, we have dzl] = —(ng])_2 dz. Therefore,
setting e_; = O, for i = 7 we obtain

l — —_~

R chl (er(cl’z, T e I U MY (I o S ,cl’?)> dat?)
s=1

forr=20,1,...,m, and
dy” = ¢ Z (el e o R o B el_,,_l(cl_2,...,0;2,...,01_2)) dxgj]
forr=1,...,m.

It follows from Lemma 2.10 that in each of the three cases, the determinant of the [ x [
matrix is nonzero. This proves that the differentials dyi(;) and dng) are linearly independent

(excluding dyg-)) for i < j and dgji(;-)) for i > j), thus completing the proof. ]
The following corollary is immediate from the isomorphism (2.52).

Corollary 2.12. Let q be a nonzero complexr number. With the same order on the gen-
erators as in Theorem 2.11, the ordered monomials in the generators tg) and fi(f) form a

basis of the algebra Uq(g[N) over C. O

Note that the proof of the linear independence of the ordered monomials in U;(QT[N)
over C|z,27!] does not rely on the ordering used. Therefore, Theorem 2.11 holds in the
same form for any other ordering, provided that the corresponding weak form of the PBW
theorem holds; cf. Proposition 2.9. We will prove this weak form for another ordering
which is useful for the description of representations of Uq(gA[ N)-
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To each nonzero generator t ) and t ) of Ug(g[N) we now associate the triple of integers
(a—1,1,7). The generators will now be ordered in accordance with the lexicographical order
on the corresponding triples and we will also suppose that tgz) precedes fi((:)
(a —i,i,7) such that both generators are nonzero. We have the following version of the

PBW theorem.

for each triple

Corollary 2.13. Let q be a nonzero complex number. With the order on the generators

(r) 7

defined above, the ordered monomials in the generators t;;’ and t;;" form a basis of the

algebra Uq(g[N) over C.

Proof. As we pointed out above, the linear independence of the corresponding monomials in
the C|z, z7!]-algebra Ug(ﬁ[ ) will follow by the argument used in the proof of Theorem 2.11.
We only need to show that the ordered monomials span this algebra over C[z,z7!]. The
corollary will then follow from the isomorphism (2.52).

Arguing as in the proof of Proposition 2.9, we derive from the relation (2.42) that

i jb — linear combination of ¢t and tg?)tgf) (2.61)

bm

for some k,l, m,p. Swapping ¢ with j and a with b in (2.42) we also obtain

tl(g)tEb = linear combination of t;b)tﬁl) and tg”) ;a). (2.62)

Suppose now that a —i > b — j. If a — j # b — 4, then we use the formula (2.61) or (2.62)

depending on whether a —j <b—1ior b—i < a—j to write tgg)tﬁ.z) as a linear combination

of the ordered products of the generators. If a — j = b — 4, then either 7 < i or i < j; the

(1) 4(s)
t

equality ¢ = j is impossible due to the condition a — 4 > b — j. Again, the product ;,'t

is then written as a linear combination of the ordered products of the generators by (2.61)
or (2.62), respectively.

Further, suppose that a —7 =0 —j and ¢ > 7. Then a > b and b —7 < a — j so that
(2.62) provides an expression of tg)tﬁ) as a linear combination of the ordered products of
the generators.

The same arguments relying on (2.43) instead of (2.42) prove the corresponding state-
ment for the products of the generators fg).

Finally, relation (2.44) implies the following counterpart of (2.61):

tz(;")tgb) = linear combination of t;b)tz((?, f;;n)tgf) and tga)tz(b ). (2.63)

The corresponding counterpart of (2.62) is obtained from (2.47) and it has the form

t(r)t(b) = linear combination of t(b)tz((?, tg’)tj(;n) and tl(b")tga). (2.64)

(r)

The above argument can now be applied to the products ¢, t;f)) allowing one to write it as

a linear combination of the ordered products of the generators.
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Recalling that each of the generators t( " and t ) commutes with each of t;j) and fi(j)
for all » and s, we conclude by an easy induction that any monomial in U(gly) can be
written as a C[z, 27 !]-linear combination of the ordered products of the generators. ]

As with the quantized enveloping algebra, we need to introduce an extended quantum
affine algebra We denote by UeXt(g[N) the algebra over C With eountably many generators

r) and t” ), 1< < N and r > 0, together with t( andt “with 1 < < N, subject

to the defining relatlons (2.40), where the second set of relatlons is replaced Wlth

fori=1,..., N. We have the natural epimorphism
USXt(Q[N) — Ug(aly) (2.65)

whose kernel is the ideal of U;Xt(gA[N) generated by the central elements ¢\ 7" — 1 for
i=1,...,N. We also define the algebra U®*(gly) over C [z, 2~1] with the same generators
and relations, where ¢ should be replaced with z.

It is straightforward to conclude that the PBW theorem for the algebra U;Xt(é\[N) holds
in the same form as in Corollaries 2.12 and 2.13, except for allowing the generators tz(?)
and fi(io) to occur simultaneously in the monomials and their powers can now run over the
set of all integers.

Observe that given any tuple (¢1,...,¢y) of nonzero complex numbers, the mapping

tij(u) — ¢itij(u), tij(u) — ¢ tij(u), (2.66)

defines an automorphism of the algebra U;Xt(é\ (N)-

2.4 Twisted ¢-Yangians Y/ (oy) and Y| (sps,)

The twisted q-Yangians Y, (on) and Y/ (sp,,) associated with the orthogonal Lie algebra

oy and symplectic Lie algebra sp,, were introduced in [29]. By definition, Y (ox) is the

( )

subalgebra of U (g[N) generated by the coefficients s;.”, 7 > 0, of the series

sip(w) =3 sPuT, 1< j <N, (2.67)

where N
sij() = ) tia(w) Ga(u™). (2.68)

a=1
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In the symplectic case, we define Y| (sp,,) as the subalgebra of U;Xt(gAIZn) generated by the

(r)

coefficients s;;",7 > 0, of the series

sip(w) =Y siu, 1<ij<2n, (2.69)

where

SZJ _q ZtZQa 1 ]2a thZa j2a 1 71), (270)

and by the elements SE Z)-‘rl withi=1,3,...,2n — 1.

Remark 2.14. The twisted ¢-Yangian in the symplectic case was defined in [29] by the above
formulas as a subalgebra of the quantum affine algebra U, (gl,,,) without using its extension.
The generators of the corresponding algebra Yg‘” (sp,,,) satisfy some extra relations: for any

odd ¢

55931 i+l 32(?) - q2 55?31 i 55%1 qg- (2.71)

Moreover, the elements 35931 i1 ES ) —q 35931,1- sgf’;l are central in Y/ (spy,) and its quotient

by the relations (2.71) is isomorphic to Y;*(sps,,). O

Both in the orthogonal and symplectic cases, the twisted ¢-Yangians can be equiva-
lently defined as abstract algebras with quadratic defining relations. Namely, consider the
matrices S(u) = T(u) T(u™!)t and S(u) = T(u) GT(u™t)!, where the matrix G is defined
n (2.27). Then the matrix elements of S(u) are the formal series s;;(u) given by (2.68)

f of these series then satisty the relations

and (2.70), respectively. The coefficients
R(u,v) Si(u) R (u™,v) Sy(v) = Syp(v) R (u™,v) Sy (u) R(u,v), (2.72)
where the R-matrix R(u,v) is defined in (2.41) and

R"(u,v) = (u—wv ZEH(@EN—l—(q u— qu ZEZZQ@E“

7 (2.73)
@ = Qud Ei @B+ (7 —q)v Y B ® By

>j i<j
In terms of the generating series s;;(u) the relation (2.72) takes the form
iy — ¢°90) agjan(u, v) + (071 = @) (ud o + v0,;) Qian(u, )

by — q5“bv) ajiba(/Ua U) + (C] —q) (U5a<b + U5b<a> O‘jiab@? u)>

(q

o (2.74)

where

-6

avjan(tt,v) = (7% = " uv) sia(u) s56(0) + (07" = 4) (60 + uvd,cy) 515(u) s0p(0)-
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All coefficients 52(;) of the matrix elements 5;;(u) of the matrices

S(u) = T(u) T(ut) and S(u) =T(u)GT(u™)! (2.75)

belong to the subalgebras Y;(on) C Uq(gT[N) and Y (spy,) C U;Xt(g/;\[Qn), respectively.
Moreover, the relations between the elements sg) and 55;) can be derived from those of the
algebras U, (gly) and qu"“(alzn). They take the form

R(u,v) S1(u) R"(u™,v) So(v) = Sa(v) R (u™t,v) S1(u) R(u,v),
R(u,v) Sy(u) R"(u™",v) Sa(v) = So(v) R (v, v) Sy (u) R(u,v), (2.76)
R(u,v) S1(u) R (u™,v) Sa(v) = Sa(v) R (u™,v) S1(u) R(u,v).

The proof of the equivalence of the two definitions of the twisted ¢-Yangians is based on
analogues of the PBW theorem whose proofs were outlined in [29]. They use a specialization
argument based on the fact the twisted ¢-Yangians are deformations of universal enveloping
algebras. Here we give a different proof relying on Theorem 2.11.

In the orthogonal case we consider the( §ame total order on the set of generators of

Y, (on) as in [29]; we order the generators s;,” in accordance with the lexicographical order
on the corresponding triples (i, a,r).
In the symplectic case use the function ¢ : {1,2,...,2n} — {£1,£3,...,£(2n — 1)}

defined in (2.33) and order the generators sgz) of Y/ (spy,) in accordance with the lexico-

graphical order on the corresponding triples (s(i) + ¢(a),<(7),r). Since for any odd i the
generators 552L1 and sgf?;f commute, it is unambiguous to associate each of them to the
same triple (0,7,0).

By the definition (2.68) we have
SZ(;)) =0 for i<y and 35?) =1 forall i (2.77)
in the orthogonal case. Similarly, by (2.70) in the symplectic case we have
s =0 for i<j unless j=i+1 with i odd. (2.78)
Consequently, the generators (2.77) and (2.78) will not occur in the ordered monomials.

Proposition 2.15. Let q be a nonzero complex number. With the orders on the generators
chosen as above, the ordered monomials in the generators form a basis of the respective
algebra Y, (on) and Y| (spy,).

