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1 Introduction and results

Let X1, X2, ..., Xn be a simple random sample drawn without replacement from a £nite popu-

lation {a}N = {a1, · · · , aN}, where n < N . Denote µ = EX1, σ
2 = var(X1),

Sn =
n
∑

k=1

Xk, p = n/N, q = 1− p, ω2N = Npq.

Under appropriate conditions, the £nite central limit theorem [see Erdös and Rényi (1959)]

states that P
(

Sn−nµ ≥ xσωN
)

may be approximated by 1−Φ(x), where Φ(x) is the distribution

function of a standard normal variate. The absolute error of this normal approximation, via

Berry-Esseen bounds and Edgeworth expansions, has been widely investigated in the literature.

We only refer to Bikelis (1969) and Höglund (1978) for the rates in the Erdös and Rényi central

limit theorem; Robinson (1978), Bickel and van Zwet (1978), Babu and Bai (1996) as well

as Bloznelis (2000a, b) for the Edgeworth expansions. Extensions to U -statistics and, more
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generally, symmetric statistics can be found in Nandi and Sen (1963), Zhao and Chen (1987,

1990), Kokic and Weber (1990) as well as Bloznelis and Götze (2000, 2001).

In this paper we shall be concerned with the relative error of P
(

Sn−nµ ≥ xσωN
)

to

1 − Φ(x). In this direction, Robinson (1977) derived a large deviation result that is similar to

the type for sums of independent random variables in Petrov (1975, Chapter VIII). However,

to make the main results in Robinson (1977) applicable, it essentially requires the assumption

that 0 < p1 ≤ p ≤ p2 < 1. This kind of condition not only takes away a major dif£culty in

proving large deviation results but also limits its potential applications. The aim of this paper

is to establish a Cramér-type large deviation for samples from a £nite population under weak

conditions. In a reasonably wide range for x, we show that the relative error of P
(

Sn−nµ ≥
xσωN

)

to 1−Φ(x) is only related to E|X1− µ|3/σ3 with an absolute constant. We also obtain

a similar result for the so-called £nite population Student t-statistic de£ned by

tn =
√
n(X̄ − µ)/(σ̂

√
q),

where X̄ = Sn/n and σ̂2 =
∑n

j=1(Xj − X̄)2/(n − 1). It is interesting to note that the re-

sults for both £nite population standardized mean and Student t-statistic are comparable to the

so-called self-nomalized large deviation for independent random variables, which has been re-

cently developed by Jing, Shao and Wang (2003). Indeed, Theorems 1.1 and 1.3 below can

be considered as analogous to Theorem 2.1 by Jing, Shao and Wang (2003) in the independent

case. The Berry-Esseen bounds and Edgeworth expansions for the Student t-statistic have been

investigated in Babu and Singh (1985), Rao and Zhao (1994) and Bloznelis (1999, 2003).

We now state our main £ndings.

Theorem 1.1. There is an absolute constant A > 0 such that

exp
{

− A(1 + x)3β3N/ωN
}

≤ P
(

Sn−nµ ≥ xσωN
)

1− Φ(x)
≤ exp

{

A(1 + x)3β3N/ωN
}

, (1)

for 0 ≤ x ≤ (1/A)ωNσ/maxk |ak − µ|, where β3N = σ−3E|X1 − µ|3.

The following result is a direct consequence of Theorem 1.1, and provides a Cramér-type

large deviation result for samples from a £nite population.

Theorem 1.2. There exists an absolute constant A > 0 such that

P
(

Sn−nµ ≥ xσωN
)

1− Φ(x)
= 1 +O(1)(1 + x)3β3N/ωN , (2)
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and

P
(

Sn−nµ ≤ −xσωN
)

Φ(−x) = 1 +O(1)(1 + x)3β3N/ωN , (3)

for 0 ≤ x ≤ (1/A) min
{

ωNσ/maxk |ak − µ|, (ωN/β3N )1/3
}

, where O(1) is bounded by an

absolute constant. In particular, if ωN/β3N →∞, then, for any 0 < ηN → 0,

P
(

Sn−nµ ≥ xσωN
)

1− Φ(x)
→ 1,

P
(

Sn−nµ ≤ −xσωN
)

Φ(−x) → 1, (4)

uniformly in 0 ≤ x ≤ ηN min
{

ωNσ/maxk |ak − µ|, (ωN/β3N )1/3
}

.

Results (2) and (3) are useful because they provide not only the relative error but also a

Berry-Esseen rate of convergence. Indeed, by the fact that 1 − Φ(x) ≤ 2e−x
2/2/(1 + x) for

x ≥ 0, we may obtain

∣

∣P
(

Sn−nµ ≤ xσωN
)

− Φ(x)
∣

∣ ≤ A(1 + |x|)2e−x2/2β3N/ωN ,

for |x| ≤ (1/A)min
{

ωNσ/maxk |ak − µ|, (ωN/β3N)1/3
}

. This provides an exponential non-

uniform Berry-Esseen bound for samples from a £nite population.

Remark 1.1. We do not have any restriction on the {a}N in Theorems 1.1 and 1.2. Indeed, for

any {a}N ,

µ =
1

N

N
∑

k=1

ak, σ2 =
1

N

N
∑

k=1

(ak − µ)2, E|X1 − µ|3 = 1

N

N
∑

k=1

|ak − µ|3.

Removing the trivial case that all ak are the same, we always have maxk |ak − µ| > 0, σ2 > 0

and E|X1 − µ|3 <∞.

Remark 1.2. Hájek (1960) proved that if 0 < p1 ≤ p ≤ p2 < 1, then (Sn − nµ)/σωN →D

N(0, 1) if and only if ωNσ/maxk |ak − µ| → ∞. Theorems 1.1 and 1.2 therefore provide

reasonably wide ranges for x to make the results hold true. To be more precise, as an example,

consider ak = kα, where α > −1/3. In this special case, simple calculations show that

min
{

ωNσ/max
k
|ak − µ|, (ωN/β3N )1/3

}

³ (Npq)1/6,

which implies that Theorem 1.2 holds true for x being in the best range
(

0, o[(Npq)1/6]
)

.

The following Theorem 1.3 provides a relative error P
(

tn ≥ x
)

to 1 − Φ(x), which is

only related to E|X1 − µ|3/σ3 with an absolute constant as in Theorem 1.1. Cramér-type large

deviation results for the Student t-statistic may be obtained accordingly as in Theorem 1.2. We

omit the details.
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Theorem 1.3. There is an absolute constant A > 0 such that

exp
{

−A(1 + x)3β3N/ωN
}

≤ P (tn ≥ x)

1− Φ(x)
≤ exp

{

A(1 + x)3β3N/ωN
}

, (5)

for all 0 ≤ x ≤ (1/A)ωNσ/maxk |ak − µ|, where β3N is de£ned as in Theorem 1.1.

This paper is organized as follows. Major steps of the proofs of Theorems 1.1-1.3 are given

in Section 2. As a preliminary, in a general setting, Section 3 provides a Berry-Esseen bound

for the associated distribution of P (Sn − nµ ≤ x) related to the conjugate method. Proofs of

three propositions used in the main proofs are offered in Sections 4-6. Throughout the paper we

shall use A,A1, A2, ... to denote absolute constants whose values may differ at each occurrence.

We also write b = x/ωN , V 2
n =

∑n
k=1X

2
k ,

V1n = V 2
n − n and V2n =

n
∑

k=1

[

(X2
k − 1)2 − E(X2

k − 1)2
]

,

and, when no confusion arises,
∑

denotes
∑N

k=1, and
∏

denotes
∏N

k=1. The symbol i will be

used exclusively for
√
−1.

2 Proofs of theorems

Without loss of generality, we assume µ = 0 and σ2 = 1. Otherwise, it suf£ces to consider that

{X1, X2, ..., Xn} is a simple random sample drawn without replacement from a £nite population

{a′}N = {(a1 − µ)/σ, · · · , (aN − µ)/σ}, where n < N .

Proof of Theorem 1.1. When 0 ≤ x ≤ 2, property (1) follows from the Berry-Esseen bound

for samples from a £nite population (see, Höglund (1978), for example):

|P (Sn ≥ xωN)− (1− Φ(x))| ≤ Aβ3N/ωN .

When 2 ≤ x ≤ (1/A)ωN/maxk |ak|, property (1) follows from the following Proposition 2.1

with ξ = 0, ξ1 = 0 and h = 0. Proposition 2.1 will be proved in Section 4. 2

Proposition 2.1. There exists an absolute constant A > 0 such that, for all 0 ≤ ξ ≤ 1/2,

|ξ1| ≤ 36 and 2 ≤ x ≤ (1/A)ωN/maxk |ak|,

P
(

bSn − ξ b2qV1n + ξ1b
4q2V2n ≥ x2

)

1− Φ(x)
≥ exp

{

−Ax3β3N/ωN
}

, (6)
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and

P
(

bSn − ξ b2qV1n + ξ1b
4q2V2n ≥ x2 + h

)

1− Φ(x)

≤
[

1 + 9|h|x−2
]

exp
{

−h+ Ax3β3N/ωN
}

, (7)

where h is an arbitrary constant (which may depend on x) with |h| ≤ x2/5.

Remark 2.1. The restrictions for ξ and ξ1 in proposition 2.1 may be reduced to more general

0 ≤ ξ ≤ A0 and |ξ1| ≤ A1, where A0 and A1 are two absolute constants.

Proof of Theorem 1.2. This follows immediately from Theorem 1.1. 2

Proof of Theorem 1.3. When 0 ≤ x ≤ 4, property (5) follows from the Berry-Esseen bound

for £nite population Student t-statistic. See, Bloznelis (1999), for example. Next, assume

4 ≤ x ≤ (1/A)ωN/maxk |ak|. Without loss of generality, assume that A ≥ 8 and n ≥ 4. Note

that maxk |ak| ≥ 1 since
∑

a2k = N . It is readily seen that

∣

∣

x0
x
− 1
∣

∣ =
∣

∣

∣

[

1 + (x2q − 1)/n
]−1/2 − 1

∣

∣

∣
≤ 2x2/n, (8)

where x0 = xn1/2/(n + x2q − 1)1/2. It follows from (8) that 2 ≤ x/2 ≤ x0 ≤ 3x/2 and

|x0 − x| ≤ 2x3β3N/ω
2
N . Hence, by noting 1 − Φ(x) ≥ xΦ′(x)/(1 + x2) for x ≥ 0 (see, for

example, Revuz and Yor(1999), p30), we have

∣

∣

∣
log

1− Φ(x0)

1− Φ(x)

∣

∣

∣
=
∣

∣

∣

∫ x0

x

Φ′(t)

1− Φ(t)
dt
∣

∣

∣
≤
∣

∣

∣

∫ x0

x

1 + t2

t
dt
∣

∣

∣
≤ 2x|x− x0| ≤ x3β3N/ωN ,

which yields that

exp{−x3β3N/ωN} ≤
1− Φ(x0)

1− Φ(x)
≤ exp{x3β3N/ωN}. (9)

We are now ready to prove Theorem 1.3. As is well-known, for x ≥ 0,

P (tn ≥ x) = P
(

Sn/Vn ≥ x0
√
q
)

.

Note that b0 x0
√
q Vn ≤ (x20 + b20qV

2
n )/2 ≤ x20 + b20q(V

2
n − n)/2, where b0 = x0/ωN . It follows

from (6), (8) and (9) that, for 4 ≤ x ≤ (1/A)ωN/maxk |ak|,

P (Sn ≥ x0
√
qVn) ≥ P (b0Sn − b20q(V

2
n − n)/2 ≥ x20)

≥
(

1− Φ(x0)
)

exp{−Ax30β3N/ωN}

≥
(

1− Φ(x)
)

exp
{

−A1x3β3N/ωN
}

,
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which implies the £rst inequality of (5).

In view of the following Propositions 2.2 and 2.3, the second inequality of (5) may be

obtained by a similar argument to that in the proof of (5.13) in Jing, Shao and Wang (2003), and

the details are omitted. The proofs of Propositions 2.2 and 2.3 will be given in Section 5 and

Section 6 respectively. 2

Proposition 2.2. There exists an absolute constant A > 0 such that

P (Sn ≥ x
√
qVn) ≤ (1− Φ(x)) exp{Ax3β3N/ωN}+ Ae−4x

2

,

for 2 ≤ x ≤ (1/A)ωN/maxk |ak|.

Proposition 2.3. There exists an absolute constant A > 0 such that

P (Sn ≥ x
√
qVn) ≤ (1− Φ(x)) exp{Ax3β3N/ωN}+ A

(

xβ3N/ωN
)4/3

,

for 2 ≤ x ≤ (1/A)ωN/maxk |ak|.

3 Preliminaries

The main aim of this section is to derive a Berry-Esseen bound for the associated distribution

of P (Sn ≤ x) related to the conjugate method. The result and several related lemmas are

established in a general setting, and will be used in the proofs of the propositions.

