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1 Introduction and results

Let X1, Xs, ..., X,, be a simple random sample drawn without replacement from a £nite popu-
lation {a}y = {a1, -+ ,an}, Wwhere n < N. Denote u = EX;, % = var(X,),

Sp=> Xi, p=n/N, q=1-p  wy=Npq
k=1

Under appropriate conditions, the £nite central limit theorem [see Erdds and Rényi (1959)]
states that P(Sn—nu > xawN) may be approximated by 1—®(x), where ®(z) is the distribution
function of a standard normal variate. The absolute error of this normal approximation, via
Berry-Esseen bounds and Edgeworth expansions, has been widely investigated in the literature.
We only refer to Bikelis (1969) and Hoglund (1978) for the rates in the Erdds and Rényi central
limit theorem; Robinson (1978), Bickel and van Zwet (1978), Babu and Bai (1996) as well
as Bloznelis (2000a, b) for the Edgeworth expansions. Extensions to U-statistics and, more



generally, symmetric statistics can be found in Nandi and Sen (1963), Zhao and Chen (1987,
1990), Kokic and Weber (1990) as well as Bloznelis and Gotze (2000, 2001).

In this paper we shall be concerned with the relative error of P (S, —nu > zowy) to
1 — ®(z). In this direction, Robinson (1977) derived a large deviation result that is similar to
the type for sums of independent random variables in Petrov (1975, Chapter VIII). However,
to make the main results in Robinson (1977) applicable, it essentially requires the assumption
that 0 < p; < p < po < 1. This kind of condition not only takes away a major difEculty in
proving large deviation results but also limits its potential applications. The aim of this paper
is to establish a Cramér-type large deviation for samples from a £nite population under weak
conditions. In a reasonably wide range for x, we show that the relative error of P(Sn —np >
zowy) to 1 — ®(x) is only related to E£|X; — u|*/o® with an absolute constant. We also obtain
a similar result for the so-called £nite population Student ¢-statistic deEned by

b = V(X — )/(53/3),

where X = S, /nand 6° = >"_|(X; — X)?/(n — 1). Itis interesting to note that the re-
sults for both £nite population standardized mean and Student ¢-statistic are comparable to the
so-called self-nomalized large deviation for independent random variables, which has been re-
cently developed by Jing, Shao and Wang (2003). Indeed, Theorems 1.1 and 1.3 below can
be considered as analogous to Theorem 2.1 by Jing, Shao and Wang (2003) in the independent
case. The Berry-Esseen bounds and Edgeworth expansions for the Student ¢-statistic have been
investigated in Babu and Singh (1985), Rao and Zhao (1994) and Bloznelis (1999, 2003).

We now state our main £ndings.

Theorem 1.1. There is an absolute constant A > 0 such that

P(Sn—n,u > xawN)
1—®(x)

exp{ — A(l+2)’Bsn/wy } < <exp{A(l+2z)’fsn/wn}, (D)

for 0 <z < (1/A)wyo/ maxy, |ay — p|, where B3y = o3 E| X, — pl?.

The following result is a direct consequence of Theorem 1.1, and provides a Cramér-type
large deviation result for samples from a £nite population.

Theorem 1.2. There exists an absolute constant A > 0 such that

P(Sn—nu > :wwN)

1— o(2) 1+ 0(1)(1 + 2)*Bsn /ww, (2)




and
P(Sn—n,u < —xowN)
P(—2)
for 0 < z < (1/A) min {wyo/maxy|a, — pl, (wn/Bsn)'/?}, where O(1) is bounded by an
absolute constant. In particular, if wy /G35 — oo, then, for any 0 < ny — 0,

= 1+ 0(1)(1+2)* By /wy, (3)

P(Sn—nu > xcrwN) 1 P(Sn—nu < —xawN)
1— o(x) o o(—)

— 1, (4)
uniformly in 0 < z < ny min {wyo/ maxy, |a, — pl, (wn/Bsn)"3}.

Results (2) and (3) are useful because they provide not only the relative error but also a
Berry-Esseen rate of convergence. Indeed, by the fact that 1 — & (z) < 2e~*/2/(1 + z) for
x > 0, we may obtain

‘P(Sn—n,u < zowy) — @(3:)‘ < A(l+ |£C|>2€7x2/2ﬁ3N/WN7

for |z| < (1/A) min {wyo/ maxy [ay — pl, (wy/Bsn)'/2}. This provides an exponential non-
uniform Berry-Esseen bound for samples from a £nite population.