Proof. The weak form of the PBW theorem was proved in [29, Lemma 3.2] for the or-
der used in the orthogonal case. The proof for the order we chose in the symplectic case
is obtained by obvious modifications of the same arguments; cf. the proof of Proposi-
tion 2.6. Thus, in both cases the ordered monomials span the algebra Y| (on) or Y (sps,),
respectively.
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Furthermore, by Theorem 2.11, we have the isomorphism
Uz(é\[N) Q¢ [2,271] C= 73N7 (279)

where the C[Z z7Y-module C is defined via the evaluation of the Laurent polynomials at

z=1and PN is the algebra of polynomials in the variables ;Ef ), Ej) with 1 <i4,7 < N and
O = ’(0) =0 for 2 < j and m(o) (0 =1 for all .

Define the algebra YO(ON) over (C[z, 27! as the C|z, 2 1]—subalgebra of UZ(QT[N) gener-

ated by the elements s ) defined in (2.67) and (2.68). Suppose that a nontrivial C|z, z7!]-

linear combination of the ordered monomials in the generators of Y{(oy) is zero. By

> 0 subject to the relations z;;

Theorem 2.11 we may suppose that at least one coefficient of the combination does not
vanish at z = 1. Using the isomorphism (2.79) we then get a nontrivial C-linear combina-
tion of the ordered monomials in the images of the generators in the polynomial algebra
Py. We will come to a contradiction if we show that the images of the generators of Y (on)
in 73N are algebraically independent

Let a ) denote the image of s in 73N. Then

_ i S oz

a=1 k+l=r
It suffices to verify that the differentials dag) are linearly independent. Calculate the
differentials in terms of dxl(s) and dfgs) and specialize the coefficient matrix by setting

v

Then
do'?) = d:f;:) + dxl(-;)

ij
which implies that the differentials dag) are linearly independent even under the special-
ization (2.80). This completes the proof in the orthogonal case.

In the symplectic case define the algebra Yo(spgn) over C[z,271] as the C[z,27']-
subalgebra of UeXt(g[2n) generated by the elements 3 ) defined by (2.69) and (2.70) with
q replaced by z and with the same additional generators sf%l Suppose that a nontriv-
ial C[z, 27 !]-linear combination of the ordered monomials in the generators of Y¢(sp,,) is

zero. We may ignore the generators 552);11 because they can be excluded from the linear

combination by multiplying it by appropriate powers of the elements sg’%l and using the

following consequence of (2.74) (with ¢ replaced by z):
s\ s(u) = 20a ot () s, i=1,3,...,2n — 1. (2.81)
By the PBW theorem for the algebra Uext(gtgn) (see Sec. 2.3) we have the isomorphism

U (gly,) @cs1 C =2 P, (2.82)
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where the C[z z~!-module C is defined via the evaluation of the Laurent polynomials at

z =1 and PeXt is the algebra of polynomlals in the variables x( ), l(;) with 1 <2, < N

and r > 0 together with a:( =1 and 171'1' ~! subject to the relations xg ) = (0)

and

=0fori<j

N

for all 7. As in the orthogonal case, it suffices to verify that the images a ) of the generators

(T in Pe"t are algebraically independent. Calculating the differentials and specializing the
varlables as in (2.80), we get

dxj i1 T dx” 1 it 4 isodd, j is even,
dag) _ dx] i1 d:L‘Z(rj+1 if i isodd, j isodd,
dxfz) L+ dz”) i if i iseven, j is even,
dxj I d:cﬁ’;H if 4 iseven, j isodd,
which shows that the differentials are linearly independent in this case as well. O

3 Representations of the quantum affine algebra

As in the Lie algebra representation theory, the representations of the quantum affine
algebra associated with sl, plays a key role in the description of the representations of the
quantum affine algebras U,(a); see [7], [8]. Finite-dimensional irreducible representations
of Uq(g[g) were classified in [7]. In our proofs below the case of the twisted ¢-Yangian
Y, (spy) will be similarly important for the general classification theorem. In order to
make our arguments clearer, we first reproduce a proof of the classification theorem for
the representations of U, (QT[Q) following an approach used for the Yangian representations
and which goes back to pioneering work of Tarasov [36, 37]. This approach is alternative
to [7] and it also allows one to obtain a description of the finite-dimensional irreducible
representations of U,( gAIQ) as tensor products of the evaluation modules. The corresponding
arguments were outlined in [28, Sec. 3.5].

Suppose that the complex number ¢ is nonzero and not a root of unity. A representation
L of Uq(g/]\[N) is called a highest weight representation if L is generated by a nonzero vector
¢ (the highest vector) such that

tij (U) C = O, tij (U) g =0 for N

ti(u) ¢ = vi(u) ¢, tii(u) ¢ = vi(u) ¢ for

1<
1

/N //\
//\ /\

J <
1< N,
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where v(u) = (v1(u),...,vn(u)) and v(u) = (71(u),...,oy(u)) are certain N-tuples of
formal power series in u~! and u, respectively:

vilw) =D vu m) =y (3.1)
r=0 r=0

We have Vi(o)ﬂi(o) = 1 for each i due to the second set of relations in (2.40).

Note that this definition corresponds to pseudo-highest weight representations of the
quantum loop algebras in the terminology of [8, Def. 12.2.4].

A standard argument shows that any finite-dimensional irreducible representation of
Uq(gA[N) is a highest weight representation; cf. [8, Prop. 12.2.3]. Furthermore, Corol-
lary 2.13 implies that given any formal series of the form (3.1) with I/i(o)ﬂi(o) =1 for all 4,
there exists a nontrivial Verma module M (v(u); 7(u)) which is defined as the quotient of
Uq(gT[N) by the left ideal generated by all coefficients of the series t;;(u), t;;(u) for i < j
and t;;(u) — v;(u), t;;(u) — 7;(u) for all 2. Moreover, M (v(u); 7(u)) has a unique irreducible
quotient L(v(u);v(u)). Therefore, in order to describe all finite-dimensional irreducible
representations of the algebra Uq(gA[N), we need to determine for which highest weights
(v(u); 7(u)) the representation L(v(u);(u)) is finite-dimensional. By considering ‘simple
root embeddings’ U, (5[2) — U, (5[ ~), the problem is largely reduced to the particular case
N =2.

3.1 Representations of Uq(glz)

Consider an arbitrary irreducible highest weight representation L (1/1 (u), va(u); vy (u), Dg(u))
of the algebra Uq(g/]\lz).

Proposition 3.1. Suppose that dim L(v1(u), va(u); 71 (u), 72(u)) < co. Then there exist
polynomials Q(u) and R(u) in u of the same degree such that the product of the constant
term and the leading coefficient of each polynomial is equal to 1, and

viu)  Qu) _ n(u)

vo(u)  R(u)  (u)’ (3:2)

where the first equality is understood in the sense that the ratio of polynomials has to be

1

expanded as a power series in u~ -, while for the second equality the same ratio has to be

expanded as a power series in u.

Proof. By twisting the representation L(vi(u), v5(u); 71 (u), 7o(u)) with an appropriate au-
tomorphism of the form (2.48), we may assume without loss of generality that vs(u) =
Up(u) = 1. Consider the vector subspace L of L(v(u),1;7(u), 1) spanned by all vectors
tgl)C, 1 > 0 and 272({){, 7 = 1. Since dim L < oo, the space L is spanned by the vectors tg?g

29



and 52({)( where 7 and j run over some ﬁnite sets of values. This implies that for sufficiently
large n and m any vector ¢, t21)<’ +dp, t C is a linear combination of the spanning vectors
)C and t21 (. Hence, there exist mtegers n = 0, m > 1 and complex numbers ¢;, d; such

that . .
Shatiic+ Y dtdc =0,
i=0 j=1

and ¢,,d,, # 0. Denote the linear combination which occurs on the left-hand side by &.
Then t( )5 =0 for all » > 1. On the other hand, by the defining relations (2.42) we have

(u — U) (t12(u) t21 (U) — t21 (U) tlg(u)) = (q — (]_1) v (tzg(u) tll(’U) — tzg(’l)) tll(u)) .

Now multiply both sides by

00
E:fkkl
uUu—v

k=1
and take the coefficients of u="v™* on both sides to get

T

r r — r— + + r—
) — ) 1) = (g —q ") Y (5 VT — 55 ).

p=1
Similarly, using (2.47) we get
(r) £(s) (8) 4(r) "R (r—p) 7(s—p) (s=p) 1(r—p)
tin Ly — 1ty tiy = (¢ — q_l) Z (tzg P =ty Uy )
p=1

Since t( )C = tz(;) ¢ =0 for r > 1, we find that

B C=(a—aHn™ ¢ R (=(-a )T =)
where s > 1 in the second relation and we assume l/£ °) Dis) = 0 for s < 0. Hence, taking

the coefficient of ¢ in th) & =0 we get

Zwlmuzd A0 Y — g

for all » > 1. This is equivalent to the relation

n

SO SRS s ):z 0 s
=0

=0

— Z dju_j (D{O) + -+ ij_l)uj_l).
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Now use the relations t(r)§ =0, r > 0. The defining relations (2.43) give

(u —v) (fra(u) o1 (v) = t21(v) 12(w)) = (¢ — ¢71) v (F22(w) f12(v) — Foa(v) 11 (w)).