For z = x+ iy, de£ne,

K(z) = log β(z) with β(z) = peqz + qe−pz, (10)

where p, q > 0 and p + q = 1. Consider a sequence of constants {b}N = {b1, · · · , bN}
with

∑

bk = 0, and let Kk, K
′
k and K ′′

k be the values of K(x), K ′(x) and K ′′(x) evaluated at

x = u bk + αN(u), where αN(u) is the solution of the equation

∑

K ′(u bk + α) = 0. (11)

Throughout the section we assume that C0 > 0 is a given constant and |u| ≤ C0/maxk |bk|.
Note that, for any real u with |u| ≤ C0/maxk |bk|,

∑

K ′(ubk + α) is negative when α < −C0
and positive when α > C0, and it is strictly monotone in the range −C0 ≤ α ≤ C0, by virtue

of (13) and (14) below. It is readily seen that (11) has a unique solution αN = αN(u), and

−C0 ≤ αN ≤ C0.
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We continue to assume that X1, X2, ..., Xn is a random sample without replacement from

{b}N , where n < N , and continue to use the notation Sn =
∑n

k=1Xk, p, q and ω2N = Npq as

in Section 1. De£ne

Hn(x;u) = EeuSnI(Sn ≤ x)/EeuSn ,

and assume C > 0 a constant depending only on C0, which may differ at each occurrence.

The main result in this section is as follows.

Theorem 3.1. We have

sup
x

∣

∣

∣
Hn(x;u)− Φ

(x−mN

σN

)∣

∣

∣
≤ C (pq)−1/2

∑

|bk|3
/(

∑

b2k
)3/2

, (12)

where

mN =
∑

bkK
′
k, σ2N =

∑

b2kK
′′
k −

(

∑

bkK
′′
k

)2

/
∑

K ′′
k .

Theorem 3.1 provides an extension of the classical result for samples from a £nite popula-

tion given by Höglund (1978). Its proof will be given after £ve lemmas.

Our £rst lemma summarizes some basic properties of K(z).

Lemma 3.1. We have K ′(0) = 0,

−pqe2t ≤ K ′(−x) < 0 < K ′(x) ≤ pqe2t, for 0 < x ≤ t; (13)

pq e−3t < K ′′(x) < pq e3t, for |x| ≤ t; (14)

|K ′′′(x+ iy)| ≤ 23/2e5tpq, for |x| ≤ t and |y| ≤ π/2. (15)

Furthermore, if |x| ≤ 1/16, then

∣

∣K(x)/ pq − x2/2
∣

∣ ≤ (1/2) |x|3, (16)
∣

∣K ′(x)/ pq − x
∣

∣ ≤ x2, (17)
∣

∣K ′′(x)/ pq − 1− (q − p)x
∣

∣ ≤ 8x2. (18)

Proof. The proof of Lemma 3.1 is straightforward and the details are omitted. 2

To introduce the following lemmas, we write, for 1 ≤ k ≤ N ,

ηk = u bk + αN and ξk = v bk + y0, (19)

where ν and y0 are two real variables speci£ed later. By using Lemma 3.1, it is readily seen that

e−2C0 ≤ β(ηk) ≤ e2C0 ,

|ηk| ≤ 2C0, |K ′
k| ≤ pqe2C0 and pqe−6C0 ≤ K ′′

k ≤ pqe6C0 . (20)
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The property (20) will be used heavily in the lemmas below. In the remainder of this section,

we also de£ne

ρ(u, v, y0) =
∏

β(ηk + iξk).

Lemma 3.2. There exist 0 < ε0 ≤ π/8 and δ0 > 0 depending only on C0, such that, for

|y0| ≤ ε0 and |v| < δ0
∑

b2k
/
∑ |bk|3,

ρ(u, v, y0) = exp
{

∑

(

Kk + i ξkK
′
k − ξ2kK

′′
k/2
)

}

(

1 +R
)

, (21)

where β(z) is de£ned as in (10) and

|R| ≤ C pq
∑

|ξk|3 exp
(1

4

∑

ξ2kK
′′
k

)

.

Also, for ε0 ≤ |y0| ≤ π and |v| < δ0
∑

b2k
/
∑ |bk|3,

∣

∣ρ(u, v, y0)
∣

∣ ≤ e2C0

∏

k 6=k0

∣

∣β(ηk + iξk)
∣

∣ ≤ C exp
{

∑

[

Kk − ε20K
′′
k/4
]

}

, (22)

where 1 ≤ k0 ≤ N.

Proof. We £rst prove (21). De£ne

D1 = {k : |vbk| ≤ π/4} and D2 = {k : |vbk| > π/4}.

It suf£ces to show that there exist 0 < ε0 ≤ π/8 and γ1 > 0 depending only on C0 such that, if

|y0| ≤ ε0 and |v| < γ1
∑

b2k
/
∑ |bk|3, then

I1N :=
∏

k∈D1

β(ηk + iξk)
∏

k∈D2

β(ηk)

= exp
{

∑

(

Kk + i ξkK
′
k − ξ2kK

′′
k/2
)

}

(

1 +R1
)

, (23)

where |R1| ≤ C pq
∑ |ξk|3 exp

(

1
4

∑

ξ2kK
′′
k

)

, and

|I2N | :=
∣

∣

∣

∏

k∈D1

β(ηk + iξk)
[

∏

k∈D2

β(ηk + iξk)−
∏

k∈D2

β(ηk)
]∣

∣

∣

≤ C pq
∑

|ξk|3 exp
{

∑

(

Kk − ξ2kK
′′
k/4
)

}

. (24)

Indeed, it follows from (23)-(24) that

ρ(u, v, y0) = exp
{

∑

(

Kk + i ξkK
′
k − ξ2kK

′′
k/2
)

}

(

1 +R
)

,
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where

|R| ≤ |R1|+ |I2N | exp
{

∑

(

−Kk + ξ2kK
′′
k/2
)

}

≤ 2C pq
∑

|ξk|3 exp
(1

4

∑

ξ2kK
′′
k

)

,

as required.

We next give the proofs of (23) and (24).

Recall we assume that |ε0| ≤ π/8. If k ∈ D1, then |ξk| < π/2 since |y0| ≤ π/8. This fact,

together with (15), (20) and Taylor’s formula: for x, y ∈ R,

K(x+ iy) = K(x) + iyK ′(x)− y2K ′′(x)/2− iy3
∫ 1

0

(1− t)2K ′′′(x+ ity)dt/2,

implies that, whenever k ∈ D1,

|K(ηk + iξk)−Kk − iξkK
′
k + ξ2kK

′′
k/2|

≤ |ξk|3 max
|x|≤2C0
|y|<π/2

|K ′′′(x+ iy)|/6 ≤ e10C0 pq |ξk|3.

Therefore,
∏

k∈D1

β(ηk + iξk) = exp
{

∑

k∈D1

(

Kk + i ξkK
′
k − ξ2kK

′′
k/2
)

+ L1N
}

, (25)

where |L1N | ≤ e10C0 pq
∑

k∈D1
|ξk|3. On the other hand, if k ∈ D2, then |ξk| ≥ π/8 since

|y0| ≤ π/8. This, together with (20), yields that, whenever k ∈ D2,

|iξkK ′
k − ξ2kK

′′
k/2| ≤ [(8/π)2 + 4/π]e6C0 pq |ξk|3,

and hence
∏

k∈D2

β(ηk) = exp
{

∑

k∈D2

Kk

}

,

= exp
{

∑

k∈D2

(

Kk + i ξkK
′
k − ξ2kK

′′
k/2
)

+ L2N
}

, (26)

where |L2N | ≤ [(8/π)2 + 4/π]e6C0 pq
∑

k∈D2
|ξk|3.

Recalling
∑

bk = 0, if we choose ε0 and δ0 so small that 4C1max{ε0, δ0}e6C0 ≤ 1/4,

where C1 = max{(8/π)2 + 4/π, e4C0}e6C0 , then for |y0| ≤ ε0 and |v| < δ0
∑

b2k
/
∑

|bk|3,

|L1N |+ |L2N | ≤ C1 pq
∑

|ξk|3

≤ 4C1 pq
(

N |y0|3 + |v|3
∑

|bk|3
)

≤ 4C1max{ε0, γ1} pq
(

Ny20 + |v|2
∑

b2k

)

≤ 4C1max{ε0, γ1}e6C0

∑

ξ2kK
′′
k

≤ (1/4)
∑

ξ2kK
′′
k , (27)
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by using (20). Combining (25)-(27),

I1N = exp
{

∑

(

Kk + i ξkK
′
k − ξ2kK

′′
k/2
)

}

(

1 +R1
)

,

where

|R1| = |eL1N+L2N − 1| ≤ (|L1N |+ |L2N |)e|L1N |+|L2N |

≤ C pq
∑

|ξk|3 exp
(1

4

∑

ξ2kK
′′
k

)

,

which yields (23).

As for (24), by noting from (25)-(27) that, for any k0 ∈ D2,

∣

∣

∣

∏

k∈D1

β(ηk + iξk)
∏

k∈D2−{k0}
β(ηk)

∣

∣

∣
≤ e2C0

∣

∣

∣

∏

k∈D1

β(ηk + iξk)
∏

k∈D2

β(ηk)
∣

∣

∣

≤ e2C0 exp
{

∑

(

Kk − ξ2kK
′′
k/2
)

+ |L1N |+ |L2N |
}

≤ e2C0 exp
{

∑

(

Kk − ξ2kK
′′
k/4
)

}

, (28)

since e−2C0 ≤ β(ηk) ≤ e2C0 , we have

|I2N | ≤
∑

j∈D2

∣

∣β(ηj + iξj)− β(ηj)
∣

∣

∣

∣

∣

∏

k∈D1

β(ηk + iξk)
∣

∣

∣

∏

k∈D2−{j}
|β(ηk)|

≤ e2C0 exp
{

∑

(

Kk − ξ2kK
′′
k/4
)

}

∑

j∈D2

∣

∣β(ηj + iξj)− β(ηj)
∣

∣. (29)

Now (24) follows from (29) and

|β(ηk + iξk)− β(ηk)| =
∣

∣

∣
iξk

∫ 1

0

β′(ηk + itξk)dt
∣

∣

∣
≤ 2e2C0 pq |ξk| ≤ C pq |ξk|3,

for k ∈ D2, where we have used the estimates: |ξk| ≥ π/8 for k ∈ D2, and for all 0 ≤ t ≤ 1,

|β′(ηk + itξk)| = pq|eq(ηk+itξk) − e−p(ηk+itξk)| ≤ 2e2C0pq. (30)

This proves (24) and also completes the proof of (21).

We next prove (22). As in (27) of Robinson (1977), we obtain

|β(ηk + iξk)|2 = e2Kk [1− 2K ′′
k (1− cos ξk)]

≤ exp
(

2Kk − 2K ′′
k (1− cos ξk)

)

= exp
{

2Kk − 2K ′′
k [1− cos(y0)− L1k]

}

, (31)
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where L1k = cos(ξk)−cos(y0). Note that |L1k| ≤ |1−cos(vbk)|+ | sin(vbk)| ≤ v2b2k/2+ |vbk|.
It follows from (20) that, for any given δ0 > 0, if |v| < δ0

∑

b2k
/
∑ |bk|3, then

∑

|L1k|K ′′
k ≤ pq e6C0

∑

|L1k|

≤ pq e6C0

[

δ20/2
(

∑

b2k
)3
/(
∑

|bk|3)2 + δ0
∑

b2k
∑

|bk|/
∑

|bk|3
]

≤ N pq e6C0(δ20/2 + δ0) ≤ e12C0(δ20/2 + δ0)
∑

K ′′
k , (32)

where we have used the fact that, by Hölder’s inequality,

∑

|bk| ≤ N 2/3
(

∑

|bk|3
)1/3

and
∑

b2k ≤ N1/3
(

∑

|bk|3
)2/3

. (33)

By taking δ0 = min{γ1, γ2}, where γ1 is de£ned as in the proofs of (23)-(24) and γ2 is a

constant satisfying e12C0(γ22/2 + γ2) ≤ (1 − cos ε0)/4, it follows easily from (31)-(32), and

|Kk0 −K ′′
k0
(1− cos ξk0)| ≤ C [recall (20)] for any 1 ≤ k0 ≤ N , that if |v| < δ0

∑

b2k
/
∑

|bk|3

and ε0 ≤ |y0| ≤ π, then

∏

k 6=k0

∣

∣β(ηk + iξk)
∣

∣ ≤ exp
{

∑

[

Kk −K ′′
k (1− cos ξk)

]

+ |Kk0 −K ′′
k0
(1− cos ξk0)|

}

≤ C exp
{

∑

[

Kk − ε20K
′′
k/4
]

}

,

for any 1 ≤ k0 ≤ N , where we have used the well-known facts:

1− cos(y0) ≥ 1− cos(ε0) ≥ ε20/2− ε40/24 ≥ ε20/3,

since 0 < ε0 ≤ π/8. This proves the second inequality of (22). The £rst inequality of (22)

holds true since |β(ηk0 + iξk0)| ≤ e2C0 for each 1 ≤ k0 ≤ N .

The proof of Lemma 3.2 is now complete. 2

Lemma 3.3. Let ε0 and δ0 be de£ned as in Lemma 3.2. Suppose that |v| < δ0
∑

b2k/
∑ |bk|3.

Then, for |y0| ≤ ε0,

∣

∣

∣

d ρ(u, v, y0)

dv
−
(

i
∑

bkK
′
k −

∑

bkξkK
′′
k

)

ρ(u, v, y0)
∣

∣

∣

≤ C pq
∑

|bk|ξ2k exp
{

∑

(

Kk − ξ2kK
′′
k/4
)

}

; (34)

and for ε0 ≤ |y0| ≤ π,

∣

∣

∣

d ρ(u, v, y0)

dv

∣

∣

∣
≤ C pq

∑

|bk| exp
{

∑

(

Kk − ε20K
′′
k/4
)

}

. (35)
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Proof. Note that

d ρ(u, v, y0)

dv
= i

N
∑

j=1

bj β
′(ηj + iξj)

∏

k 6=j
β(ηk + iξk),

where i =
√
−1. The property (35) follows immediately from (22) and (30).

We next prove (34). De£ne D1 and D2 as in Lemma 3.2. We may write

d ρ(u, v, y0)

dv
= i

∑

k∈D1

bkK
′(ηk + iξk) ρ(u, v, y0)

+ i
∑

k∈D2

bk β
′(ηk + iξk)

∏

j 6=k
β(ηj + iξj).

By virtue of (28), it suf£ces to show that

II :=
∣

∣

∣

∑

k∈D1

i bkK
′(ηk + iξk)− i

∑

k∈D1

bkK
′
k +

∑

bk ξkK
′′
k

∣

∣

∣

≤ C (pq)
∑

|bk|ξ2k, (36)

and

∣

∣

∣
β′(ηk + iξk)−K ′

k β(ηk + iξk)
∣

∣

∣
≤ C (pq) ξ2k, for k ∈ D2. (37)

In fact, as in the proof of Lemma 3.2, by using the Taylor’s formula of K ′(x+ iy),

II ≤
∑

k∈D1

|bk| |K ′(ηk + iξk)−K ′
k − iξkK

′′
k |+

∣

∣

∣

∑

k∈D2

bk ξkK
′′
k

∣

∣

∣

≤ (1/2) max
|x|<2C0

|y|<π/2

|K ′′′(x+ iy)|
∑

k∈D1

|bk| |ξk|2 + e6C0 (pq)
∑

k∈D2

|bk| |ξk|

≤ C (pq)
∑

|bk|ξ2k,

where we have used (15) and the fact that |ξk| > π/8 when k ∈ D2. This proves (36). The

property (37) follows from |ξk| > π/8 for k ∈ D2, and hence

|β′(ηk + iξk)−K ′
k β(ηk + iξk)| =

pq eqηk |eiξk − 1|
peηk + q

≤ e2C0 (pq) |ξk| ≤ (8e2C0/π) (pq) ξ2k.

The proof of Lemma 3.3 is complete. 2

Lemma 3.4. There exists a δ1 > 0 depending only on C0, such that for |v| < δ1
∑

b2k/
∑ |bk|3,

Ee(u+iv)Sn = (Gn(p))
−1
(

∑

K ′′
k

)−1/2
exp

{

∑

Kk + ivmN −
1

2
v2σ2N

}

(1 +R), (38)
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where Gn(p) =
√
2π
(

N
n

)

pnqN−n, mN and σ2N are de£ned as in Theorem 3.1 and

|R| ≤ C
(

|v|3 (pq)
∑

|bk|3 + 1/ωN

)

ev
2σ2

N/4.

In particular, by letting v = 0 in (38),

EeuSn = (Gn(p))
−1
(

∑

K ′′
k

)−1/2
exp

{

∑

Kk

}

(1 +O1/ωN), (39)

where |O1| ≤ C1 and C1 is a constant depending only on C0.

Proof. As in Erdos and Renyi(1959), for any α,

Ee(u+iv)Sn = (
√
2πGn(p))

−1
∫ π

−π

N
∏

k=1

(q + pe(u+iv)bk+α+iθ)e−n(α+iθ)dθ.

Let α be the solution of (11), y0 = ψ/ωN , and ηk and ξk as in (19). Some algebra shows that

Ee(u+iv)Sn = (
√
2πωNGn(p))

−1
(

∫

|ψ|≤ε0 ωN

+

∫

ε0 ωN<|ψ|<πωN

)

ρ(u, v, ψ/ωN)dψ

= III1 + III2, say, (40)

where ε0 is de£ned as in Lemma 3.2.

Let δ1 = min{δ0, e−3C0ε0/
√
2}, where ε0 and δ0 are de£ned as in Lemma 3.2. We will show

that, for |v| < δ1
∑

b2k/
∑ |bk|3,

|III2| ≤
(

C/ωN
)

(Gn(p))
−1
(

∑

K ′′
k

)−1/2
exp

{

∑

Kk −
1

4
v2σ2N

}

, (41)

III1 = (Gn(p))
−1
(

∑

K ′′
k

)−1/2
exp

{

∑

Kk + ivmN −
1

2
v2σ2N

}

(1 +R1), (42)

where |R1| ≤ C
(

|v|3 (pq) ∑ |bk|3 + 1/ωN
)

ev
2σ2

N/4. Then (38) follows easily from (40)-(42).

The proof of (41) is straightforward by (20) and Lemma 3.2. Indeed, it follows from

(20) that

e−6C0ω2N ≤
∑

K ′′
k ≤ e6C0ω2N , (43)

and hence for |v| < δ1
∑

b2k/
∑ |bk|3,

v2σ2N ≤ v2
∑

b2kK
′′
k ≤ e6C0pqv2

∑

b2k

≤ δ21e
6C0pq(

∑

b2k)
3/(
∑

|bk|3)2 ≤ δ21e
6C0ω2N ≤ ε20

∑

K ′′
k/2, (44)

By (43)-(44) and Lemma 3.2, it is readily seen that

|III2| ≤ C (Gn(p))
−1 exp

[

∑

Kk − ε20
∑

K ′′
k/4
]

≤ C (Gn(p))
−1 exp

[

∑

Kk −
1

4
v2σ2N − ε20

∑

K ′′
k/8
]

≤
(

C/ωN
)

(Gn(p))
−1
(

∑

K ′′
k

)−1/2
exp

{

∑

Kk −
1

4
v2σ2N

}

,
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as required.

We next prove (42). Note that
∑

ξkK
′
k = v

∑

bkK
′
k since

∑

K ′
k = 0,

g(ψ, v) :=

{

ψ +
vωN

∑

bkK
′′
k

∑

K ′′
k

}2∑
K ′′
k

ω2N
=
∑

ξ2kK
′′
k − v2σ2N (45)

and
∫∞
−∞ e

−g(ψ,v)/2dψ = (2πω2N/
∑

K ′′
k )
1/2. It follows from (45) and Lemma 3.2 that, for |v| <

δ1
∑

b2k/
∑ |bk|3,

III1 = (Gn(p))
−1
(

∑

K ′′
k

)−1/2
exp

{

∑

Kk + ivmN −
1

2
v2σ2N

}

(1 +R2), (46)

where R is de£ned as in (21) and

|R2| ≤
∫

|ψ|≥ε0ωN

e−g(ψ,v)/2dψ + e3C0

∫

|ψ|≤ε0ωN

|R|e−g(ψ,v)/2dψ := L3N + L4N .

By (20), (43) and Hölder’s inequality,

∣

∣

∣

ωN
∑

bkK
′′
k

∑

K ′′
k

∣

∣

∣
≤ e3C0

(

∑

b2kK
′′
k

)1/2

≤ e6C0(pq)1/2
(

∑

b2k

)1/2

. (47)

It follows easily that
∫

|ψ|≤ε0ωN

|ψ|3e−g(ψ,v)/4dψ ≤ C
(

1 +
∣

∣

∣

v ωN
∑

bkK
′′
k

∑

K ′′
k

∣

∣

∣

3)

≤ C
[

1 + (pq)ωN |v|3
∑

|bk|3
]

.

This, together with the de£nitions of R and g(ψ, v), implies that

L4N ≤ C (pq) ev
2σ2

N/4

∫

|ψ|≤ε0ωN

∑

|ξk|3e−g(ψ,v)/4dψ

≤ 4C (pq) ev
2σ2

N/4
(

|v|3
∑

|bk|3 +Nω−3N

∫

|ψ|≤ε0ωN

|ψ|3e−g(ψ,v)/4dψ
)

≤ C
(

|v|3 (pq)
∑

|bk|3 + 1/ωN

)

ev
2σ2

N/4. (48)

As for L3N , by noting from (47) that, for |v| < δ1
∑

b2k/
∑ |bk|3,

∣

∣

∣

vωN
∑

bkK
′′
k

∑

K ′′
k

∣

∣

∣
≤ δ1e

6C0(pq)1/2
(

∑

b2k

)3/2

/
∑

|bk|3 ≤ ε0 ωN/2,

it is readily seen [recall (43)] that

L3N ≤
∫

|ψ|≥ε0ωN/2

exp
(

− e−6C0ψ2/2
)

dψ ≤ C/ωN . (49)

Taking the estimates (48) and (49) back into (46), we obtain the required (42).

The proof of Lemma 3.4 is now complete. 2
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Lemma 3.5. If |v| < min{(pq∑ b2k)
−1/2, δ1

∑

b2k/
∑ |bk|3}, then

∣

∣

∣

d
[

e−ivmNEe(u+iv)Sn
]

dv
+ vσ2Ne

− 1
2
v2σ2

NEeuSn

∣

∣

∣

≤ C exp
{

∑

Kk

}

∑

|bk|3
/

∑

b2k, (50)

where δ1, mN , σN and Kk are de£ned as in Lemma 3.4.

Proof. Let ε0 be de£ned as in Lemma 3.2. By (40), we have

∣

∣

∣

d
[

e−ivmNEe(u+iv)Sn
]

dv
+ vσ2Ne

− 1
2
v2σ2

NEeuSn

∣

∣

∣

≤ (
√
2πωNGn(p))

−1
(

J1N + J2N + J3N + J4N

)

, (51)

where

J1N =

∫

|ψ|≤ε0ωN

∣

∣

∣

dρ(u, v, ψ/ωN)

dv
−
(

imN −
∑

bkξkK
′′
k

)

ρ(u, v, ψ/ωN)
∣

∣

∣
dψ,

J2N =
∣

∣

∣

∫

|ψ|≤ε0ωN

(

∑

bkξkK
′′
k − vσ2N

)

ρ(u, v, ψ/ωN) e
−ivmNdψ

∣

∣

∣
,

J3N = |v|σ2N
∣

∣

∣

∫

|ψ|≤ε0ωN

ρ(u, v, ψ/ωN)e
−ivmNdψ −

√
2πωNGn(p) e

− 1
2
v2σ2

NEeuSn

∣

∣

∣
,

J4N =
∣

∣

∣

∫

ε0ωN≤|ψ|≤πωN

d
[

e−ivmNρ(u, v, ψ/ωN)
]

dv
dψ
∣

∣

∣
.

De£ne g(ψ, v) as in (45). Similarly to the proof of (48), it follows from Lemma 3.3 that

J1N ≤ C (pq) e
∑

Kk

∫

|ψ|≤ε0ωN

∑

|bk||ξk|2e−g(ψ,v)/4dψ

≤ 2C (pq) e
∑

Kk

(

|v|2
∑

|bk|3 + ω−2N
∑

|bk|
∫

|ψ|≤ε0ωN

|ψ|2e−g(ψ,v)/4dψ
)

≤ 2C (pq) e
∑

Kk

(

|v|2
∑

|bk|3 + Cω−2N
∑

|bk|
[

1 + v2(pq)
∑

b2k
]

)

≤ 2C e
∑

Kk

∑

|bk|3/
∑

b2k, (52)

since |v| ≤ (pq
∑

b2k)
−1/2, where we have used the estimate:

∑

|bk|
∑

b2k ≤ N
∑

|bk|3 by (33).

Also, by noting
∑

bkξkK
′′
k = vσ2N + g1(ψ, v)

∑

bkK
′′
k

ωN
,

where g1(ψ, v) = ψ +
vωN

∑

bkK
′′
k

∑

K′′k
, it follows from (21) in Lemma 3.2 that

J2N ≤

∣

∣

∣

∑

bkK
′′
k

∣

∣

∣

ωN
e

∑

Kk

(∣

∣

∣

∫

|ψ|≤ε0ωN

g1(ψ, v) e
−g(ψ,v)/2dψ

∣

∣

∣

+C (pq)

∫

|ψ|≤ε0ωN

∑

|ξk|3|g1(ψ, v)| e−g(ψ,v)/4dψ
)

. (53)
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Since
∫∞
−∞ g1(ψ, v) e

−g(ψ,v)/2dψ = 0, and |g1(ψ, v)| ≤ e3C0g1/2(ψ, v) by (43), as in the proof

of (49), we have

∣

∣

∣

∫

|ψ|≤ε0ωN

g1(ψ, v) e
−g(ψ,v)/2dψ

∣

∣

∣
≤
∫

|ψ|>ε0ωN

|g1(ψ, v)| e−g(ψ,v)/2dψ ≤ C/ωN .

On the other hand, as in the proof of (48),
∫

|ψ|≤ε0ωN

pq
∑

|ξk|3|g1(ψ, v)| e−g(ψ,v)/4dψ ≤ C
(

|v|3 (pq)
∑

|bk|3 + 1/ωN

)

.

Taking these estimates back into (53), and noting

∣

∣

∣

∑

bkK
′′
k

∣

∣

∣
≤ e6C0pq

∑

|bk| ≤ e6C0ω2N
∑

|bk|3/
∑

b2k,

and also
∣

∣

∣

∑

bkK
′′
k

∣

∣

∣
≤ e6C0 N1/2 pq (

∑

b2k)
1/2, by (20) and (33), we have that for |v| ≤ (pq

∑

b2k)
−1/2,

J2N ≤ C

∣

∣

∣

∑

bkK
′′
k

∣

∣

∣

ωN
e

∑

Kk

(

|v|3 (pq)
∑

|bk|3 + 1/ωN

)

≤ C e
∑

Kk

(

|v|3 (pq)3/2 (
∑

|bk|2)3/2 + 1
)

∑

|bk|3/
∑

b2k

≤ C e
∑

Kk

∑

|bk|3/
∑

b2k. (54)

As for J3N , by using (39) and (42), we obtain that for |v| ≤ (pq
∑

b2k)
−1/2,

J3N ≤ C |v|σ2N ωN
(

∑

K ′′
k

)−1/2
[

|v|3 (pq)
∑

|bk|3 + 1/ωN
]

e
∑

Kk

≤ C e
∑

Kk

∑

|bk|3/
∑

b2k, (55)

where we have used (43), σ2N ≤ e6C0 (pq)
∑

b2k since (20), and some routine calculations.