Divide both sides by u© — v and use the expansion

__E U,k —k‘
u—v

Comparing the coefficients of v"v* on both sides we get

T

DR B0 = (-7 S (ST — i £,

p=0
Similarly, using (2.44) we get
(r) 4(s) _ 4(s) z(r) _ "R (s=p) 7(r—p) (r—p) 4(s—p)
by tay =ty by = (¢ —q~ ) Z (tzzptﬁp_tzgptlslp)’
p=0

Hence,
W) (= = r G P (= (- g ) =)

where s > 1 in the first relation. Taking the coefficient of ¢ in ¢; )f =0 we get

n

m
—(r— z r—l—
>l “L A
i=0 j=1

for all » > 0. This is equivalent to the relation

i=0

where the polynomials Q(u) and R(u) have the required properties.
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Write decompositions

Qu) = (ayu+art) .. (qu+ oy ),
R(u) = (Byu+ 67" ... (Byu+ By,

where o; and [3; are nonzero complex numbers. By twisting the finite-dimensional represen-
tation L(I/l (), va(u); vy (u), Dg(u)) by an appropriate automorphism of the form (2.48), we
can get another finite-dimensional representation such that the components of the highest
weight have the form:

(3.3)

For any pair of nonzero complex numbers a and (3 consider the corresponding irreducible
highest weight representation L(«, ) of U,(gl,). That is, L(c, 3) is generated by a nonzero
vector ¢ such that

t12¢ =0, t11 ¢ = g, b2 ¢ = B¢.
The representation L(«, 3) is finite-dimensional if and only if o/ = £¢™ for some nonneg-
ative integer m. We make L(c, ) into a module over the quantum affine algebra U,(gl,)
via the evaluation homomorphism U,(gl,) — U,(gl,) given by the formulas (2.56). This
evaluation module is a highest weight representation of U,(gl,) with the highest weight

(a +aoatut g+ aut a7 Bu+ ﬁ_l).
The comultiplication map (2.54) allows us to regard the tensor product

L(o, 1) @ L(awg, B2) @ ... @ Ly, Br) (3.4)

~

as a representation of U,(gl,). Moreover, it follows easily from (2.54) that the cyclic span
Uq(gTIQ)(Q ®...® () is a highest weight representation of Uq(QT[Q) with the highest weight
given by the formulas (3.3); here ¢; denotes the highest vector of L(«q;, 3;). Our next goal
is to show that under some additional conditions on the parameters «; and 3; the tensor
product module (3.4) is irreducible and, hence, isomorphic to L(v(u), va(u); 7y (u), a(u)).
Namely, we will suppose that for every ¢ = 1,...,k — 1 the following condition holds: if
the multiset {o,./0s | © < r,s < k} contains numbers of the form +¢™ with nonnegative
integers m, then «;/3; = +£¢™° and my is minimal amongst these nonnegative integers.
The following proposition goes back to [37].

Proposition 3.2. If the above condition on the parameters «; and [3; holds, then the
representation (3.4) of U,(gly) is irreducible.
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Proof. We follow the corresponding argument used in the Yangian case; see e.g. [28,
Prop. 3.3.2]. Denote the representation (3.4) by L. We start by proving the following
claim: any vector € L satisfying ¢15(u)€ = 0 is proportional to ( = (1 ® ... ® (. We use
the induction on k. The claim is obvious for k = 1 so suppose that k£ > 2. Write any such
vector &, which is assumed to be nonzero, in the form

§ = Z(tm)rﬁl ® &, where & € L(ag,32) ® ... ® L(oy, Bk)
r=0

and p is some nonnegative integer. Moreover, if oy /3; = +¢™ for some nonnegative integer
m, then we will assume that p < m. We will also assume that &, # 0. Using the coproduct
formulas (2.54), we get

p

Z (tll(u)(tﬂ)rgl ® tig(u) &, + tia(u)(ta1) 1 @ tzz(“)@) =0. (3.5)
r=0
By (2.56), we obtain
tra () (t21)"C1 = (t1 + faw” ) (1) G = (¢ "oy + ¢ oy ™) (t21) "¢, (3.6)

and

tio(u)(t) ¢ = u Mo (t) G =u " (¢ —q7") (qr_lﬁl/al - q_r+1041/51)(t21)T_1C1- (3.7)

Taking the coefficient of (t91)P(; in (3.5) we get t12(u)§, = 0. By the induction hypothesis,
applied to the representation L(az, 52)®...® L(ay, Bi), the vector &, must be proportional
to (o ® ... ® (x. Therefore, using again (2.54) and (2.56), we obtain

taa(u)&p = (By + Bylu™t) (B + ﬁk_lu_l) &p- (3.8)

The proof of the claim will be completed if show that p = 0. Suppose on the contrary that
p = 1. Then taking the coefficient of (t5;)P~1¢; in (3.5) we derive

(q_p+1a1 + qp_lozl_lu_l) ta(u)&py
+u (" — g ") (P B on — P o/ Br) taa(u) & = 0.

1 2

Note that t12(u),—1 is a polynomial in u~'. Taking u = —¢**~?a;* and using (3.8) we

obtain the relation

(72 = (/B (@2 — a1/ B2)?) .. (77 = (n/B)?) =0,

where we also used the assumption that ¢ is not a root of unity. However, this is impossible
due to the conditions on the parameters a; and ;. Thus, p must be zero and the claim
follows.
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Now suppose that M is a nonzero submodule of L. Then M must contain a nonzero
vector £ such that ¢15(u){ = 0. This can be seen by considering U, (gl,)-weights of M.
If n € M is a vector of weight (1, p2), i.e., t11m = pin and teen = ugn, then t15(u)n has
weight (qu1,q 'u2). So it suffices to observe that the set of U,(gl,)-weights of L has a
maximal element with respect to the natural ordering on the set of weights.

Due to the claim proved above, the highest vector ¢ belongs to M. It remains to show
that the vector ( is cyclic in L, that is, the submodule K = Uq(gTIQ)C coincides with L.

Note that all U,(gl,)-weight spaces of L are finite-dimensional. Denote by L* the
restricted dual vector space to L which is the direct sum of the dual vector spaces to the
U, (gly)-weight spaces of L. We equip L* with the Uq(gA [,)-module structure defined by

(yw)(m) =w(e(y)n) for yeUygl) and wel’ nel,  (39)
where ¢ is the involutive anti-automorphism of the algebra Uq(gA[2), defined by
. t”(u) — 7573_1-73_j(u_1), EZJ(U) — t3_i73_j(u_1). (310)

The latter is the composition of the automorphism (2.49) and the anti-automorphism
(2.51). The anti-automorphism s commutes with the comultiplication A in the sense that

Ao = (x®x)oA.
This implies the isomorphism of Uq(g/g\[Q)—modules:
L= LB o) @ 0 LB o). (3.11)

Moreover, the highest vector ¢} of the module L(8; ', a; ') = L(ay, 3;)* can be identified
with the element of L(a;, 3;)* such that (f(¢;) = 1 and ((n;) = 0 for all Uy(gl,)-weight
vectors 1; € L(ay, 3;) whose weights are different from the weight of (.

Now suppose on the contrary that the submodule K = U,(gl,)¢ of L is proper. The
annihilator of K defined by

AmK={wel" |wn) =0 forall ne K} (3.12)

is a submodule of the Uq(gT[Q)—module L*, which does not contain the vector (f ® ... ® (.
However, this contradicts the claim verified in the first part of the proof, because the
condition on the parameters o; and (3; remain satisfied after we replace each «; by 3, Land

each 3; by a; *. O

We can now describe the finite-dimensional irreducible representations of the algebra
Uy(gly).
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Theorem 3.3. The irreducible highest weight representation L(v(u), va(u); o1 (u), Ua(u))
of Uq(é\[?) is finite-dimensional if and only if there exists a polynomial P(u) in u with
constant term 1 such that
ervi(u) _ —degP Plug®) _eiti(u)
eavn(u) P(u)  eyin(u)

(3.13)

for some €1,e9 € {—1,1}. In this case P(u) is unique.

Proof. Suppose that the representation L (v (u),va(w); 71(u), 7s(u)) is finite-dimensional.
As was shown above, we may assume without loss of generality that the components of
the highest weight have the form (3.3). Moreover, we may re-enumerate the parameters
a; and (; to satisfy the conditions of Proposition 3.2. By that proposition, the representa-
tion L(v1(u), va(u); 1 (u), 72(u)) is isomorphic to the tensor product (3.4). Therefore, all
ratios «;/; must have the form 4¢™i, where each m; is a nonnegative integer. Then the

polynomial
k

P(u) = [[(1+ B u)(1 + B q°u) ... (1+ B7¢*™ 2 u) (3.14)
i=1
satisfies (3.13) with an appropriate choice of the signs €1,e9 € {—1, 1}.
Conversely, suppose (3.13) holds for a polynomial P(u) = (1 +yu)... (1 + yu) and
some €1,¢€9 € {—1,1}. Choose square roots 3; so that 57 =; fori =1,...,p and set

pa(w) = (Brg+ e ) (B + B g e,
po(u) = (By + Briuh) (B, + B uh,

fin(u) = (Byqu+ Brlq ") . (Byau+ B, a7,
fia(w) = (Byu+BrY) .. (Bu+ 5,1

Consider the tensor product module

L(Byq,8,) ® L(Byq, B) ® ... & L(ﬁan ﬁp)

of Uq(;/;\[Q). This module is finite-dimensional and the cyclic Uq(gAlg)—span of the ten-
sor product of the highest vectors of L(f;q, ;) is a highest weight module with the
highest weight (p1(w), po(u); fir(u), fiz(w)). Hence, the irreducible highest weight module
L(py(w), po(u); ir (u), fia(u)) is finite-dimensional. Since

pi(u)  e1n(u) fia(u)  e1in(u)

po(u) ez va(u)’ fia(u) &2 (u)

) and (2.50) such that their compo-
sition with the representation L(uq(u), po(u); fig(w), fia(u)) is isomorphic to the irreducible
highest weight representation L (v (u), vo(u); 71 (u), VQ(U)). Thus, the latter is also finite-
dimensional.

there exist automorphisms of U (9[2) of the form (2.48

The uniqueness of P(u) is easily verified. ]
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The above arguments imply that, up to twisting with an automorphism of the form
(2.48), every finite-dimensional irreducible representation of Uq(gTIQ) is isomorphic to a
tensor product representation of the form (3.4). We will now establish a criterion of
irreducibility of such representations which we will use in Sec. 4.2 below. It is essentially
a version of the well-known results; see [8, Ch. 12], [37].

We will define a ¢-string to be any subset of C of the form {3, 3¢, ..., 3¢"}, where 3 # 0
and p is a nonnegative integer. Since ¢ is not a root of unity, the ¢-strings {f3, 8¢, ..., 3¢’}
and {—03, —fq,...,—(¢"} have no common elements. Their union will be called a g-spiral.
Two g¢-spirals S7 and Sy are in general position if either

(i) S1U Sy is not a g-spiral; or
(11) Sl C SQ, or SQ C Sl-

Given a pair of nonzero complex numbers (a, ) with o/ = +¢™ and m € Z, the
corresponding g-spiral is defined as

Sq<aaﬁ) = {ﬁaﬁQ7 LR ,ﬁqul} U {_ﬁa _/Bqa R _ﬁqul}.