Finally we estimate J4N . In fact, by using (22), (35) and (43), and noting |mN | = |
∑

bkK
′
k| ≤

pqe4C0
∑ |bk| since (20), we have

J4N ≤
∫

ε0ωN≤|ψ|≤πωN

(∣

∣

∣

d ρ(u, v, ψ/ωN)

dv

∣

∣

∣
+ |mN | |ρ(u, v, ψ/ωN)|

)

dψ

≤ C (pq) e
∑

Kk

∑

|bk|
∫

ε0ωN≤|ψ|≤πωN

e−cω
2
Ndψ

≤ C (pq) e
∑

Kk

∑

|bk|/ω2N ≤ C e
∑

Kk

∑

|bk|3/
∑

b2k. (56)

Combining (51)-(56) and noting [Lemma 1 in Höglund(1978)]

√
π/2 ≤

√
2πωNGn(p) < 1. (57)

we obtain the required (50). The proof of Lemma 3.5 is complete. 2.
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We are now ready to prove Theorem 3.1.

Let T = δ
∑ |bk|2/

∑ |bk|3, where δ = min{δ0, δ1} with that δ0 and δ1 are de£ned as in

Lemmas 3.2 and 3.4. De£ne

f(v) = Ee(u+iv)Sn/EeuSn and g(v) = eivmN−v2σ2
N/2.

Note that f(v) and g(v) are characteristic functions of the random variable with distribution

functionHn(x;u) and the normal random variable with meanmN and variance σ2N , respectively.

By Esseen’s smoothing inequality,

sup
x

∣

∣

∣
Hn(x;u)− Φ

(x−mN

σN

)∣

∣

∣
≤

∫ T

−T
|v|−1|f(v)− g(v)|dv + 12/(TσN). (58)

Recalling
∑

bk = 0 and (20), it is readily seen that

σ2N =
∑

(bk −
∑

bkK
′′
k/
∑

K ′′
k )
2K ′′

k

> e−6C0pq
∑

(bk −
∑

bkK
′′
k/
∑

K ′′
k )
2 ≥ e−6C0pq

∑

|bk|2. (59)

This, together with (58), implies that (12) will follow if we prove

∫ T

−T
|v|−1|f(v)− g(v)|dv ≤ C (pq)−1/2

∑

|bk|3
/(

∑

b2k
)3/2

. (60)

Without loss of generality, we assume ωN suf£ciently large so that |O1/ωN | ≤ 1/2, where

O1 is de£ned as in (39). Otherwise (60) is trivial by the fact 1/
√
N ≤∑ |bk|3/(

∑

b2k)
3/2. For

|O1/ωN | ≤ 1/2, it follows from Lemma 3.4 that

|f(v)− g(v)| ≤ exp
(

− v2σ2N/2
)

∣

∣R−O1/ωN
∣

∣

∣

∣1 +O1/ωN
∣

∣

≤ C
(

|v|3 (pq)
∑

|bk|3 + 1/ωN

)

e−v
2σ2

N/4. (61)

This, together with (59), implies that
∫

T1≤|v|≤T
|v|−1|f(v)− g(v)|dv ≤ C (pq)−1/2

∑

|bk|3/(
∑

|bk|2)3/2 + C/ωN

≤ 2C (pq)−1/2
∑

|bk|3/(
∑

|bk|2)3/2, (62)

where T1 = min{(pq
∑

|bk|2)−1/2, T}.
In the following, we let

f1(v) = e−ivmNf(v) and g1(v) = e−ivmNg(v) = exp{−1

2
v2σ2N}.
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By (39) and Lemma 3.5, for |v| ≤ T1,

|f ′1(v)− g′1(v)| = [EeuSn ]−1
∣

∣

∣

d
[

e−ivmNEe(u+iv)Sn
]

dv
+ vσ2Ne

− 1
2
v2σ2

NEeuSn

∣

∣

∣

≤ C Gn(p)
(
∑

K ′′
k

)1/2

∣

∣1 +O1/ωN
∣

∣

∑

|bk|3/
∑

|bk|2

≤ C
∑

|bk|3/
∑

|bk|2,

where we have used |O1/ωN | ≤ 1/2 and the fact that, by (43) and (57),

Gn(p)
(

∑

K ′′
k

)1/2 ≤ e2C0Gn(p)ωN ≤ C.

This, together with the fact that |f(v)− g(v)| = |f1(v)− f2(v)| ≤ |v| sup0≤t≤v |f ′1(t)− g′1(t)|,
implies that

∫

|v|≤T1

|v|−1|f(v)− g(v)|dv ≤ C(pq)−1/2
∑

|bk|3/(
∑

b2k)
3/2. (63)

Now (60) follows from (62) and (63). The proof of Theorem 3.1 is complete. 2

4 Proof of Proposition 2.1

Roughly speaking, the proof of Proposition 2.1 is based on the conjugate method and an appli-

cation of Theorem 3.1 to the bk speci£ed in (64) below. We need some preliminaries £rst.

Let 0 < λ ≤ 2, 0 ≤ θ ≤ 1 and |θ1| ≤ 72. De£ne, for k = 1, · · · , N,

bk = λbak − θb2q
(

a2k − 1
)

+ θ1b
4q2
[

(a2k − 1)2 − 1

N

∑

(a2j − 1)2
]

. (64)

Since
∑

ak = 0 and
∑

a2k = N , it is readily seen that maxk |ak| ≥ 1 and
∑

bk = 0. Also,

when b maxk |ak| ≤ 1/128, we have that, bβ3N ≤ 1/128,

max
k
|bk| ≤ 1/32, (65)

∣

∣

∣

∑

b2k − λ2b2N
∣

∣

∣
≤ 5Nb3qβ3N , (66)

∑

|bk|3 ≤ 9Nb3β3N . (67)

So, recalling b = x/ωN , (65)-(67) hold true if 0 ≤ x ≤ (1/128)ωN/maxk |ak|.
De£ne K(z) as in (10). We still use the notation Kk, K

′
k and K ′′

k denote the values of

K(z), K ′(z) and K ′′(z) evaluated at z = bk + αN , where αN is the solution of the equation
∑

K ′(bk + α) = 0. (68)

As shown in the solution of (11), if (65) holds true, then αN is unique and |αN | ≤ 1/32.

We establish four lemmas before the proof of Proposition 2.1.
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Lemma 4.1. If 0 ≤ x ≤ (1/128)ωN/maxk |ak|, then

|αN | ≤ min
{

1/32, (2/N)
∑

b2k

}

, α2N ≤ (9/8) b3 β3N . (69)

Proof. The inequality that |αN | ≤ 1/32 has been proved above. By noting |bk| + |αN | ≤
1/16 by (65), it follows from (17), (68) and

∑

bk = 0 that

N |αN | =
∣

∣

∣

∑

[

K ′(bk + αN)/pq − (bk + αN)
]

∣

∣

∣

≤
∑

(bk + αN)
2 =

∑

b2k +Nα2N

≤
∑

b2k +N |αN |/2.

This yields |αN | ≤ (2/N)
∑

b2k, and hence the £rst result of (69) follows. Furthermore, by

using Hölder’s inequality, |bk| ≤ 1/32 and (67),

α2N ≤ (4/N)
∑

b4k ≤ (9/8)b3β3N ,

which implies the second result of (69). The proof of Lemma 4.1 is complete. 2

Lemma 4.2. If 0 ≤ x ≤ (1/128)ωN/maxk |ak|, then

∣

∣

∣

∑

Kk − λ2x2/2
∣

∣

∣
≤ 24x3β3N/ωN , (70)

∣

∣

∣

∑

bkK
′
k − λ2x2

∣

∣

∣
≤ 24x3β3N/ωN , (71)

∣

∣

∣

∑

K ′′
k − ω2N

∣

∣

∣
≤ 41x2, (72)

∣

∣

∣

∑

bkK
′′
k

∣

∣

∣
≤ 6x2, (73)

∣

∣

∣

∑

b2kK
′′
k − λ2x2

∣

∣

∣
≤ 21x3β3N/ωN . (74)

Proof. We prove (70). The others are similar and omitted. Applying (16) with x = bk + αN

and using Hölder’s inquality,

∣

∣

∣

∑

[

Kk − 2−1pq (bk + αN)
2
]

∣

∣

∣
≤ 2pq(

∑

|bk|3 +Nα3N). (75)

This, together with
∑

bk = 0, (66)-(67) and (69), implies that

∣

∣

∣

∑

Kk − λ2x2/2
∣

∣

∣
≤

∣

∣

∣

∑

[

Kk − 2−1pq (bk + αN)
2
]∣

∣

∣

+ 2−1pq
∣

∣

∣

∑

b2k − λ2b2N
∣

∣

∣
+ 2−1ω2Nα

2
N

≤ 24 b3ω2Nβ3N = 24x3β3N/ωN ,

as required. 2
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Let Yj, j = 1, 2, ..., n be a random sample of size nwithout replacement from {b1, b2, ..., bN}
de£ned by (64), T ∗n ≡ Tn(λ, θ, θ1) =

∑n
k=1 Yk, m∗

N ≡ mN(λ, θ, θ1) =
∑

bkK
′
k,

σ∗N
2 ≡ σ2N(λ, θ, θ1) =

∑

b2kK
′′
k − (

∑

bkK
′′
k )
2/
∑

K ′′
k ,

and H∗
n(u) = E exp(T ∗n)I(T

∗
n ≤ u)/E exp(T ∗n).

Lemma 4.3. There exists an absolute constant λ0 > 0 such that, for 2 ≤ x ≤ λ0 ωN/maxk |ak|,

exp{λ2x2/2− Ax3β3N/ωN} ≤ E exp(T ∗n) ≤ exp{λ2x2/2 + Ax3β3N/ωN}. (76)

Proof. Without loss of generality, assume λ0 ≤ min{1/128, 1/(8C1 + 4)}, where C1 is

de£ned as in (39). Recall that maxk |bk| ≤ 1/32 by (65). It follows from Lemma 3.4 with

C0 = 1/32, u = 1 and v = 0 that

E exp(T ∗n) = (Gn(p))
−1(
∑

K ′′
k )
−1/2 exp{

N
∑

j=1

Kk}(1 +R∗), (77)

where Gn(p) =
√
2π
(

N
n

)

pnqN−n and |R∗| ≤ C1/ωN . By Stirling’s formula,
(

N

n

)

pnqN−n = (2πω2N)
−1/2(1 +O2ω

−2
N ),

where |O2| ≤ 1/6. This, together with ωN ≥ x maxk |ak|/λ0 ≥ 128 (recall maxk |ak| ≥ 1),

implies that

ω−1N Gn(p)
−1(1 +R∗) = 1 +O3ω

−1
N , (78)

where |O3| ≤ 2C1 + 1. On the other hand, it follows from (72) that

(
∑

K ′′
k )
−1/2ωN = 1 +O4b

2, (79)

where |O4| ≤ 82. From (78)-(79), for 2 ≤ x ≤ λ0 ωN/maxk |ak|,

exp{−2A1x3β3N/ωN} ≤ (
∑

K ′′
k )
−1/2Gn(p)

−1(1 +R∗) ≤ exp{A1x3β3N/ωN}, (80)

where A1 = 2C1 + 83 and we have used the fact that 1/ωN + b2 ≤ x3β3N/ωN since b = x/ωN

and β3N ≥ 1. Now (76) follows easily from (70), (77) and (80). The proof of Lemma 4.3 is

complete. 2

Lemma 4.4. There exists an absolute constant λ1 > 0 such that, for 2 ≤ x ≤ λ1 ωN/maxk |ak|,

|m∗
N − λ2x2| ≤ 24x3β3N/ωN , (81)

|σ∗N 2 − λ2x2| ≤ 22x3β3N/ωN , (82)
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If in addition 1 ≤ λ ≤ 2, then

∆N := sup
y

∣

∣

∣
H∗
n(u(y))− Φ(y)

∣

∣

∣
≤ 12 Cβ3N/ωN ≤ 1/4, (83)

where u(y) = y σ∗N +m∗
N and C is de£ned as in Theorem 3.1.

Also, for all y satisfying m∗
N ≥ y + 2σ∗N ,

P (T ∗n ≥ y) ≥ (1/2) exp{−m∗
N − 2σ∗N}E exp(T ∗n). (84)

Proof. Without loss of generality, assume λ1 ≤ min{1/128, 1/(25C)}, where C is de£ned

as in Theorem 3.1. Then (81) and (82) follow from (71)-(74) by a simple calculation.

If 1 ≤ λ ≤ 2, by noting β3N/ωN ≤ xβ3N/(2ωN) ≤ min{1/128, 1/(50C)} since β3N ≤
maxk |ak|, it follows easily from (65)-(67) that pq

∑

b2k ≥ 4x2/5 and

(pq)−1/2
∑

|bk|3/(
∑

b2k)
3/2 ≤ 12β3N/ωN ≤ 1/(4C). (85)

By (85) and Theorem 3.1 with C0 = 1/32 and u = 1 (recall maxk |bk| ≤ 1/32),

∆N ≤ C(pq)−1/2
∑

|bk|3/(
∑

b2k)
3/2 ≤ 12 Cβ3N/ωN ≤ 1/4,

which implies (83).

We next prove (84). In fact, by (83) and the conjugate method, for all y satisfying m∗
N ≥

y + 2σ∗N ,

P (T ∗n ≥ y)
/

E exp(T ∗n) =

∫ ∞

y

e−udH∗
n(u)

= e−m
∗
N

∫ ∞

(y−m∗N )/σ∗N
e−xσ

∗
NdH∗

n(u(y))

≥ e−m
∗
N−2σ∗N

∫ 2

−2
dH∗

n(u(y))

≥ e−m
∗
N−2σ∗N (P (|N(0, 1)| ≤ 2)−∆N)

≥ (1/2) exp{−m∗
N − 2σ∗N},

where N(0, 1) is a standard normal random variable and we have used the fact that

P (|N(0, 1)| ≤ 2) > 3/4.

This proves (84) and also completes the proof of Lemma 4.4. 2

After these preliminaries, we are now ready to prove Proposition 2.1.
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In addition to the previous notation, we further let T1n = Tn(1, ξ, ξ1),

m1N = mN(1, ξ, ξ1), σ21N = σ2N(1, ξ, ξ1), εN = (x2 + h−m1N)/σ1N

and H1n(u) = E exp{T1n}I(T1n ≤ u)/E exp{T1n}. Note that

bSn − ξ b2qV1n + ξ1 b
4q2V2n = T1n.

It follows from the conjugate method that,

P
(

bSn − ξ b2qV1n + ξ1 b
4q2V2n ≥ x2 + h

)

= P (T1n ≥ x2 + h)

= E exp{T1n}
∫ ∞

x2+h

e−tdH1n(t)

= E exp{T1n} e−x
2−h

∫ ∞

0

e−tσ1NdH1n

[

σ1N(t+ εN) +m1N

]

= E exp{T1n} e−x
2−h
(

LN +RN

)

(86)

where

LN =

∫ ∞

0

e−tσ1NdΦ(t+ εN),

RN =

∫ ∞

0

e−tσ1Nd
{

H1n

[

σ1N (t+ εN) +m1N

]

− Φ(t+ εN)
}

.

We next estimate E exp{T1n}, LN and RN for 0 ≤ ξ ≤ 1/2, |ξ1| ≤ 36, |h| ≤ x2/5 and 2 ≤
x ≤ ηωN/maxk |ak|, where we assume η suf£ciently small such that η ≤ min{1/128, λ0, λ1},
with λ0 and λ1 de£ned as in Lemmas 4.3 and 4.4. This η chosen guarantees that Lemmas

4.1-4.4 hold true, and since β3N ≤ maxk |ak|,

β3N/ωN ≤ xβ3N/(2ωN) ≤ η/2 ≤ 1/256. (87)

Clearly, by Lemma 4.3,

exp
{

x2/2− Ax3β3N/ωN
}

≤ E exp{T1n} ≤ exp
{

x2/2 + Ax3β3N/ωN
}

. (88)

In order to estimate LN , we note that

LN =
1√
2π

∫ ∞

0

e−σN t− 1
2
(t+εN )

2

dt

=
e−ε

2
N/2

√
2π

∫ ∞

0

e−(εN+σN )t− 1
2
t2dt

:=
e−ε

2
N/2

√
2π

L1N . (89)
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Write ψ(t) =
{

1− Φ(t)
}

/Φ′(t) = et
2/2
∫∞
t
e−y

2/2dy. It is readily seen that,

3/4 ≤ tψ(t) ≤ 1 for t ≥ 2, and |ψ′(t)| = |tψ(t)− 1| ≤ t−2 for t > 0. (90)

On the other hand, ψ{εN + σN} = L1N , and by virtue of (81)-(82) and (87),

|εN − h/σN | ≤ 28x2β3N/ωN (91)

and if in addition |h| ≤ x2/5,

|εN + σN − x| ≤ 3|h|/(2x) + 41x2β3N/ωN ≤ 2x/3. (92)

Using (90)-(92), it follows from Taylor’s expansion that, for |h| ≤ x2/5 and 2 ≤ x ≤ ηωN/maxk |ak|,

L1N = ψ{εN + σN}

= ψ(x) + ψ′(θ)
{

εN + σN − x
}

, [where θ ∈ (x/3, 5x/3)]

= ψ(x)
(

1 + τ +O5 x β3N/ωN
)

,

where |τ | ≤ 9|h|/x2 and |O5| ≤ 120. Therefore, taking account of (89), we get for |h| ≤ x2/5

and 2 ≤ x ≤ ηωN/maxk |ak|,

LN = ex
2/2
{

1− Φ(x)
}

e−ε
2
N/2
(

1 + τ +O5 x β3N/ωN
)

. (93)

As for RN , by (83) and integration by parts,

|RN | ≤ 2 sup
t
|H1n

[

σ1N t+m1N

]

− Φ(t)| ≤ 24Cβ3N/ωN .

This, together with (90), implies that for x ≥ 2,

RN = O6 x β3N/ωN e
x2/2

{

1− Φ(x)
}

, (94)

where |O6| ≤ 32
√
2πC.

Combining (86), (88) and (93)-(94), it is readily seen that for any |h| ≤ x2/5 and 2 ≤ x ≤
ηωN/maxk |ak|,

P
(

bSn − ξ b2qV1n + ξ1 b
4q2V2n ≥ x2 + h

)

1− Φ(x)

≤
[

1 + 9|h|x−2
]

exp
{

−h+ Ax3β3N/ωN
}

.

This proves (7).
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Similarly, by letting h = 0, it follows from (86), (88), (91) and (93)-(94) that if, in addition,

x2 ≤ ωN/β3N , then

P
(

bSn − ξ b2qV1n + ξ1 b
4q2V2n ≥ x2

)

1− Φ(x)

≥ exp
{

−Ax3β3N/ωN − ε2N/2
}

[

1−
{

|O5|+ |O6|eε
2
N/2
}

x β3N/ωN

]

≥ exp
{

−A1x3β3N/ωN
}

[

1− A2 xβ3N/ωN

]

≥ exp
{

−A3 x3β3N/ωN
}

, (95)

by choosing η suf£ciently small. From (95), the property (6) will follow if we prove that, for

x2 ≥ ωN/β3N and 2 ≤ x ≤ ηωN/maxk |ak|,

P
(

bSn − ξ b2qV1n + ξ1 b
4q2V2n ≥ x2

)

1− Φ(x)
≥ exp

{

−Ax3β3N/ωN
}

. (96)

We will prove (96) by using (84). Let λ = 1 + 28xβ3N/ωN , θ = λξ and θ1 = λξ1.

Note that, 1 ≤ λ ≤ 3/2 by (87), 0 ≤ θ ≤ 3/4 since 0 ≤ ξ ≤ 1/2 and |θ1| ≤ 72 since

|ξ1| ≤ 36. By virtue of (81)-(82), (87) and x2 ≥ ωN/β3N , we havem∗
N ≤ λ2x2+24x3 β3N/ωN ,

σ∗N ≤ 2x ≤ 2x3 β3N/ωN and

m∗
N − λx2 − 2σ∗N ≥ λ(λ− 1)x2 − 28x3β3N/ωN ≥ 0.

Now, by (84) with y = λx2 and Lemma 4.3, for x2 ≥ ωN/β3N and 2 ≤ x ≤ ηωN/maxk |ak|,

P
(

bSn − ξ b2qV1n + ξ1 b
4q2V2n ≥ x2

)

= P (T ∗n ≥ λx2)

≥ 1

2
exp{−m∗

N − 2σ∗N}E exp{T ∗n}

≥ 1

2
exp{−x2/2− 2x− Ax3β3N/ωN}

≥ (1− Φ(x)) exp{−A1x3β3N/ωN},

which implies (96). The proof of Proposition 2.1 is now complete. 2
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5 Proof of Proposition 2.2

By the inequality (1 + y)1/2 ≥ 1 + y/2− y2 for any y ≥ −1,

P (Sn ≥ x
√
qVn) = P

(

Sn ≥ x
√
nq

(

1 +
V 2
n − n

n

)1/2
)

≤ P

(

Sn ≥ x
√
nq
[

1 +
V1n
2n

− V 2
1n

n2

]

)

≤ P
(

V 2
1n ≥ 36x2

(

n
∑

k=1

(X2
k − 1)2 + 5p

∑

a4k

))

+ P
(

Sn ≥ x
√
nq
(

1 +
V1n
2n

− 36x2

n2

(

n
∑

k=1

(X2
k − 1)2 + 5p

∑

a4k

)))

:= R1n +R2n, say. (97)

Note that R2n = P
(

bSn − 1
2
b2qV1n + 36 b4q2V2n ≥ x2 − h0

)

, where, whenever 2 ≤ x ≤
(1/128)ωN/maxk |ak|,

h0 =
180p x4

∑

a4k
n2

+
36x4

∑n
k=1E(X2

k − 1)2

n2
≤ 3x3β3N

ωN
,

and also 0 ≤ h0 ≤ x2/5. It follows from Proposition 2.1 with ξ = 1/2, ξ1 = 36 and h = h0

that there exists an absolute constant A > 128 such that, for all 2 ≤ x ≤ (1/A)ωN/maxk |ak|,

R2n ≤ (1− Φ(x)) exp{Ax3β3N/ωN
}. (98)

This, together with (97), implies that Proposition 2.2 will follow if we prove, for all x > 0,

R1n ≤ 2
√
2 e−4x

2

. (99)

Theorem 2.1 of de la Pena, Klass and Lai (2004) will be used to prove (99). To use the

theorem, let Yi = X2
i − 1, A =

n
∑

k=1

Yk and B = (2
n
∑

k=1

Y 2
k + 4p

∑

a4k)
1/2. It follows from
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Theorem 4 of Hoeffding(1963) (also see Lemma 6.2 below) that, for any λ ∈ R,

E exp
{

λA− λ2

2
B2
}

= exp
{

− 2λ2p
∑

a4k

}

E exp
{

n
∑

k=1

(λYk − λ2Y 2
k )
}

≤ exp
{

− 2λ2p
∑

a4k

}[

E exp{λY1 − λ2Y 2
1 }
]n

≤ exp
{

− 2λ2p
∑

a4k

}[

1 + E(λY1I(λY1 ≥ −1/2))
]n

= exp
{

− 2λ2p
∑

a4k

}[

1− E(λY1I(λY1 ≤ −1/2))
]n

≤ exp
{

− 2λ2p
∑

a4k

}[

1 + 2λ2EY 2
1

]n

≤ exp
{

− 2λ2p
∑

a4k + 2λ2nEY 2
1

}

= exp
{

− 2λ2p
∑

a4k + 2λ2p
∑

(a2k − 1)2
}

≤ 1,

where we have used the inequality ex−x
2 ≤ 1 + xI(x ≥ −1/2). This yields that two random

variables A and B > 0 satisfy the condition (1.4) in de la Pena, Klass and Lai (2004). Now,

by noting (EB)2 ≤ EB2 ≤ 6p
∑

a4k and applying Theorem 2.1 of de la Pena, Klass and Lai

(2004), we have

P
(

V1n ≥ 6x
(

n
∑

k=1

(X2
k − 1)2 + 5p

∑

a4k

)1/2)

≤ P
(

A ≥ 6x√
2

√

B2 + (EB)2
)

≤ e−6xt/
√
2E exp

(

tA/
√

B2 + (EB)2
)

≤
√
2e−6xt/

√
2+t2 ≤

√
2 e−4x

2

, (100)

by letting t =
√
2x. Similarly,

P
(

− V1n ≥ 6x
(

n
∑

k=1

(X2
k − 1)2 + 5p

∑

a4k

)1/2)

≤
√
2 e−4x

2

. (101)

By virtue of (100) and (101), we obtain (99). The proof of Proposition 2.2 is now complete.

2

6 Proof of Proposition 2.3

Throughout the section, let εj, 1 ≤ j ≤ N be iid random variables with P (ε1 = 1) = 1 −
P (ε1 = 0) = p, which are also independent of all other random variables, andBN =

∑N
j=1(εj−
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p). By the inequality (1 + y)1/2 ≥ 1 + y/2− y2 for any y ≥ −1 again, we have

P (Sn ≥ x
√
qVn) = P

(

Sn ≥ x
√
nq
(

1 +
V 2
n − n

n

)1/2
)

≤ P

(

Sn ≥ x
√
nq
(

1 +
V 2
n − n

2n
− (V 2

n − n)2

n2

)

)

= P

(

∑

εkak ≥ x
√
nq
(

1 +

∑

εk(a
2
k − 1)

2n
− (
∑

εk(a
2
k − 1))2

n2

)
∣

∣

∣
BN = 0

)

= P
(

∑

(εk − p)gk +
x

n2

∑

1≤k 6=j≤N
νkνj ≥ x− h

∣

∣

∣
BN = 0

)

= P (TN + ΛN ≥ x− h |BN = 0), (102)

where h = xpq
∑

(a2k − 1)2/n2,

TN =
∑

(εk − p)gk, ΛN =
x

n2

∑

1≤k 6=j≤N
νkνj,

where, for all j = 1, · · · , N , νj = (εj − p)(a2j − 1) and

gj =
aj√
nq
−
x(a2j − 1)

2n
+
x(1− 2p)

n2

(

(a2j − 1)2 − 1

N

∑

(a2k − 1)2
)

,

and where, in the proof of (102), we have used the fact that
∑

ak = 0,
∑

a2k = N and

(εk − p)2 = εk(1− 2p) + p2 = (εk − p)(1− 2p) + pq.