If o = 3, then the set S,(a, ) is regarded to be empty. Note that changing sign of o or 3
does not affect the ¢-spiral.

Denote by L the tensor product (3.4), where for all ratios we have «;/83; = +¢™ for
some nonnegative integers m;.

Corollary 3.4. The representation L of Uq(é\[2) 1s wrreducible if and only if the q-spirals
Sq(a1, B1), - .., Sylaw, Bx) are pairwise in general position.

Proof. Suppose that the g¢-spirals are pairwise in general position and assume first that
the nonnegative integers m; satisfy the inequalities my < --- < my. This implies that the
condition of Proposition 3.2 on the parameters a; and [; holds. Indeed, if this is not the
case, then «,./3s = £¢P for some i < r, s < k and a nonnegative integer p with p < m;. By
our assumption, r # s. Suppose that » > s. Then m; < mg so we may assume that s = i.
The condition o, = £0;¢” means that a, belongs to the ¢-spiral S,(c;,3;). Hence, the
g-spirals S,(ay, 5;) and S, (., 5,) are not in general position, a contradiction. The opposite
inequality r < s leads to a similar contradiction.

Thus, L is irreducible by Proposition 3.2. It is easy to verify (cf. [28, Prop. 3.2.10])
that any permutation of the tensor factors yields an isomorphic irreducible representation.

Conversely, let £ = 2 and let L(ay, 51) ® L(as, B2) be irreducible. Suppose that the
g-spirals S, (aq, f1) and S,(az, £2) are not in general position. Then the g-spirals S, (ay, §2)
andASq(ag,ﬂl) are in general position. Hence, the representation L(«q, 32) ® L(aw, (1) of
U,(gly) is irreducible due to the first part of the proof. Comparing the dimension of this
representation with the dimension of L(ay, 51) ® L(az, £2) we come to a contradiction.
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The case of general k > 3 is reduced to k = 2 by permuting the tensor factors in (3.4),
if necessary. Indeed, if L is irreducible, but a pair of g-spirals S,(«;, 8;) and S,(a;, 5;)
is not in general position, then we may assume that ¢ and j are adjacent. However, the
representation L(«;, 3;) ® L(«j, ;) of Uq(g[Q) is reducible as shown above. This implies
that L is reducible, a contradiction. O]

Remark 3.5. An isomorphism between the RTT-presentation of the algebra Uq(a[N) and
its new realization is provided in [11] by using the Gauss decomposition of the matrices
T(u) and T(u); cf. [5], [14]. Thus, Theorem 3.3 provides a description of finite-dimensional
irreducible representations of the algebras U, (QIQ) and Uq(sA[g) in terms of the new realiza-
tion via this isomorphism. This argument is alternative to [7] and it is straightforward to
apply this description to prove the classification theorem for finite-dimensional irreducible
representations of an arbitrary quantum affine algebra U, (a); cf. the A type case considered
below. O

3.2 Representations of Uq(g[N)

The evaluation homomorphism 7 : Uq(g [y) — U,(gly) defined in (2.56) allows us to regard
any U,(gly)-module as a Uq(gT[N)—module. In particular, we thus obtain the evaluation
modules L() over Uq(g[N); see Sec. 2.1.

As we pointed out in the beginning of Sec. 3, in order to describe all finite-dimensional
irreducible representations of the algebra Uq(g[N), we need to determine for which highest
weights (v(u); 7(u)) the representation L(v(u);7(u)) is finite-dimensional. These condi-
tions are provided by the following theorem which is essentially equivalent to [8, Theo-
rem 12.2.6].

Theorem 3.6. The irreducible highest weight representation L(v(u);v(u)) of Uq(gT[N) is
finite-dimensional if and only if there exist polynomials Py(u), ..., Pxy_1(u) in u, all with
constant term 1, such that

i Vl(u) _ —degP; . P1<U,q2) _ € DZ(U’)

Eit1 Vi1 (u) Pi(u)  civ1 Vi (u)

(3.15)

fori=1,...,N—1 and somee; € {—1,1}. The polynomials P;(u), ..., Pn_1(u) are deter-
mined uniquely while the tuple (e1,...,en) is determined uniquely, up to the simultaneous
change of sign of the g;.

Proof. Suppose that the representation L(v(u);7(u)) is finite-dimensional. Let us fix k €
{0,..., N — 2} and let Uq(gT[Z) act on L(v(u);7(u)) via the homomorphism Uq(§[2) —
Uq(gT[N) which sends t;;(u) and ¢;;(u) to tgiiptj(u) and try;p45(u), respectively, for any
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i,7 € {1,2}. The cyclic Uq(glg)—span of the highest vector of L(v(u);(u)) is a highest
weight representation of the algebra Uq(g/g\[Q) with the highest weight

(Va1 (w), Vo (0); Dpgr (w), Dga (1))

Its irreducible quotient is finite-dimensional, and so the required conditions follow from
Theorem 3.3.

Conversely, taking into account the automorphisms (2.48) and (2.50), it is enough to
show that given any set of polynomials Pj(u), ..., Py_1(u) in u with constant terms equal
to 1, there exists an irreducible finite-dimensional representation whose highest weight
satisfies (3.15). Such a representation can be constructed by using the following inductive
procedure. Consider the irreducible highest weight representation L(X) of U,(gly) with
the highest weight

A= (dg™,...,dq™"),

where d is a nonzero complex number and the integers m; satisfy my > --- > my. This
representation is finite-dimensional and we regard it as the evaluation module over Uq(g (y)
by using the homomorphism (2.56). By the first part of the proof we can associate a family
of polynomials Py(u),..., Py_1(u) to any finite-dimensional representation L(v(u);7(u)).
Let ¢ and £ be the highest vectors of the representations L(\) and L(v(u); 7(u)), respec-
tively, and equip L(\) ® L(v(u);v(u)) with the Uq(E[N)—module structure by using the
coproduct (2.54). It is easily verified that the cyclic span Uq(gT[N)(C ® &) is a highest
weight representation of Uq(gA[ ~) such that

ti(u)(C® &) = (dg™ +d ™ g™ u) vi(u) (C®E),

Li(w)(C®E&) = (d g™ +dq™u) (u) ().
Hence, the irreducible quotient of this representation corresponds to the family of polyno-
mials Q1(u)Py(u),...,Qn_1(u)Py_1(u), where

Qi(w) = (1 + @™+ u)(1 + d*¢®™+ 1 2u) ... (1 + d*¢*™2u), i=1,...,N—1

Starting from the trivial representation of Uq(gT[N) and choosing appropriate parameters
d and m; we will be able to produce a finite-dimensional highest weight representation
associated with an arbitrary family of polynomials Pj(u),..., Py_1(u) by iterating this
construction. The last statement of the theorem is easily verified. ]

The polynomials Pj(u),..., Py_1(u) introduced in Theorem 3.6 are called the Drin-
feld polynomials of the representation L(v(u);7(u)). Moreover, any finite-dimensional
irreducible representation of Uq(g/;\[N) is obtained from a representation L(v(u);7(u)) as-
sociated with the tuple (eq,...,ex) = (1,...,1) by twisting with an automorphism of the
form (2.50). Note also that the evaluation module L(u) with

mi

Hi =q i=1,...,N,
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where my > my > - -+ > my are arbitrary integers, is a representation associated with the
tuple (1,...,1). Its Drinfeld polynomials are given by

Py(u) = (1+ @™ u)(1+ @™+ 2u) (14 2™ 2u),

fore=1,...,N — 1.

A description of finite-dimensional irreducible representations of the extended algebra
U;Xt(g [y) can be easily obtained from that of the quantum affine algebra U, (é\ [y). Namely,
every finite-dimensional irreducible representation of U(‘;Xt( QT[ ) is isomorphic to the highest
weight representation L(v(u);v(u)). The latter is defined in the same way as for the
algebra Uq(gA[N) except that the relations v ¥ 7"

the condition that all constants VZ.(O) ) are nonzero. We have the following corollary
of Theorem 3.6.

= 1 for the series (3.1) are replaced by
and Di(o

Corollary 3.7. The irreducible highest weight representation L(v(u);v(u)) of the algebra

U;’Xt(g/]\[N) is finite-dimensional if and only if there exist polynomials Py(u), ..., Py_1(u) in
u, all with constant term 1, and nonzero constants ¢, ..., ¢n such that
0w caer, Bd) | 6imi(w) (3.16)
Git1 Vig1(u) Pi(u) Git1 Vig1(u)

fori=1,...,N —1. The polynomials Py(u),..., Py_1(u) are determined uniquely while
the tuple (¢1,...,¢nN) is determined uniquely, up to a common factor.

Proof. By twisting the representation L(V(u); D(u)) by an appropriate automorphism of
the algebra Ug*(gly) of the form (2.66), we can get the representation where all central
7(0)
t\

elements tg)) i, 1 =1,...,N, act as the identity operators. Therefore, due to (2.65),
we get the irreducible highest weight representation of the algebra U,(gly), such that the
components of the highest weight have the form ¢;v;(u) and ¢;7;(u). Now all statements

follow from Theorem 3.6. O]

4 Representations of the twisted g-Yangians

We will combine the approaches of Sec. 3 and [28, Ch. 4] to classify the finite-dimensional
irreducible representations of the twisted ¢-Yangians Y} (sp,,). As with the quantum affine
algebras, the case n = 1 will play a key role. We start by proving some general results
about highest weight representation of the twisted ¢-Yangians.

4.1 Highest weight representations

As we recalled in Sec. 2.4, the twisted ¢-Yangian Y| (sp,,) can be defined as the algebra

(r) (0)-1

generated by the elements s;;” with r > 0 and 1 < 7,7 < 2n and by the elements s; /\,
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with ¢ = 1,3,...,2n — 1. The defining relations are written in terms of the generating
series (2.69) and they take the form (2.74) together with the relations

32(;]):0 for i<j unless j=:i+1 with ¢ odd

and
35%1852);11 = sgg)Jr_ll sggll =1, i=1,3,...,2n— 1. (4.1)

Observe that given any formal series g(u) in u~! of the form

gw) =go+gu " +gu+..., g0 #0,
the mapping
sij(u) = g(u) sij(u) (4.2)
defines an automorphism of the algebra Y| (sp,,,).
Given any tuple (¢1, ..., 1s,) of nonzero complex numbers, the mapping
sij(u) = ¥i v si5(u) (4.3)

defines another automorphism of the algebra Y/ (sps,,).
Furthermore, the mapping

0 8i5(U) = Sop—ji12n—it1(U) (4.4)

defines an involutive anti-automorphism of the algebra Y| (spy,). This can be verified
directly from the defining relations. Alternatively, one can show that the mappings (2.49)
and (2.51) respectively define an automorphism and anti-automorphism of the extended
algebra U (gly,), and their composition s preserves the subalgebra Y (5pa,)

We will use the elements 52(;.) of the algebra Y| (sp,,) which are defined as the coefficients
of the power series §;;(u) in u; see (2.75). The relationship between the elements is given
by the formulas!