We need the following lemmas before the proof of Proposition 2.3.

Lemma 6.1. For any random variable Z with E|Z| <∞,

E
(

Z|BN = 0
)

=
1

Bn(p)

∫ πωN

−πωN

EZeitBN/ωNdt, (103)

where Bn(p) = 2πωNP (BN = 0) and

1 ≤
√
2π/Bn(p) ≤ 1 + ω−2N . (104)

Proof. Note that BN =
∑N

j=1 εj − n is an integer and for any integer k,

∫ π

−π
eiktdt =

{

2π if k = 0
0 if k 6= 0.

The proof of (103) is now obvious. The estimate for Bn(p) follows from P (BN = 0) =
(

N
n

)

pnqN−n and Stirling’s formula. 2
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Lemma 6.2. Let the population {C}N consist of N values c1, · · · , cN . Let X̃1, · · · , X̃n denote

a random sample without replacement from {C}N and let Ỹ1, · · · , Ỹn denote a random sample

with replacement from {C}N . Then for any continuous and convex function f(x),

Ef
(

n
∑

k=1

X̃k

)

≤ Ef
(

n
∑

k=1

Ỹk

)

. (105)

Ef
(n− 1

N

n
∑

k=1

X̃2
k +

N − 1

N

∑

1≤k 6=j≤n
X̃k X̃j

)

≤ Ef
(

∑

1≤k 6=j≤n
Ỹk Ỹj

)

. (106)

Proof. (105) is Theorem 4 of Hoeffding(1963). We next prove (106). As in the proof of

Theorem 4 in Hoeffding(1963), for any function f , there exists a function ḡf (x1, · · · , xn) which

is symmetric in x1, · · · , xn such that

Ef
(

∑

1≤k 6=j≤n
Ỹk Ỹj

)

= Eḡf (X̃1, · · · , X̃n). (107)

By noting

Ef
(

∑

1≤k 6=j≤n
Ỹk Ỹj

)

=
1

Nn

N
∑

k1,...,kn=1

f
[(

n
∑

j=1

ckj

)2

−
n
∑

j=1

c2kj

]

,

as in (6.6) of Hoeffding(1963), ḡf can be written as

ḡf (x1, · · · , xn) =
∑′

p(k, i1, · · · , ik, r1, · · · , rk)f
[(

k
∑

j=1

rjxij

)2

−
k
∑

j=1

rjx
2
ij

]

, (108)

where the sum
∑′ is taken over the positive integers k, i1, · · · , ik, r1, · · · , rk such that k =

1, 2, ..., n,
∑k

j=1 rj = n and i1, ..., ik are all different and do not exceed n. The coef£cients p

are non-negative and do not depend on the function f . In particular, when f(·) = x,

ḡx(x1, · · · , xn) = K0

n
∑

k=1

x2k +K1

∑

1≤k 6=j≤n
xk xj, (109)

since ḡf is symmetric on (x1, ..., xn), where K0 and K1 are constants. Since

E
∑

1≤k 6=j≤n
Ỹk Ỹj = K0E

n
∑

k=1

X̃2
k +K1E

∑

1≤k 6=j≤n
X̃k X̃j

by (107) and (109), we have that

n(n− 1)

N2

(

∑

ck

)2

=
K0n

∑

c2k
N

+
K1n(n− 1)

N(N − 1)

((

∑

ck

)2

−
∑

c2k

)

holds true for any c1, · · · , cN ∈ R, and hence K0 =
n−1
N

and K1 =
N−1
N
. On the other hand, by

letting f = 1 in (107) and (108),

∑′
p(k, i1, · · · , ik, r1, · · · , rk) = 1. (110)
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By virtue of (107)-(110), it follows from the Jensen’s inequality that, for any continuous and

convex function f(x),

Ef
(n− 1

N

n
∑

k=1

X̃2
k +

N − 1

N

∑

1≤k 6=j≤n
X̃k X̃j

)

= Ef
(

ḡx(X̃1, · · · , X̃n)
)

≤ Eḡf (X̃1, · · · , X̃n) = Ef
(

∑

1≤k 6=j≤n
Ỹk Ỹj

)

.

This yields (106) and hence completes the proof of Lemma 6.2. 2

Lemma 6.3. (i). We have

E
(

∑

1≤k 6=j≤N
|νkνj|3/2

∣

∣

∣
BN = 0

)

≤ An2β23N , (111)

E
(

N
∑

k=1

∣

∣νk

N
∑

j=1,6=k
νj
∣

∣

3/2
∣

∣

∣
BN = 0

)

≤ An2β23N , (112)

E
(∣

∣

∣

∑

1≤k 6=j≤N
νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ An2β23N . (113)

(ii). If ηk, 1 ≤ k ≤ N, are iid random variables with

P (ηk = 1) = 1− P (ηk = 0) = m(t), 0 ≤ m(t) ≤ 1,

independent of all other rv’s, then

E
(∣

∣

∣

∑

1≤k 6=j≤N
ηkηjνkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ Am2(t)n2β23N , (114)

E
(∣

∣

∣

∑

1≤k 6=j≤N
ηk(1− ηj)νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ Am(t)n2β23N . (115)

Proof. We £rst prove (113). Note that

∑

1≤k 6=j≤N
νkνj =

∑

1≤k 6=j≤N
εjεk(a

2
j − 1)(a2k − 1) + 2p

∑

εk(a
2
k − 1)2

+ p2
∑

1≤k 6=j≤N
(a2j − 1)(a2k − 1).

By the cr-inequality, we have

E
(∣

∣

∣

∑

1≤k 6=j≤N
νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ 4(I1 + 4I2 + I3), (116)
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where

I1 = E
(∣

∣

∣

∑

1≤k 6=j≤N
εjεk(a

2
j − 1)(a2k − 1)

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

,

I2 = p3/2E
(∣

∣

∣

∑

εk(a
2
k − 1)2

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

,

I3 = p3
∣

∣

∣

∑

1≤k 6=j≤N
(a2j − 1)(a2k − 1)

∣

∣

∣

3/2

.

Since
∑

a2k = N ,

I3 ≤ p3
∣

∣

∣

∑

(a2k − 1)2
∣

∣

∣

3/2

≤ p3
(

∑

a4k

)3/2

≤ p3
(

∑

|ak|3
)2

≤ n2β23N . (117)

Recall thatX1, X2, ..., Xn is a random sample without replacement from {a}N = {a1, · · · , aN}.
Suppose that Y1, Y2, ..., Yn is a random sample with replacement from {a}N . Note that Yj are

iid random variables with Ef(Y1) = 1
N

∑

f(ak) for any f(.). It follows from Lemma 6.2 and

the classical results for iid random variables that

I2 = p3/2E
∣

∣

∣

n
∑

k=1

(X2
k − 1)2

∣

∣

∣

3/2

≤ p3/2E
∣

∣

∣

n
∑

k=1

(Y 2
k − 1)2

∣

∣

∣

3/2

≤ 2p3/2E
∣

∣

∣

n
∑

k=1

(

(Y 2
k − 1)2 − E(Y 2

k − 1)2
)

∣

∣

∣

3/2

+ 2p3/2
∣

∣

∣
nE(Y 2

1 − 1)2
∣

∣

∣

3/2

≤ 4p3/2
n
∑

k=1

E
∣

∣

∣

(

(Y 2
k − 1)2 − E(Y 2

k − 1)2
)

∣

∣

∣

3/2

+ 2p3
∣

∣

∣

∑

(a2k − 1)2
∣

∣

∣

3/2

≤ 16p5/2
∑

|a2k − 1|3 + 2p3
∣

∣

∣

∑

(a2k − 1)2
∣

∣

∣

3/2

≤ 18p5/2
(

∑

|ak|3
)2

≤ 18n2 β23N . (118)

Similarly, it follows from Lemma 6.2 and the classical results for U-statistics that
(N − 1

N

)3/2

I1 =
(N − 1

N

)3/2
E
∣

∣

∣

∑

1≤k 6=j≤n
(X2

j − 1)(X2
k − 1)

∣

∣

∣

3/2

≤ 2E
∣

∣

∣

∑

1≤k 6=j≤n
(Y 2

k − 1)(Y 2
j − 1)

∣

∣

∣

3/2

+ 2p3/2E
∣

∣

∣

n
∑

k=1

(X2
k − 1)2

∣

∣

∣

3/2

≤ An2 (E|Y1|3)2 + 36n2 β23N ≤ A1 n
2 β23N . (119)

Combining (116)-(119), we obtain the required (113).

We next prove (112). Note that, by
∑

a2k = N ,

νk

N
∑

j=1,6=k
νj = εk(a

2
k − 1)

N
∑

j=1,6=k
εj(a

2
j − 1)

− p(a2k − 1)
N
∑

j=1

εj(a
2
j − 1) + (2pεk − p2)(a2k − 1)2.
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By the cr-inequality, we have

E
(

N
∑

k=1

∣

∣νk

N
∑

j=1,6=k
νj
∣

∣

3/2
∣

∣

∣
BN = 0

)

≤ 4(I4 + I5 + I6),

where, as in the proofs of (117)-(119),

I4 =
N
∑

k=1

E
∣

∣

∣
εk(a

2
k − 1)

N
∑

j=1,6=k
εj(a

2
j − 1)

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

= p

N
∑

k=1

∣

∣a2k − 1
∣

∣

3/2
E
(∣

∣

∣

N
∑

j=1,6=k
εj(a

2
j − 1)

∣

∣

∣

3/2∣
∣

∣

N
∑

j=1,6=k
εj = n− 1

)

≤ An(n− 1)

N(N − 1)

N
∑

k=1

∣

∣a2k − 1
∣

∣

3/2
N
∑

j=1,6=k
|a2j − 1|3/2 ≤ An2 β23N ,

I5 = p
N
∑

k=1

|a2k − 1|3/2E
(∣

∣

∣

N
∑

j=1

εj(a
2
j − 1)

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ An2 β23N ,

I6 =
N
∑

k=1

|a2k − 1|3E
(

∣

∣2pεk − p2
∣

∣

3/2
∣

∣

∣
BN = 0

)

≤ Ap2
N
∑

k=1

|a6k ≤ An2 β23N .

This yields (112).

The proof of (111) is simple. Indeed,

∑

1≤k 6=j≤N
E
(

|νkνj|3/2
∣

∣

∣
BN = 0

)

≤ A
(

∑

|ak|3
)2

E
(

|(ε1 − p)(ε2 − p)|3/2
∣

∣

∣
BN = 0

)

≤ A1 p
2
(

∑

|ak|3
)2

= A1n
2β23N .

We £nally prove (114) and (115). By (113) and the cr inequality, it suf£ces to prove

E
(
∣

∣

∣

∑

1≤k 6=j≤N
(ηk −m(t))(ηj −m(t))νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ Am2(t)n2β23N , (120)

E
(
∣

∣

∣

∑

1≤k 6=j≤N
(ηk −m(t))νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ Am(t)n2β23N . (121)

In fact, recalling that ηk are iid random variables with Eη1 = m(t), independent of all other

random variables, it follow from conditional expectation arguments and moment results for
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degenerate U -statistics and (111) that

E
(∣

∣

∣

∑

1≤k 6=j≤N
(ηk −m(t))(ηj −m(t))νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ A
∑

1≤k 6=j≤N
E
(

|(ηk −m(t))(ηj −m(t))νkνj|3/2
∣

∣

∣
BN = 0

)

≤ Am2(t)
∑

1≤k 6=j≤N
E
(

|νkνj|3/2
∣

∣

∣
BN = 0

)

≤ Am2(t)n2 β23N .

This proves (120). Similarly, it follows from conditional expectation arguments and moment

results for partial sums and (112) that

E
(∣

∣

∣

∑

1≤k 6=j≤N
(ηk −m(t))νkνj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

= E
(∣

∣

∣

N
∑

k=1

(ηk −m(t))νk

N
∑

j=1,6=k
νj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ Am(t)
N
∑

k=1

E
(∣

∣

∣
νk

N
∑

j=1,6=k
νj

∣

∣

∣

3/2∣
∣

∣
BN = 0

)

≤ Am(t)n2 β23N ,

which implies (121). The proof of Lemma 6.3 is now complete. 2

To introduce the following lemmas, we de£ne

f(t) = E(eit(Tn+Λn)|BN = 0), f1(t) = E(eitTn|BN = 0), f2(t) = E(Λne
itTn |BN = 0),

and for k = 1, · · · , N,

gk(t, ψ) = E exp{i(εk − p)(tgk + ψ/ωN)}.

We also use the notation ∆ = xβ3N/ωN .

Lemma 6.4. If |t| ≤ (1/128)∆−1, then for 2 ≤ x ≤ (1/128)ωN/maxk |ak| and any 0 ≤
m(t) ≤ 1,

|f(t)| ≤ A(1 + |tx|)
[

m−1/2(t) e−m(t)t
2/4 + ωNe

−(1/40)m(t)ω2
N

]

+ A |t|3/2m(t)∆2 + A|t|m4/3(t)∆4/3. (122)
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Proof. De£ne {ηk, k = 1, · · · , N} as in Lemma 6.3 (ii). Furthermore, let

T ∗1N =
∑

ηk(εk − p)gk, T ∗2N =
∑

(1− ηk)(εk − p)gk,

Λ∗1N =
x

n2

∑

1≤k 6=j≤N
ηkηjνkνj, Λ∗2N =

x

n2

∑

1≤k 6=j≤N
ηk(1− ηj)νkνj,

Λ∗3N =
x

n2

∑

1≤k 6=j≤N
(1− ηk)(1− ηj)νkνj.