(u™'q —ug™")5i(u) =
(ug® —u g %) si(u™) + (¢ — ¢ ) (u iy + udjz) si(ut). (4.5)
For the rest of this section we will suppose that the complex number ¢ is nonzero and

not a root of unity. Recall the function ¢ : {1,2,...,2n} — {£1,£3,...,£(2n — 1)}
defined in (2.33).

!The corresponding relation (3.62) in [29] should be corrected by swapping d;<; and §;<;.
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Definition 4.1. A representation V' of the algebra Y| (sp,,) is called a highest weight
representation if V' is generated by a nonzero vector £ (the highest vector) such that

sp(u) € =0, for ¢(k)+<(l) >0,
Si2i—1(w) € = pi(u) &, for 1<i<n, (4.6)
52i2i-1(u) & = fii(u) &, for 1<i<n,

where p(u) = (uy(u), ..., puo(u)) and p(u) = (1 (u), ..., @,(u)) are certain n-tuples of
formal power series in u~! and u, respectively:

i) = ) = a0 (4.7)
r=0

r=0

Due to (4.5), the first relation in (4.6) is equivalent to
forj=1,3,....2n—1landi=1,2,...,7. ]

The definition of the highest weight representation is consistent with a particular choice
of the positive root system of type C,,. Namely, the root system ® is the subset of vectors
in R™ of the form

+2¢ with 1<i<n and ftete; with 1<i<j<n,

where g; denotes the n-tuple which has 1 on the i-th position and zeros elsewhere. Partition
this set into positive and negative roots ® = &+ U (—®™), where the set of positive roots
®T consists of the vectors

2¢; with 1<i<n and git+ej, —e+e with 1<i<j<n. (4.9)
We will regard Uy (sp,,,) as a subalgebra of Y/ (sp,,) defined via the embedding
Sij v 8- (4.10)

By (2.81) we have
T S S
Siie1 Sgu(w) = @O T L s () S5 (4.11)
for any ¢ = 1,3,...,2n — 1. Hence, the generating series sg(u) with ¢(k) +¢(1) > 0 can be
associated with the elements of ®* listed in (4.9) as follows:
2e; — S9i-12i-1(u), gi+¢ej > {S2-19j-1(1), S2j-12i-1(u)},
(4.12)
—ei + &5« {s2i2j-1(u), s2j-1.2i(u) }.

Here the commutative subalgebra of U (sp,,) generated by the elements s, ., with i =
1,3,...,2n — 1 plays the role of a Cartan subalgebra; cf. [27].
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Theorem 4.2. Any finite-dimensional irreducible representation V' of the algebra Y;(ﬁp%)
s a highest weight representation. Moreover, V' contains a unique, up to a constant factor,
highest vector.

Proof. We use a standard argument with some necessary modifications; cf. [8, Sec. 12.2]
and [28, Sec. 4.2]. Set

VO = {neV|siju)n=s5;u)n=0,

. 4 . (4.13)
ji=13,....,2n—1 and i=1,2,...,7}.

Equivalently, V? is spanned by the vectors annihilated by all operators s (u) such that
(k) 4+ <(l) > 0. Let us show that V? is nonzero. The operators s,;_; ,; = Sg(;)_l’% with
1 =1,...,n pairwise commute on V and so V contains a common eigenvector # for these
operators:

SQi_l,giézpiQ, 2:1,,71

By (4.11), every coefficient of the series sg(u) 6 with ¢(k) + ¢(I) > 0 is again a common
eigenvector for the operators s,; ; 5;, Whose eigenvalues have the form p; ¢®', i =1,...,n,
where o = a1+ - -+, &, is the element of @ associated with sy (u) by (4.12). Since the
sets of eigenvalues obtained in this way are distinct and dim V' < oo, we can conclude that
there exists a nonzero element of V annihilated by all operators sy (u) with ¢(k)+¢(1) > 0.
Thus, V° # {0}.

Next, we show that the subspace V' is invariant with respect to the action of all
operators spi1,(v) and Sp41,(v) with odd b. Let us show first that if n € V9, then for any
odd a and 7 < a we have

Sia(t) Spr1(v) 1 = 0. (4.14)

If i < b, then this follows by (2.74) with j = b+ 1. If i > b, then b+ 1 < i < a and
(4.14) follows by the application of (2.74), where i, j,a,b are respectively replaced with
b+ 1,i,b,a, and u is swapped with v.

Furthermore, three more relations of the form (4.14) where s;,(u) is replaced with §;,(u)
or Spr1,(v) is replaced with 8,11 ,(v), are verified by exactly the same argument with the
use of the corresponding relation in (2.76) instead of (2.72).

A similar argument shows that all operators sﬁfjm and Eéfl’a on the space V° with odd
a and r > 0 pairwise commute. Indeed, suppose that both a and b are odd and a < b. The
application of (2.74) with i = a+ 1 and j = b+ 1 proves that all operators S((L)_l’a pairwise
commute. The remaining commutativity relations are verified in the same way with the
use of (2.76).

Thus, the operators 8221,0« and 551)1,(1 on the space V° with odd a and r > 0 are simul-
taneously diagonalizable. We let £ be a simultaneous eigenvector for all these operators.

Then V' = Y, (spy,)¢ by the irreducibility of V, and & is a highest weight vector. By
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considering the Uj (sp,,)-weights of V' and using (4.11) we may also conclude that ¢ is
determined uniquely, up to a constant factor. O

Consider now the tuples p(u) = (u1(u), ..., pu,(u)) and g(u) = (fg1(w),. .., fiy(u)) of
arbitrary formal power series of the form (4.7).

The Verma module M (p1(u); fi(u)) over the twisted g-Yangian Y7 (sp,, ) is the quotient of
Y, (spy,) by the left ideal generated by all coefficients of the series sy (u) for ¢(k)+¢(1) > 0,
Soi2i—1(u) — pi(u) and Sg;9;—1(u) — f;(u) for i =1,... n.

Clearly, the Verma module M (u(u); fi(u)) is a highest weight representation of Y7 (sp,,,)
with the highest weight (u(u); fi(w)). Moreover, any highest weight representation with the
same highest weight is isomorphic to a quotient of M (u(u); fi(u)).

The Poincaré-Birkhoff-Witt theorem for the algebra Y/ (sp,,) (Proposition 2.15) im-
plies that the ordered monomials of the form

st st m 20, (i) +s(a) <0, (4.15)
form a basis of M (u(u); i(u)). Moreover, using (4.11) and considering the weights of
M (p(u); fi(u)) with respect to the operators s; ;11 with odd i, we derive that the Verma
module M (u(u); i(u)) possesses a unique maximal proper submodule K.

The irreducible highest weight representation V (ju(w); fi(w)) of Y/ (spy,) with the highest
weight (p(u); i(u)) is defined as the quotient of the Verma module M (pu(u); fi(u)) by the
submodule K.

Due to Theorem 4.2, all finite-dimensional irreducible representations of the twisted
g-Yangian Y| (sp,,) have the form V(u(u); fi(u)) for a certain highest weight (u(u); fi(u)).
Hence, in order to classify such representations it remains to describe the set of highest
weights (p(u); fi(u)) such that V(u(w); @(u)) is finite-dimensional. As with the quantum
affine algebra Uq(gT[N) (see Sec. 3), a key role will be played by the particular case Y} (sp,)
which we consider in the next section.

4.2 Representations of Y/ (sp,)

The irreducible highest weight representations V (u(u); fi(u)) of Y (sp,) are parameterized
by formal series of the form

p(u) = p©@ 4 p Wy 4 @y~ 4

4.16)
p(u) =0+ pOu+ g+ p0 p e, (

The highest vector £ of V' (u(u); i(u)) satisfies the conditions

s11(u) € =0, so1(u) & = p(u) &, So1(u) & = pu(u) €.
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Note that due to the relations (4.5), the vector £ is also an eigenvector for the operators
s12(u) and 512(u),

(¢ = ) p(u) + (1 —v’¢®) i(u™")

sip(u)§ =p'(u)g,  p(u) =

q(u? — 1) ’

) B (4.17)
_ . ) = @ = D) + (1 w?q?) pu)
512(”)5_/’6( )57 M( ) q(UQ_l) )

where p/(u) and ji’(u) are regarded as formal series in u~! and u, respectively.

Proposition 4.3. If the representation V (ju(u); ji(u)) of Y, (spy) is finite-dimensional, then
both coefficients ® and i® in (4.16) are nonzero.

Proof. The constant term g/ (®) of the series p/(u) is nonzero due to the relation (4.1). By
(4.17) we have ¢/ = —qa(® and so, i® # 0. Furthermore, consider the restriction of
V(pu(u); fi(u)) to the subalgebra U (spy) defined by the embedding (4.10). The cyclic span
U, (sp,) € of the highest vector is a finite-dimensional representation of the subalgebra with
the highest weight (p(©); 1/ (?)). However, as was pointed out in the proof of Proposition 2.7,
this implies that u(© % 0. O

The following is an analogue of Proposition 3.1 and its proof follows a similar approach.

Proposition 4.4. Suppose that dim V (u(u); i(u)) < co. Then there exists a polynomial
Q(u) in u of even degree with the constant term equal to 1 such that

pla) _ut Q) (4.18)

pu(u) Q(u)

Proof. By twisting the representation V(u(u);i(u)) with an automorphism of Y (sp)
of the form (4.2) we get a representation isomorphic to V(g(u)u(u); g(u™")i(u)). Since

1w © =£ 0, we may consider such an automorphism with
~1

g(u) = (1'(w) + ¢ 'u"?p(u))

Hence, we may assume without loss of generality that the highest weight of the represen-
tation V (u(u); i(u)) satisfies the condition u/(u) + ¢ u=2u(u) = 1.
As in the proof of Proposition 3.1, the assumption dim V' (u(u); fi(u)) < oo implies that

k
Z asde=0 (4.19)
1=0

for some k > 0 and some ¢; € C with ¢, # 0.
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On the other hand, the defining relations (2.74) imply
(u™ =o)L — w07 su(u) s22(v) €
= (g7 = o) (1w (1 () + g () (' (0) + ¢ 0 2u(w))
— 0 (W (0) + () (1 () + g 2u(w) )€

Taking into account the assumption p'(u) + ¢ 'u=?pu(u) = 1, we can write these relations

as
-1

(1 —w o) s (u) spa(v) € = (g7 —q) k pf_? :sz(v) £, (4.20)

where
plu) = ' (w) + q p(w).
Write

u) = Zp(r) (T (4.21)
r=0

Divide both sides of (4.20) by 1 — u~!'v~! and compare the coefficients of u~™v~'. This
gives
m) (I — ~(m
ST si &= (a7 —q) V¢,

where
min{m,l}

~(m,l) _ Z 10 (m—+1— 2z
(m

Hence, applying the operator 511 to the vector (4.19) and taking the coefficient of & we
get

k
> ap™h =0 (4.22)
=0

for all m > 0. Our next step is to demonstrate that this set of relations for the coefficients
of the series (4.21) implies that p(u) is the expansion of a rational function in u with the

property

p(u) = w’p(u™). (4.23)

To this end, introduce the coefficients d_j, d_xy1,...,dy by the formulas
i —d — Cr+ Cryo+ -+ if K —r is even, (4.24)

Cr+ Cryo+ -+ Cr1 if kK —ris odd,

where 7 = 0,1,...,k. For any m > k the relation (4.22) takes the form

k
ch (m—+1) m+l72) 44 p(mfl)) =0,
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which can written as
k

Z d, pmtm) = 0.

r=—

Therefore, we have

(dkuk +dpqufF T+ d_ku_k) p(u)
k
= Z (dkp(k_r) +dj1p® Y drp(o)) u". (4.25)
r=—*k+1

This shows that p(u) is a rational function in w. The property (4.23) is equivalent to the
relations

dep® ) 4 di oD e £ dop© = dep® g T )

for r =2,3,...,k+ 1, where we assume that p and d; with out-of-range indices are zero.
However, the relations are easily verified by using (4.24): after writing them in terms of
the coefficients ¢; they take the form of (4.22) with m =r — 2.

The argument is now completed by noting that the series p(u) and p/(u) are expressed
in terms of p(u) as

pluu™ — ¢*

w2 — q2

) = L5y -

Hence, using (4.17), we obtain

Au™) _ 1—u"?p(u)
() 1 —p(u)

(4.26)

Now write (4.25) as D(u)p(u) = F(u) so that F'(u) and D(u) are Laurent polynomials in
w with D(u™') = D(u). Moreover, u*F(u™!) = F(u) due to (4.23). Hence, (4.26) implies

i(u™!)  D(w) — u?F(u)

p(u) — D(u) - F(u)
Recalling that d, = d_j, = ¢, # 0 set

Q(u) = &' u* (D(u) = F(u)) = (1 — p@)u® + -+ 1.

The coefficient 1—p(?) is nonzero by (4.26) and Proposition 4.3. Hence Q(u) is a polynomial
in u of degree 2k with the constant term equal to 1 and Q(u) satisfies (4.18). O
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Proposition 4.4 implies that if dim V' (u(u); i(u)) < oo then there exist nonzero con-
stants 71, ..., Y2r such that

plu™)  (utm). . (ut e
ple) (L +mw) . (T4 yeeu)

(4.27)

Therefore, in order to determine which representations V' (u(u); fi(u)) are finite-dimensional,
we may restrict our attention to those whose highest weights satisfy (4.27). We now aim
to prove a tensor product decomposition for such representations analogous to Proposi-
tion 3.2; cf. [28, Prop. 4.3.2].

We will re-enumerate the numbers ~;, if necessary, so that for each : = 1,...,k the
following condition holds: if the multiset {v,7vs | 20 — 1 < r < s < 2k} contains numbers

2m

of the form ¢=2™ with nonnegative integers m, then 7y 172 = ¢~ 2™ and m, is minimal
amongst these nonnegative integers.
Assuming that the ~; satisfy these conditions, let us choose square roots «; and 3; so

that
0=l B i=12.k. (4.98)

Recall the evaluation modules L(«, 3) over the algebra Uq(§[2) defined in Sec. 3.1. Each
of them may also be regarded as a module over the extended algebra U;Xt(g[Q) via the
epimorphism (2.65) so that the elements tgl) tu and t(o t( ) act as the identity operators.

More generally, the tensor product

L(an, 8) ® ... ® Lo, Br) (4.29)

can be regarded as a representation of the algebra U;Xt(g[Q) and hence as a representation
over its subalgebra Y/ (spy). In other words, as far as the action of Y/ (sp,) on the space
(4.29) is concerned, the operators s;;(u) are related with the action of the generators of
the algebra Uq(é\[Q) by the formulas (2.70).

Proposition 4.5. If the above condition on the parameters ~y; holds, then there exists an
automorphism of the algebra Y, (sp,) of the form (4.2) such that its composition with the
representation V (u(u); fi(u)) is isomorphic to the representation (4.29) of Y (sp,).

Proof. Due to (2.70) the generators of Y (sp,) act on the tensor product module (4.29) by

the formulas
si(u) = qtu(u) fa(u™") = tia(u) fn(u™),
so1(u) = qtor(u) fra(u™") — tao(u) fra(u™?), (4.30)
5o1(u) = qlog(w) tio(u™) — tog(u) 1y (u™).
Consider the tensor product ( = (; ® ... ® (; of the highest vectors of the representations
L(a;, 5;). As we pointed out in Sec. 3.1, this vector generates a highest weight submodule
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of the tensor product module (4.29) over Uq(g[Q). Therefore, the formulas (3.3) and (4.30)
imply that
sll(u) C = 0,
k

so(w) ¢ == J(ei" +au™)(B + 87 ™) ¢,
=1
k

su(u™) ¢ =—[J(es + o7 u™)(B7 + Bu) C.

=1

(4.31)

Hence the ratio of the eigenvalues of 55 (u™1) and s (u) equals

ﬁ(ai—ka u (B + Buh) ﬁ (u+ oy (u+ﬁ2)):12—k[ U+

(07" +au (B + 7 ) iy (L oW (L4 BRu) iy

which coincides with (u™')/u(u) by (4.27). We may conclude that there exists an au-
tomorphism of the algebra Y/ (sp,) of the form (4.2) such that its composition with the
representation V' (p(u); i(w)) is isomorphic to the irreducible quotient of the cyclic span
Y, (sps) ¢. In order to complete the argument, we will now be proving that Y/ (sp,)-module
(4.29) is irreducible and so it coincides with the cyclic span of (.

Denote the representation (4.29) of Y/ (spy) by L. We first prove the following claim:
any vector £ € L satisfying s11(u)§ = 0 is proportional to (. We use the induction on k
and suppose that £ > 1. Write

=) (tn)' G ®&,  where & € L(az, ) ® ... @ L(a, Br)
r=0

and p is some nonnegative integer. Moreover, if oy /3; = +¢™ for some nonnegative integer
m, then we will assume that p < m. We will also assume that &, # 0. Using (2.70) and
the coproduct formulas (2.54), we get

s11( )((tm) G ® 5}) =t (w) 11 (") (ta1) ¢ @ 511 (w) &,
+ 11 (u) Fra(u™ ) (E21) G ® s12(u) €
+ tio(w) fra (0™ ) (E1)" G ® s01(u) &
+ta(w) fra(u™) (1) G ® s22(u) €

Now use relations (3.6) and (3.7) together with the following formulas which are implied
by (2.56):

t(u) (ta1) "G = (f1g + tu™ ) (t) ¢ = (quzl_l +q "oy u_l)(tm)rgh

and
fa(u™) (1) G = Fi2(t21) G = (¢ — ¢ ) (¢ B/ — e /Br) () T
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Taking the coefficient of (t21)P(; in the expansion of s1;(u)€ we get si1(u)é, = 0. By the
induction hypothesis, applied to the representation L(ag, 32) ® ... ® L(ag, Bk), the vector
&, must be proportional to (; ®...® ;. As we observed in Sec. 3.1, the cyclic Uq(gAlz)—span
of the vector &, is a highest weight representation of Uq(a [,) whose highest weight is found
by formulas (3.3). Hence, using (2.70), we find that

s91(u) &= v(u) ps 5o1(u) & = v(u) Eps s12(u) &= V/(U) &ps

where i
v(u) = — [ o5 + ) (8, + 57w ™),
i=2
k
p(u™t) =~ H(ai +oa; w67+ Buh,
i=2
and

(@° — Dv(u) + (1 —v’g®) p(u™)
q(u® —1) '
. To complete the proof of the claim, we need to

Vi(u) =

Note that these are polynomials in u~
show that p = 0. Suppose on the contrary that p > 1. Then taking the coefficient of

1

(t21)P~1¢; in the expansion of s1;(u)& we get
(@ o+ ¢y ™) (¢ rar + P agu ) s (u) g
+ (" =g )¢ B/ — g e /) (4.32)
X ((cfp“oz1 + qpflocflu’l) v (u) 4+ ut (qpozfl + quozlufl) V(U)) & =0.

By the definition of the action of the algebra Y| (sp,) on the vector space (4.29), the

1 Now we consider two cases. Suppose first

2p2 -2
Qy

expression $11(u)&,—1 is a polynomial in u~”
that the expression ¢Pa;' + ¢ Paju~! does not vanish at u = —q . Then putting

this value of u into (4.32) and recalling the notation (4.28) we get the relation

“are2) “242) Z .

(M2 — ) (s — g (e — g

However, this is impossible due to the conditions on the parameters 7;. Thus, in the case
under consideration, p must be zero.