Note that

TN + ΛN = T ∗1N + T ∗2N + Λ∗1N + 2Λ∗2N + Λ∗3N . (123)

It follows from (123), |eit − 1| ≤ |t| and |eit − 1− it| ≤ 2|t|3/2, that

|f(t)| =
∣

∣E(eit(T
∗
1N+T

∗
2N+Λ

∗
1N+2Λ

∗
2N+Λ

∗
3N )|BN = 0)

∣

∣

≤
∣

∣E(eit(T
∗
1N+T

∗
2N+2Λ

∗
2N+Λ

∗
3N )|BN = 0)

∣

∣+ |t|E(|Λ∗1N ||BN = 0)

≤
∣

∣E(eit(T
∗
1N+T

∗
2N+Λ

∗
3N )|BN = 0)

∣

∣+ 2|t|
∣

∣E(Λ∗2Ne
it(T ∗1N+T

∗
2N+Λ

∗
3N )|BN = 0)

∣

∣

+8|t|3/2E(|Λ∗2N |3/2|BN = 0) + |t|E(|Λ∗1N ||BN = 0)

:= Ξ1(t, x) + Ξ2(t, x) + Ξ3(t, x) + Ξ4(t, x). (124)

We £rst estimate Ξ3(t, x) and Ξ4(t, x). By Lemma 6.3 (ii), we obtain that,

E(|Λ∗2N |3/2|BN = 0) ≤ Ax3/2m(t)n−1β23N ≤ Am(t)∆2,

and, by Hölder’s inequality,

E(|Λ∗1N ||BN = 0) ≤
[

E(|Λ∗1N |3/2|BN = 0)
]2/3 ≤ Am4/3(t)∆4/3.

These facts yield that

Ξ3(t, x) + Ξ4(t, x) ≤ A |t|3/2m(t)∆2 + A|t|m4/3(t)∆4/3. (125)

Next we estimate Ξ1(t, x). Write B∗1N =
∑

ηk(εk − p), B∗2N =
∑

(1− ηk)(εk − p), and

B = {k : ηk = 1}, Bc = {k : ηk = 0}. (126)

Note that, given η1, · · · , ηN ,

T ∗1N , B
∗
1N ∈ σ{εk, k ∈ B}, T ∗2N , Λ

∗
3N B∗2N ∈ σ{εk, k ∈ Bc},
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and BN = B∗1N +B∗2N . It follows that T ∗1N and B∗1N are independent of T ∗2N , Λ
∗
3N , B

∗
2N , given

η1, · · · , ηN , and hence by Lemma 6.1,

Ξ1(t, x) =
1

Bn(p)

∫

|ψ|≤πωN

∣

∣

∣
E exp {it(T ∗1N + T ∗2N + Λ∗3N) + iψBN/ωN}

∣

∣

∣
dψ

≤ 2

∫

|ψ|≤πωN

E
∣

∣

∣
Eη exp {itT ∗1N + iψB∗1N/ωN}

∣

∣

∣
dψ

= 2

∫

|ψ|≤πωN

∏

E
∣

∣

∣
Eη exp {iηk(εk − p)(tgk + ψ/ωN)}

∣

∣

∣
dψ, (127)

where Eη denotes the condition expectation given ηk, k = 1, · · · , N .

Let ε∗k be an independent copy of εk. Note that, by Taylor’s expansion of eiz,

E
∣

∣Eη exp {iηk(εk − p)(tgk + ψ/ωN)}
∣

∣

2

= E
(

Eη exp {iηk(εk − ε∗k)(tgk + ψ/ωN)}
)

= E exp {iηk(εk − ε∗k)(tgk + ψ/ωN)}
)

≤ 1− (1/2)(tgk + ψ/ωN)
2Eη2kE(εk − ε∗k)

2 + (1/6)|tgk + ψ/ωN |3Eη3kE|εk − ε∗k|3

≤ 1− pq m(t) (tgk + ψ/ωN)
2 + (pq/3)m(t) |tgk + ψ/ωN |3.

This, together with that fact that
∑

gk = 0 and for 2 ≤ x ≤ (1/128)ωN/maxk |ak|,
∣

∣

∣
pq
∑

g2k − 1
∣

∣

∣
≤ 2xβ3N/ωN and

∑

pq|gk|3 ≤ 5β3N/ωN , (128)

yields that for |t| < (1/128)∆−1, |ψ| < (3/8)ωN and 2 ≤ x ≤ (1/128)ωN/maxk |ak|,

J(t, ψ) :=
∏

E
∣

∣

∣
Eη exp {iηk(εk − p)(tgk + ψ/ωN)}

∣

∣

∣

≤
(

∏

E
∣

∣Eη exp {iηk(εk − p)(tgk + ψ/ωN)}
∣

∣

2
)1/2

≤ exp
{

− (pq/2)m(t)
∑

(tgk + ψ/ωN)
2 + (pq/6)m(t)

∑

|tgk + ψ/ωN |3
}

≤ exp
{

− (pq/2)m(t)
∑

t2g2k −m(t)ψ2/2

+(2pq/3)m(t)
∑

|tgk|3 + (2/3)m(t)|ψ|3/ωN
}

≤ exp
{

− (pq/2)m(t)
∑

t2g2k + (2pq/3)m(t)
∑

|tgk|3 −m(t)ψ2/4
}

≤ exp
{

− (1/2)m(t)t2
(

1− xβ3N/ωN − (5/3)|t|β3N/ωN
)

−m(t)ψ2/4
}

≤ exp{−m(t)t2/4−m(t)ψ2/4}. (129)

To estimate J(t, ψ) for (3/8)ωN ≤ |ψ| ≤ πωN , we £rst note that

E
∣

∣Eη exp {iηk(εk − p)(tgk + ψ/ωN)}
∣

∣

2
= E exp {iηk(εk − ε∗k)(tgk + ψ/ωN)}

)

= 1− 2pq + 2pq E cos
[

ηk(tgk + ψ/ωN)
]

= 1− 2pq m(t) + 2pq m(t) cos
(

tgk + ψ/ωN
)

. (130)
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De£ne D = {k : |gk| ≤ 2∆} and Dc = {k : |gk| > 2∆}. It is readily seen that, for k ∈ D,

|t| < (1/128)∆−1 and (3/8)ωN ≤ |ψ| ≤ πωN ,

23

64
≤ tgk + ψ/ωN ≤ π +

1

64
or − 1

64
− π ≤ tgk + ψ/ωN ≤ −

23

64

and hence cos
(

tgk + ψ/ωN
)

≤ cos(23/64) < 0.95. On the other hand, it follows from (128)

that, for 2 ≤ x ≤ (1/128)ωN/maxk |ak|,

4(Npq)−1|Dc| ≤ 4x2β23N
ω2N

|Dc| ≤
∑

k∈Dc

g2k ≤ (pq)−1(1 + 2xβ3N/ωN) ≤ 2(pq)−1,

where |Dc| denotes the number of Dc. Thus |Dc| ≤ N/2 and |D| = N − |Dc| ≥ N/2.

By virtue of (130) and all above facts, we obtain that for |t| < (1/128)∆−1, (3/8)ωN ≤
|ψ| ≤ πωN and 2 ≤ x ≤ (1/128)ωN/maxk |ak|,

J(t, ψ) ≤
(

∏

k∈D
E
∣

∣Eη exp {iηk(εk − p)(tgk + ψ/ωN)}
∣

∣

2
)1/2

≤
∏

k∈D
exp

{

− pq m(t)
[

1− cos
(

tgk + ψ/ωN
)]

}

≤ exp
{

− (1/40)m(t)ω2N
}

. (131)

Combining (127), (129) and (131), it follows that, for |t| < (1/128)∆−1 and 2 ≤ x ≤
(1/128)ωN/maxk |ak|,

Ξ1(t, x) ≤ Am(t)−1/2e−m(t)t
2/4 + AωNe

−(1/40)m(t)ω2
N . (132)

Finally, we estimate Ξ2(t, x). Note that Λ∗2N = x
n2

∑

j∈Bc νj
∑

k∈B νk, where B and Bc is

de£ned in (126). Similarly to (127),

Ξ2(t, x) =
2|t|
Bn(p)

∫

|ψ|≤πωN

∣

∣

∣
E
(

Λ∗2Ne
it(T ∗1N+T

∗
2N+Λ

∗
3N )+iψ BN/ωN

)∣

∣

∣
dψ

≤ 4|t|x
n2

∫

|ψ|≤πωN

E
[

∑

j∈Bc

∑

k∈B
Eη|νj|

∣

∣

∣
Eη

(

νk exp {itT ∗1N + iψB∗1N/ωN}
)∣

∣

∣

]

dψ

≤ 4|t|x
n2

∫

|ψ|≤πωN

E
[

∑

1≤j 6=k≤N
(1− ηj)ηkE|νj|E|νk|Ωjk(t, ψ)

]

dψ

≤ 4|t|xm(t)

n2

∑

1≤j 6=k≤N
E|νj|E|νk|

∫

|ψ|≤πωN

EΩjk(t, ψ)dψ, (133)

where

Ωjk(t, ψ) =
∏

l 6=j,k

∣

∣Eη exp {iηl(εl − p) (tgl + ψ/ωN)}
∣

∣.
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As in the proof of (132) with minor modi£cations, we have that, for |t| < (1/128)∆−1,

2 ≤ x ≤ (1/128)ωN/maxk |ak|, and for all 1 ≤ j 6= k ≤ N,

∫

|ψ|≤πωN

EΩjk(t, ψ)dψ ≤ Am(t)−1/2e−m(t)t
2/4 + AωNe

−(1/40)m(t)ω2
N .

This, together with (133) and the fact that

∑

1≤k 6=j≤N
E|νj|E|νk| ≤

(

2pq
∑

(a2k + 1)
)2

= 16ω4N ,

yields that, for 2 ≤ x ≤ (1/128)ωN/maxk |ak| and |t| < (1/128)∆−1,

Ξ2(t, x) ≤ A|tx|(e−m(t)t2/4 + ωNe
−(1/40)m(t)ω2

N ). (134)

Taking estimates (125), (132) and (134) into (124), we obtain (122). The proof of Lemma

6.4 is now complete. 2

Lemma 6.5. Suppose that 2 ≤ x ≤ (1/128)ωN/maxk |ak|.
(i). If |t| ≤ (1/128)∆−1 and |ψ| ≤ πωN , then

N
∏

l=1,6=j,k
|gl(t, ψ)| ≤ e−(t

2+ψ2)/4 + e−(1/40)ω
2
N , (135)

for all 1 ≤ k 6= j ≤ N , and

∣

∣

∣

d
∏

gk(t, ψ)

dt

∣

∣

∣
≤ 4(|t|+ |ψ|)

(

e−(t
2+ψ2)/4 + e−(1/40)ω

2
N
)

. (136)

(ii). If |t| ≤ (1/128)∆−1/3 and |ψ| < (1/128)∆−1/3, then

∣

∣

∣

∏

gk(t, ψ)− g(t, ψ)
∣

∣

∣
≤ A∆4/3 e−(t

2+ψ2)/4, (137)

and if in addition |t| ≤ 1/4, then

∣

∣

∣

d
∏

gk(t, ψ)

dt
− d g(t, ψ)

dt

∣

∣

∣
≤ A∆4/3(1 + ψ6)e−ψ

2/4, (138)

where

g(t, ψ) = e−(t
2+ψ2)/2

{

1 +
∑

(gk(t, ψ)− 1) +
t2 + ψ2

2

}

.

Proof. By lettingm(t) = 1 in (129) and (131), together with minor modi£cations, we obtain

(135). Note that, under the conditions of part (ii), s := |t|+ |ψ| ≤ (1/64)∆−1/3 and

∣

∣

∑

(gk(t, ψ)− 1) + (t2 + ψ2)/2
∣

∣ ≤ 2
(

s2 + s3
)

∆, (139)
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by (128) and Taylor’s expansion of eiz. (137) follows easily from some routine calculations.

See, for example, Lemma 10.1 of Jing, Shao and Wang (2003) with minor modi£cations.

We next prove (136) and (138). Note that

d
∏

gk(t, ψ)

dt
= g∗(t, ψ)

∏

gk(t, ψ),

where g∗(t, ψ) =
∑

[gk(t, ψ)]
−1 dgk(t,ψ)

dt
, and

dg(t, ψ)

dt
= −tg(t, ψ) +

(

∑ dgk(t, ψ)

dt
+ t
)

e−(t
2+ψ2)/2. (140)

Simple calculations show that
∣

∣

∣

d
∏

gk(t, ψ)

dt
− d g(t, ψ)

dt

∣

∣

∣
≤ J1N + (J2N + J3N)e−(t

2+ψ2)/2, (141)

where

J1N = |g∗(t, ψ)|
∣

∣

∣

∏

gk(t, ψ)− g(t, ψ)
∣

∣

∣
,

J2N =
∣

∣g∗(t, ψ) + t
∣

∣

∣

∣

∣

∑

(gk(t, ψ)− 1) + (t2 + ψ2)/2
∣

∣

∣
,

J3N =
∣

∣

∣
g∗(t, ψ)−

∑ dgk(t, ψ)

dt

∣

∣

∣
.