Now suppose that the expression ¢?a; ! + ¢ Pa,u~" vanishes at u = —¢*~2a;? so that
7 =a;? =eq #*! for some e € {—1 1} In this case we may simplify (4.32) by canceling
the common factor ¢ P, 4+ ¢?"'a; 'u~'. Then setting u = —¢ ¢ we obtain

V(—eq)—q'v(—cq)=—(q+qg Hv(—-eq ) =0
which gives the relation
(’}/3 —6(])(’}/4 —5q) (’ygk —Sq) =0.
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Hence, 717, = ¢~ %2 for some j € {3,...,2k} which contradicts the condition of the ~;.
Thus, p must be zero is this case as well, and the claim is proved.

Suppose that M is a nonzero submodule of L. Then M must contain a nonzero vector
¢ such that s1;(u)€ = 0. By the claim proved above, £ is proportional to the highest vector
¢, and so ¢ belongs to M. It remains to show that the vector ( is cyclic in L, that is,
the submodule K = Y| (sp,)( coincides with L. We will do this by employing the dual
space L* introduced in the proof of Proposition 3.2. We equip L* with a Y;(spQ)—module
structure by using the anti-automorphism (4.4). Namely, we set

(yw)(n) =w(x(y)n) for yeYy(sp,) and wel”, nel. (4.33)

Since s is obtained as the restriction of the anti-automorphism (3.10), we conclude that
(3.11) is a Y{ (spy)-module isomorphism. Arguing as in the proof of Proposition 3.2, suppose
now that the submodule K = Y/ (sp,)( of L is proper. The annihilator

AmK ={wel"|wn) =0 forall ne K}

is a submodule of the Y} (spy)-module L*, which does not contain the vector (f ® ... ® (}.
However, this contradicts the claim verified in the first part of the proof, because the tensor
product in (3.11) is associated with the set of parameters obtained by swapping 72;_; and
~v9; for each @ = 1,..., k so that the condition on the parameters remain satisfied after this
swap. (]

Proposition 3.2 allows us to describe the finite-dimensional irreducible representations
of the algebra Y| (sp,).

Theorem 4.6. The irreducible highest weight representation V (pu(u); i(u)) of Y/ (spy) is
finite-dimensional if and only if there exists a polynomial P(u) in u of even degree with
constant term 1 such that v P(u=') = ¢~ 9P P(uq?®) and

puu) P(u)

) _ aer Plug’) (4.34)

In this case P(u) is unique.

Proof. Suppose that the representation V (u(u); fi(u)) is finite-dimensional. By Proposi-
tion 4.4 there exist constants 7; such that (4.27) holds. Re-enumerate these constants to
satisfy the assumptions of Proposition 4.5. This proposition implies that each represen-
tation L(ay, 3;) occurring in (4.29) is finite-dimensional. Therefore, all ratios «;/3; must
have the form +¢™, where each m; is a nonnegative integer. Then the polynomial

k

P(u) = [T+ B )1+ G q*u) .. (1 + 824 )
i=1
k
X H(l +a;%u)(1+a; 2 u) ... (14 a; 2 ¢*™ 2u)

=1
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has the property ude? P(u=1) = ¢~ 9" P(uq¢?) and satisfies (4.34).

Conversely, suppose (4.34) holds for a polynomial P(u) = (1 +yu)... (1 + y2,u) with
the property ud®e? P(u=1) = ¢~ 9" P(uq?). This property implies that the multiset of
parameters ; can be written in the form

syt = {an, . apar g2 ot g
Consider the irreducible highest weight representation L(vy(u),va(u); vy(u), a(u)) of the
algebra U,(gl,), where the components of the highest weight are given by
vi(u) = (ag+q u™h) L (agg + g u),
() = (o + ). (g + ),
7i(u) = (¢~ +agqu) ... (7" + aqu),
o(u) = (1 4+ oqu) ... (14 oyu).

By Theorem 3.3, the representation L(vy(u), va(u); 71 (u), 7o(u)) is finite-dimensional as

n(u)  _geq Qug®)  mi(u)

va(w) ~ " Qlu) ~ ()
with Q(u) = (14 aqu) ... (1 + agu). We will regard L(vy(u), vao(u); 71 (u), 72(u)) as a repre-
sentation of the extended algebra U™ ( gl [,) via the epimorphism (2.65). The formulas (4.30)
imply that the cyclic span Y[ (sp,) ¢ of the highest vector ¢ of L(vi(u), va(u); 71(u), 7a(u))

is a highest weight representation of Y/ (spy) with the highest weight (A(u); A(u)), where
Mu) = —vy(u) oy (u™h), Mu) = —vy(u) vy (u™).

Therefore, the irreducible highest weight representation V' (A(u); A(u)) is finite-dimensional
and

M) _ () 5 _ Qua) QM) _ g Plud)
Au)  m(w) n™)  Qu)Qu~'¢?) P(u) -
Due to (4.34) there exists an automorphism of the algebra Y/ (sp,) of the form (4.2) such

that the composition of the representation V (A(u); A(u)) with this automorphism is iso-

morphic to V (u(u); i(u)). Hence the latter is also finite-dimensional.
The uniqueness of P(u) is easily verified. O

In the following corollary we use the g-spirals introduced in Sec. 3.1. Denote by L the
tensor product (4.29), where for all i = 1,..., k we have «;/3; = £¢™ for some nonnegative
integers m,.

Corollary 4.7. The representation L of Y| (spy) is irreducible if and only if each pair of
the q-spirals

Sqlai, Bi),  Sqlay, B5) and Sq(ﬁi_lvai_l)a Sqlay, B5)

1s in general position for all 1 <i < j < k.
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Proof. Suppose that the condition on the g-spirals is satisfied. Then Corollary 3.4 implies
that L is irreducible as a representation of the algebra Uq(gT[Q). Moreover, as we pointed
out in the proof of that corollary, any permutation of the tensor factors in (4.29) yields
an isomorphic representation. Hence we may assume that the nonnegative integers m;
satisfy the inequalities m; < --- < my. Let us verify that in this case the condition of
Proposition 4.5 is satisfied. Indeed, if this is not the case, then ~,v, = ¢~% for some
2i — 1 < r < s < 2k and a nonnegative integer p such that p < m;. Suppose first that
r and s are both odd. Then we may assume that r = 2i — 1 and s = 2j — 1 for some
j >1i. By (4.28) we have vy, = ; * and Yoj—1 = ozj_2. Hence, a; = +a; P which means
that «; belong to the g-spiral S,(5; ! a;1). However, the condition m; < m; then implies
that the g-spirals S,(3; ", o; ') and S,(a, 3;) are not in general position. This contradicts
the assumptions of the proposition. The remaining cases, where r or s is even lead to
similar contradictions. Thus, Proposition 4.5 allows us to conclude that L is irreducible as
a representation of Y7 (sp,).

Conversely, suppose that the representation L of Yfl(spQ) is irreducible. Then L is
irreducible as a representation of Uq(gAlz). By Corollary 3.4 the g-spirals S,(c, 3;) and
Sq(ej, B;) are in general position for all i < j. Now fix an index ¢ € {1,...,k} and
consider the Y/ (sp,)-module L' obtained by replacement of the tensor factor L(ay, ;) by
L(B;*, a; ). We claim that L' is isomorphic to L. Indeed, the formulas (4.31) show that
the highest weight of the cyclic Y| (sp,)-span of the tensor product of the highest vectors of
the tensor factors occurring in L' is unchanged under the replacement a; +— 3, %, B; — a; *.
This implies that the module L is isomorphic to the irreducible quotient of this span. Since
dim L = dim L', the claim follows.

Thus, L' is irreducible as a Y| (sp,)-module and, hence, as a Uq(g[z)—module. By Corol-
lary 3.4, the g-spiral S,(8; ', a; ') is in general position with any g-spiral S,(«;, 3;) for
1 # 7. This gives the required condition on the g-spirals. ]

4.3 Classification theorem

We can now prove the classification theorem for finite-dimensional irreducible representa-
tions of the twisted ¢-Yangian Y| (sp,,) for arbitrary n > 1. By Theorem 4.2, all finite-
dimensional irreducible representations of the twisted g-Yangian Y{(sp,,) have the form
V(p(u); p(u)) for a certain highest weight (u(w); @(w)).

Theorem 4.8. The irreducible highest weight representation V (u(u); ii(w)) of the algebra

Y, (spo,) is finite-dimensional if and only if there exist polynomials Pi(u), ..., Py(u) in
u, all with constant term 1, where Py (u) is of even degree and satisfies uds™r Py(u~t) =
g% P (uq?), and nonzero constants ¢1, . .., ¢, such that
2 —
Gi1pti—1(u) _ q,degpi . Pi(uq?) _ ¢i—1lfi—1(u) (4.35)
di pi(u) Pi(u) i f1i(w)
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fori=2,...,n and
o (-1 2
/’Ll(u ) — q—degpl . P1<uq ) (436)
pi1(w) Pi(u)
The polynomials Py(u), ..., P,(u) are determined uniquely, while the tuple (¢1, ..., ¢n) is

determined uniquely, up to a common factor.

Proof. Suppose first that dim V' (u(u); fi(u)) < oo. Let J be the left ideal of Y/ (sp,,)
generated by all coefficients of the series s;;(u) with 4,5 = 1,3,...,2n — 1. Due to (4.5),
all coefficients of the series §;;(u) with 4,5 = 1,3,...,2n — 1 also belong to J. Consider
the subspace V7 of V(u(u); fi(u)) defined by

V7 ={neV(pu); i) | s;(u)n=0 forall i,j=1,3,...,2n—1}.

Note that the highest vector £ of V (u(u); ji(u)) belongs to V. The defining relations (2.74)
together with (2.76) imply that if the indices i,a, b are odd and j is even, then

Sia(u) 55(V),  sia(u)5p(v) € J.

Therefore the subspace V7 is stable under the action of the operators S2i24—1(u) and
S2i2a—1(u). Moreover, regarding the relations (2.74) and (2.76) modulo the left ideal .J, we
find that the mapping

tw(u) — 82i72a_1(u), tm(’u) — §2i,2a_1(u), i, a = 1, oy ny (437)

defines an action of the algebra U;Xt(gln) on the space V7. The cyclic span U(‘;Xt(é\[n)g
is a finite-dimensional highest weight representation of U;Xt(gA[n) with the highest weight
(u(w); i(w)). It follows from Corollary 3.7 that the highest weight satisfies the conditions
(4.35) for appropriate nonzero constants ¢;.