By the inequality |eiz − 1− iz| ≤ z2/2, it is readily seen that, for any t and ψ,

|gk(t, ψ)− 1| ≤ (pq/2)(tgk + ψ/ωN)
2, (142)

and

∣

∣

dgk(t, ψ)

dt
+ pq gk (tgk + ψ/ωN)

∣

∣ ≤ (pq/2) |gk| (tgk + ψ/ωN)
2. (143)

Since pqg2k ≤ 2 by (128), it follows from (142) that, if |ψ| < (1/128)∆−1/3 and |t| ≤ 1/4, then

|gk(t, ψ)− 1| ≤ 1/4 and hence

[gk(t, ψ)]
−1 = 1 + θ1 pq (tgk + ψ/ωN)

2, (144)

where |θ1| < 1. In view of (143) and (144), it follows from (128) again that

J3N ≤
∣

∣

∣

∑

(

[gk(t, ψ)]
−1 − 1

)dgk(t, ψ)

dt

∣

∣

∣

≤ 2(pq)2
∑

|gk||tgk + ψ/ωN |3

≤ 8(pq)2(1 + |ψ|3)
(

∑

g4k +
∑

|gk|/ω3N
)

≤ 8(pq)2(1 + |ψ|3)
((

∑

|gk|3
)4/3

+
(

∑

|gk|3
)1/3

N2/3/ω3N

)

≤ 8 (1 + |ψ|3)∆4/3,
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Similarly, by recalling
∑

gk = 0, we have
∣

∣g∗(t, ψ) + t
∣

∣ ≤
∣

∣pq
∑

g2k − 1
∣

∣+ 2(pq)2
∑

|gk||tgk + ψ/ωN |3

≤ 10 (1 + |ψ|3)∆.

which, together with (137) and (139), implies that J1N ≤ A (1 + |ψ|3)∆4/3 e−ψ
2/4 and J2N ≤

A (1 + |ψ|6)∆4/3. Taking the estimates of J1N ,J2N and J3N into (141), we obtain (138).

Similarly, by noting that
∑

∣

∣

dgk(t, ψ)

dt

∣

∣ ≤ pq
∑

|gk| |tgk + ψ/ωN |

≤ |t|pq
∑

|gk|2 + |ψ|
(

pq
∑

|gk|2
)1/2 ≤ 4(|t|+ |ψ|), (145)

it follows from (135) that

∣

∣

∣

d
∏

gk(t, ψ)

dt

∣

∣

∣
≤

∑

N
∏

j=1,6=k

∣

∣gj(t, ψ)
∣

∣

∣

∣

dgk(t, ψ)

dt

∣

∣

≤ 4(|t|+ |ψ|)
(

e−(t
2+ψ2)/4 + e−(1/40)ω

2
N
)

,

which implies (136). The proof of Lemma 6.5 is now complete. 2

Lemma 6.6. Suppose that 2 ≤ x ≤ (1/128)ωN/maxk |ak|. Then, for |t| ≤ (1/128)∆−1/3,
∣

∣

∣
f1(t)− e−t

2/2
∣

∣

∣
≤ A min{|t|, 1}

(

∆(1 + t6)e−t
2/4 + ω−6N

)

, (146)

and
∣

∣

∣
f1(t)− g(t, 0)

∣

∣

∣
≤ A min{|t|, 1}

(

∆4/3 (1 + t6)e−t
2/4 + ω−6N

)

, (147)

where g(t, ψ) is de£ned as in Lemma 6.5.

Proof. We only prove (147). (146) follows from (147) and (139) with ψ = 0.

First assume |t| ≥ 1/4. By Lemma 6.1, we have

f1(t) =
1

Bn(p)

∫

|ψ|≤πωN

∏

gk(t, ψ)dψ = II1(t) + II2(t) + II3(t) + II4(t), (148)

where

II1(t) =
1√
2π

∫ ∞

−∞
g(t, ψ)dψ,

II2(t) =
( 1

Bn(p)
− 1√

2π

)

∫ ∞

−∞
g(t, ψ)dψ − 1

Bn(p)

∫

|ψ|≥(1/128)∆−1/3

g(t, ψ)dψ,

II3(t) =
1

Bn(p)

∫

|ψ|≤(1/128)∆−1/3

(

∏

gk(t, ψ)− g(t, ψ)
)

dψ,

II4(t) =
1

Bn(p)

∫

(1/128)∆−1/3≤|ψ|≤πωN

∏

gk(t, ψ)dψ.
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In view of (104), (135), (137) and (139), it is readily seen that

|II2(t)|+ |II3(t)|+ |II4(t)| ≤ A∆4/3 (1 + t6)e−t
2/4 + Aω−6N . (149)

In order to estimate II1(t), write g(m)k (t, 0) = E(εk − p)meitgk(εk−p),m = 1, 2, 3. We £rst

note that, by Taylor’s expansion of eiz,

gk(t, ψ) = gk(t, 0) +
iψ

ωN
g
(1)
k (t, 0)− ψ2

2ω2N
g
(2)
k (t, 0)

+
i3ψ3

6ω3N
g
(3)
k (t, 0) +Rk(t, ψ), (150)

where |Rk(t, ψ)| ≤ (1/24)(ψ/ωN)
4E|εk − p|4 ≤ (1/24) pq ψ4/ω4N , and

g
(2)
k (t, 0) = pq + itgkE(εk − p)3 +R1k(t), (151)

where |R1k(t)| ≤ t2g2kE|εk − p|4/2 ≤ pqt2g2k/2. By virtue of (150)-(151) and the fact that
∑

gk = 0,
∫

e−ψ
2/2dψ =

√
2π and

∫

ψke−ψ
2/2 = 0, k = 1, 3, we have

II1(t)− g(t, 0) =
1√
2π

∫ ∞

−∞

(

g(t, ψ)− g(t, 0)e−ψ
2/2
)

dψ

=
1√
2π

∫ ∞

−∞

[

∑

(

gk(t, ψ)− gk(t, 0)
)

+ ψ2/2
]

e−(ψ
2+t2)/2dψ

= R(t), (152)

where

|R(t)| ≤ 1√
2π

∫ ∞

−∞

(

∑

|Rk(t, ψ)|+
ψ2

2ω2N

∑

|R1k(t)|
)

e−(ψ
2+t2)/2 dψ

≤ Aω−2N
(

1 + t2pq
∑

g2k
)

e−t
2/2 ≤ A1∆

4/3 (1 + t2)e−t
2/2.

Combining (148), (149) and (152), we obtain (147) for |t| ≥ 1/4.

Next assume |t| ≤ 1/4. Note that f1(t) − g(t, 0) =
∫ t

0
(f ′1(s) − g′(s, 0))ds. It suf£ces to

show that, for |t| ≤ 1/4,

∣

∣f ′1(t)− g′(t, 0)
∣

∣ ≤ A∆4/3 + Aω−6N . (153)

We continue to use the decomposition of f1(t) in (148). In view of (136) and (138),

|II ′3(t)|+ |II ′4(t)| ≤ A∆4/3 + Aω−6N ,

for |t| ≤ 1/4. It follows easily from (140), (145) and (149) that,

|II ′2(t)| ≤ A∆4/3 + Aω−6N ,
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for |t| ≤ 1/4. In order to estimate II ′1(t), we £rst note that, as in (150)-(151),

dgk(t, ψ)

dt
− dgk(t, 0)

dt
=

iψ

ωN

dg
(1)
k (t, 0)

dt
− ψ2

2ω2N

dg
(2)
k (t, 0)

dt
+R∗k(t, ψ), (154)

where |R∗k(t, ψ)| ≤ (1/6)(|ψ|/ωN)3|tgk|E|εk − p|4 ≤ (1/6) pq |gk| |t| |ψ|3/ω3N , and

dg
(2)
k (t, 0)

dt
= igkE(εk − p)3 +R∗1k(t), (155)

where |R∗1k(t)| ≤ |t|g2kE|εk − p|4/2 ≤ pq |t| g2k/2. It follows from (154)-(155),
∑

gk = 0,

pq
∑

g2k ≤ 2 and
∫

ψe−ψ
2/2 = 0 that, for |t| ≤ 1/4,

Υ :=
∣

∣

∣

∫ ∞

−∞

(dgk(t, ψ)

dt
− dgk(t, 0)

dt

)

e−ψ
2/2dψ

∣

∣

∣

≤ Aω−2N
∑

|R∗1k(t)|+ A

∫

∑

|R∗k(t, ψ)|e−ψ
2/2dψ

≤ Aω−2N pq
∑

g2k + Aω−3N pq
∑

|gk| ≤ A∆2. (156)

Therefore, by (140), (152) and (156), we have that, for |t| ≤ 1/4,

∣

∣II ′1(t)− g′(t, 0)
∣

∣ =
1√
2π

∣

∣

∣

∫ ∞

−∞

(dg(t, ψ)

dt
− dg(t, 0)

dt
e−ψ

2/2
)

dψ
∣

∣

∣

≤ |t|
∣

∣II1(t)− g(t, 0)
∣

∣+
Υ√
2π
e−t

2/2

≤ A∆4/3.

Combining (148) and all above estimates for II ′k(t), k = 1, 2, 3, 4, we obtain (153).

The proof of Lemma 6.6 is now complete. 2

Lemma 6.7. Suppose that 2 ≤ x ≤ (1/128)ωN/maxk |ak|. Then, for |t| ≤ (1/128)∆−1/3,

|f2(t)| ≤ A(1 + t2)∆2
(

e−t
2/4 + ω−6N

)

, (157)

|f(t)− f1(t)| ≤ A∆2 |t|3/2 + A |t|(1 + t2)∆2
(

e−t
2/4 + ω−6N

)

. (158)

Proof. We £rst prove (157). Write ε∗k = (εk−p)(tgk+ψ/ωN).Note that, by (128),Eνk = 0,
∑

a2k = N and Taylor’s expansion of eiz,

∑

∣

∣E
(

νke
iε∗k
)∣

∣ ≤
∑

|Eνk(eitgk(εk−p) − 1)ei(εk−p)ψ/ωN |+
∑

|Eνk(ei(εk−p)ψ/ωN − 1)|

≤
∑

|tgk|(a2k + 1)E(εk − p)2 + (|ψ|/ωN)
∑

(a2k + 1)E(εk − p)2

≤ 2|t|pq(
∑

|gk|3)1/3(
∑

|ak|3)2/3 + 2|ψ|ωN
≤ 6|t| β3N ωN + 2|ψ|ωN ≤ 6(|t|+ |ψ|) β3N ωN .
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This, together with Lemma 6.1, (135) and the independence of εk, implies that

|f2(t)| =
x

n2Bn(p)

∣

∣

∣

∫

|ψ|≤πωN

∑

1≤k 6=j≤N
E
(

νkνje
i
∑

ε∗l
)

dψ
∣

∣

∣

≤ 2x

n2

∫

|ψ|≤πωN

∑

1≤k 6=j≤N

∣

∣E
(

νke
iε∗k
)
∣

∣

∣

∣E
(

νje
iε∗j
)
∣

∣

N
∏

l=1,6=j,k
|gl(t, ψ)| dψ

≤ Axn−2 (1 + |t|)2 β23N ω2N
(

e−t
2/4 + ω3Ne

−(1/40)ω2
N
)

≤ A(1 + t2)∆2
(

e−t
2/4 + ω−6N

)

,

which yields (157).

By virtue of (157) and (113), the proof of (158) is simple. Indeed, by (113), we have

|f(t)− f1(t)− it f2(t)| =
∣

∣

∣
EeitTn

(

eitΛn − 1− itΛn
)

∣

∣

∣
BN = 0

)
∣

∣

∣

≤ 2|t|3/2E
(

|Λn|3/2
∣

∣

∣
BN = 0

)

≤ A |t|3/2 x3/2 β23N/n

≤ A |t|3/2∆2,

and hence

|f(t)− f1(t)| ≤ |f(t)− f1(t)− it f2(t)|+ |t| |f2(t)|

≤ A∆2 |t|3/2 + A |t|(1 + t2)∆2
(

e−t
2/4 + ω−6N

)

,

as required. The proof of Lemma 6.7 is now complete. 2

Lemma 6.8. Suppose that 2 ≤ x ≤ (1/128)ωN/maxk |ak|. There exists an absolute constant

A such that, for all |y| ≤ 4x,

P (TN + ΛN ≥ y |BN = 0) ≤ (1− Φ(y)) + Ax∆ e−y
2/2 + A∆4/3.

Proof. Note that Lemmas 6.4, 6.6 and 6.7 are similar to Lemmas 10.1-10.3 in Jing, Shao

and Wang (2003). The proof of Lemma 6.8 is similar to Lemma 10.5 of Jing, Shao and Wang

(2003) with some routine modi£cations. We omit the details. 2

We are now ready to prove Proposition 2.3. Note that max |ak| ≤ ωN ,

h = xpq
∑

(a2k − 1)2/n2 ≤ x max |ak| β3N/n ≤ ∆,
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and |x− h| ≤ 2x. It follows from (102) and Lemma 6.8 that

P (Sn ≥ x
√
qVn) ≤ P (TN + ΛN ≥ x− h |BN = 0)

≤ (1− Φ(x− h)) + Ax∆e−(x−h)
2/2 + A∆4/3

≤ 1− Φ(x) + A(1 + x)∆e−x
2/2+x∆ + A∆4/3

≤ (1− Φ(x))(1 + Ax2∆ex∆) + A∆4/3

≤ (1− Φ(x)) exp{Ax3β3N/ωN}+ A
(

xβ3N/ωN
)4/3

,

where we have used the result:

Φ(x)− Φ(x− h) ≤ hΦ′(x− h) ≤ h e−(x−h)
2/2 ≤ ∆e−x

2/2+x∆.

This yields Proposition 2.3.
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