Furthermore, the twisted ¢-Yangian Y/ (sp,) act on V(u(w); fi(u)) via the homomor-
phism Y/ (spy) — Y} (sp,,) which sends s;;(u) to the series with the same name in Y[ (sp,, ).
The cyclic span Y/ (spy)¢ is a highest weight representation of Y (sp,) with the highest
weight (pq(u); i (u)). Its irreducible quotient is finite-dimensional, and so (4.36) follows
from Theorem 4.6.

In order to prove the converse statement, note that given two irreducible highest weight
representations V (u(u); i(u)) and V(A(u); A(u)) such that the components of the high-
est weights satisfy the conditions (4.35) and (4.36) with the same set of polynomials
Pi(u),...,P,(u), there exist automorphisms of the form (4.2) and (4.3) such that the
composition of the representation V (u(u); fi(w)) with these automorphisms is isomorphic to
V(A(w); AM(u)). Hence, it suffices to show that given any set of polynomials P, (u), ..., P,(u)
of the form described in the formulation of the theorem, there exists a finite-dimensional
representation V' (u(u); i(u)) whose highest weight satisfies (4.35) and (4.36) with ¢; = 1

23



for all i. We will use a result from [27, Sec. 6] concerning a particular irreducible highest
weight representation L(v) of the quantized enveloping algebra U,(gl,,); see Sec. 2.1 above
for the definition. The highest weight v has the form

V:<qn7"'7qh717"'71>7 rn)"'>7ﬁl>07

where the parameters r; are integers. The representation L(v) is finite-dimensional and
it admits a basis parameterized by the Gelfand—Tsetlin patterns associated with v. As in

[27] consider the pattern QY such that for each k = 1,2,...,n its row 2k — 1 counted from
the bottom is (7, 7%—1,...,71,0,...,0) with k£ — 1 zeros, while the row 2k from the bottom
is (rk; Th—1,-.-,71,0,...,0) with k zeros. Then the corresponding basis vector (o has the
properties

tijCao =0 ifj.' is even and-z' <.j7 (4.38)
tij Coo =0 if 7 is odd and @ > j.

We denote by L(dv) the composition of the representation L(v) with the automorphism
of U,(gly,) given in (2.8). We will consider L(dv) as an evaluation module over Uq(a[%)
by using the homomorphism (2.56).

Suppose now that V(u(u); fi(u)) is a finite-dimensional highest weight representation of
Y, (sps,) with the highest vector §. By the first part of the proof we can associate a fa/rflily
of polynomials P;(u),..., P,(u) to V(u(u); ii(u)). The coproduct structure on U, (gl,,)
given by (2.54) allows us to equip the vector space L(dv)® V (u(u); p(u)) with a structure
of a Y| (sp,,)-module so that for the action of the generators we have

sij(u)(n ® 0) = Ztm D@ su(u)0, neLdv), 0V(u(u);p(u). (4.39)

k=1

Let us verify that (o ® & is the highest vector of the Y/ (sp,,)-module Y/ (sp,,,)(Cqo ®§).
Take n = (0 and ¢ = £ in (4.39) and suppose that j is odd and i < j. Using (2.56) and
(4.38), we find that

ti(u™") (oo = u"tj (a0 =0

for j > 1. If I is even and j < [, then by (4.38)

tii(u™) o = tj Cqo = 0.

Hence, we may assume that [ = j 4+ 2p for a nonnegative integer p; in particular, [ is
odd. Then the index k in (4.39) may be assumed to be even as otherwise sy (u)& = 0.
Furthermore, if £ < i then k < j + 2p = [ so that si(u) £ = 0 in this case too. Therefore,
we may assume that £ > ¢. In this case we have

tzk(u) fjl(ufl) CQO = Uiliik (Ejl + Uilé‘jl tjl) CQO. (440)
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By the defining relations (2.6) we have
bty = q" tti — (¢ — ¢ 1) (Opey — 05c5) u -

Now, if k& < [ then sy (u)§ = 0. Otherwise, 0, — d;; # 0 only if j <. But in this case
J < kand t;;, (5o = 0. Thus, in all cases (4.40) is zero due to (4.38). A similar calculation
shows that 5;;(u)((qo ®&) = 0 for odd j and i < j. By (4.5) this proves s;;(u)((qo ®§) =0
if ¢(i) + <(j) > 0; see Definition 4.1.

Let us now calculate the eigenvalues of (o ® £ with respect to the operators sg; 2;—1(u)
and 3y;9;—1(u). The above arguments show that (4.39) with n = (0 and ¢ = £ simplifies
to

S2i2i-1(1)((qo ® &) = t2z‘,2z’(u)52i—1,2i—1(u_1) Cao ® Si0i—1(u) €
= (@4 a7 ) ([ ) )G @ 6).

Similarly,

S2i2i-1(1)((qo ® &) = EZi,Qz’(U)t%—l,%—l(u_l) Cao ® Sgi0i-1(u) €
= (a7 +du) (dg" +d ™ q7") fu(u)(Cao ® ).

The cyclic span Y, (sp,,)(Cno ® &) is finite-dimensional. By the above formulas, the irre-
ducible quotient of this representation of Y} (sp,,) corresponds to the family of polynomials

QI(U)P1<U>, s 7Qn<u)Pn(u)7 where
Qi(u) = (1 +d2¢ ¥iu)(14+d 3¢ 2 2u) ... (1 +d 2qg 217 2), i=2,...,m,

and
Ql(u) — (1 + dQU)(]_ _|_ d2q2u) o (1 + d2q27~1_2u)

x (1+d2q 2" u)(1+d2q " 2u) ... (1 +d 3¢ *u).

Thus, starting from the trivial representation V' (u(u); i(u)) and choosing appropriate pa-
rameters d and r; we will be able to produce a finite-dimensional highest weight repre-
sentation of Y} (sp,,) associated with an arbitrary family of polynomials P (u), ..., P,(u)
by iterating this construction; cf. the proof of Theorem 3.6. The last statement of the
theorem is easily verified. ]

We will call Pi(u),...,P,(u) the Drinfeld polynomials of the finite-dimensional repre-
sentation V (p(u); fi(u)).

We will now use Theorem 4.8 to describe finite-dimensional irreducible representations
of the quotient algebra Y{"(sp,,) of Y/ (spy,) by the relations (2.71); see Remark 2.14.
Every finite-dimensional irreducible representation of the algebra Y;*(sp,,) is isomorphic
to the highest weight representation V' (p(u); fi(w)) which is defined in the same way as for
the algebra Y7 (sp,,); see Definition 4.1. This time the constant terms of the series (4.7)

should satisfy the conditions ugo) [LEO) =1lfori=1,...,n.
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Corollary 4.9. The irreducible highest weight representation V (u(u); ii(w)) of the algebra
YV (spy,) is finite-dimensional if and only if there ewist polynomials Pi(u), ..., P,(u) in
u, all with constant term 1, where Py (u) is of even degree and satisfies uds™ Py(u~!) =
q e Py (uq?) such that

Cictflioi(U)  _geep Piuq?) g1 (u)
auw) L R@ T e )
fori=2,...,n and X )
i(u™) e ) Py(ug?)
ww TR (442

for some ¢; € {—1,1}. The polynomials Py(u), ..., P,(u) are determined uniquely, while
the tuple (e1,...,€,) is determined uniquely, up to a simultaneous change of sign.

Proof. Suppose that dim V' (u(u); fi(u)) < co. We argue as in the proof of Theorem 4.8.
The first part of that proof is now modified so that the mapping (4.37) defines an action
of the algebra Uq(g[n) on the corresponding space V7. The necessary conditions on the
components of the highest weight come from the application of Theorem 3.6.

Conversely, suppose that conditions (4.41) and (4.42) hold. Using the natural epimor-
phism Y/ (spy,) — YV(spy,) we may regard V(u(u);ji(u)) as a Y/ (spy,)-module. This
module is finite-dimensional by Theorem 4.8. [

We conclude with a discussion of a particular class of representations of the twisted ¢-
Yangians associated with the evaluation homomorphisms. By [29, Theorem 3.15] there
exists a homomorphism Y{"(spy,) — Up¥(spy,) which is identical on the subalgebra
Ul (spy,). The arguments used for the proof of that theorem apply to the algebra Y/ (sp,,,)
without any changes so that we have the homomorphism Y| (sp,,) — U/ (spy,) given by

S(u) — S+ qutS. (4.43)

It allows one to extend any representation of U/ (sp,,) to the twisted ¢-Yangian Y| (sp,,).
Consider the highest weight representations V' (yu; 1) defined in Sec. 2.2. The Y| (sp,,)-
modules V' (p; ') will be called the evaluation modules.

Suppose that this representation is finite-dimensional with the parameters p; as defined
in Proposition 2.7.

Proposition 4.10. The Drinfeld polynomials of the evaluation module V (u; ') over the
algebra Y, (sp,,,) are given by

Pi(u) = (1+qu)(1+¢’u)... 0+ ¢ )1+ ¢ )1+ g7 ). (14 ¢ u)

and
R(u) = (1 + q72p¢71u)(1 + q72pi+1u) o (1 + q72pi,1—3u)
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fori=2,...,n. The parameters ¢; are found by

¢i:,ui_1q_pi7 i=1...,n.

Proof. The highest vector of the representation V(u;u') of Uj(spy,) is also the highest
vector of the evaluation module over Y (sp,,). The claims are now verified by calculating
the highest weight of the Y/ (sp,,,)-module V' (y; p') with the use of (4.43) and the formulas
relating the matrix elements of the matrices S and S; cf. [29, (2.52)]. The components of
the highest weight are found by

_1+qu

-1,/ — / .
i\U) = Ky — Uy, i(u) = upl; — ), 1=1,...,n.
pi(u) = p It fii(u) u+q(u ;)

Together with (4.35) and (4.36) this implies all the statements. O

As we pointed out in the proof of Proposition 2.7, if the highest weight (u; i) satisfies
the additional conditions p; p; = —q for i = 1,...,n, then V(u; ') can be regarded as a
representation of the quotient algebra Y;¥(sp,,). In this case we have p; = ;¢ for all i
and some ¢; € {—1,1}. The corresponding evaluation module over Y;¥(sp,,,) has the same
Drinfeld polynomials as given in Proposition 4.10, while ¢; = ¢; for all .
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