Remark 1.1. We do not have any restriction on the {a} » in Theorems 1.1 and 1.2. Indeed, for
any {a}n,

N N

N
1 s 1 2 5 1 3
- == (- EIXy—pf = < Jag — il
1 I 2 ar, o I kl(ak n)?, | X7 — pl ~ 2 lax — p

Removing the trivial case that all a;, are the same, we always have maxy, |a, — u| > 0, 02 > 0
and F|X; — ul* < oo.

Remark 1.2. Hajek (1960) proved that if 0 < p; < p < py < 1, then (S,, — nu)/owy —p
N(0,1) if and only if wyo/maxy |ay — u| — oo. Theorems 1.1 and 1.2 therefore provide
reasonably wide ranges for x to make the results hold true. To be more precise, as an example,
consider a; = k“, where o« > —1/3. In this special case, simple calculations show that

min {wNU/ ml?X lay — pf, (WN/53N)1/3} = (NPQ)I/Ga

which implies that Theorem 1.2 holds true for « being in the best range (0, o[(Npg)/%]).

The following Theorem 1.3 provides a relative error P(t, > z) to 1 — ®(z), which is
only related to F|X; — u|*/o® with an absolute constant as in Theorem 1.1. Cramér-type large
deviation results for the Student ¢-statistic may be obtained accordingly as in Theorem 1.2. We
omit the details.



Theorem 1.3. There is an absolute constant A > 0 such that

exp {—A(l + $)3ﬁ3N/wN} < %{ig

forall 0 <z < (1/A)wyo/ maxy |ax, — p], where 35y is deEned as in Theorem 1.1.

<exp {A(1+2)*Bsn/wn }, (5)

This paper is organized as follows. Major steps of the proofs of Theorems 1.1-1.3 are given
in Section 2. As a preliminary, in a general setting, Section 3 provides a Berry-Esseen bound
for the associated distribution of P(S, — nu < x) related to the conjugate method. Proofs of
three propositions used in the main proofs are offered in Sections 4-6. Throughout the paper we
shall use A, Ay, A,, ... to denote absolute constants whose values may differ at each occurrence.
We also write b = = /wy, V2 = Y1 X7,

Vin=V7—n and V=) [(XP-1)-E(X;-1)]
k=1

and, when no confusion arises, 3" denotes >_»_,, and [ denotes [],_,. The symbol 4 will be
used exclusively for v/—1.

2 Proofsof theorems

Without loss of generality, we assume i = 0 and o2 = 1. Otherwise, it sufEces to consider that
{X1, Xs, ..., X, } isasimple random sample drawn without replacement from a £nite population

{d}n ={(ay —p)/o, -+ ,(ay —p)/o}, where n < N.

Proof of Theorem 1.1. When 0 < z < 2, property (1) follows from the Berry-Esseen bound
for samples from a £nite population (see, Hoglund (1978), for example):

|P(Sn Z .CECL)N) — (1 — (I)(.CE))‘ S AﬁgN/wN.

When 2 < = < (1/A) wy/ maxy |ay|, property (1) follows from the following Proposition 2.1
with ¢ = 0, & = 0and h = 0. Proposition 2.1 will be proved in Section 4. O

Proposition 2.1. There exists an absolute constant A > 0 such that, for all 0 < ¢ < 1/2,
|£1| <36and2 <z < (1/A)wN/man |ak|,

P(bSy = E02Vi + Eb1¢*Va, = 2?)
1—®(x)

> exp {—A:z:3ﬁ3N/wN} ; (6)



and

P(bS, — §02qVin + E1b'4*Vay > 2 + h)
1—®(x)
< [1 +9\h\x’2} exp{—h—l—Ax?’BgN/wN}, (7

where £ is an arbitrary constant (which may depend on z) with || < 22/5.

Remark 2.1. The restrictions for £ and &; in proposition 2.1 may be reduced to more general
0 <& < Apand [&] < Ay, where Ag and A, are two absolute constants.

Proof of Theorem 1.2. This follows immediately from Theorem 1.1. O

Proof of Theorem 1.3. When 0 < = < 4, property (5) follows from the Berry-Esseen bound
for £nite population Student ¢-statistic. See, Bloznelis (1999), for example. Next, assume
4 <z < (1/A)wy/ maxy |ag|. Without loss of generality, assume that A > 8 and n > 4. Note
that max;, |ay| > 1 since > a2 = N. Itis readily seen that

D] = |t - 0] 1] < 2, ®)

where zy = zn'/?/(n + 22¢ — 1)'/2. It follows from (8) that 2 < x/2 < x, < 3z/2 and
lzg — x| < 223033y /w?%. Hence, by noting 1 — ®(z) > x®'(z)/(1 + x?) for z > 0 (see, for
example, Revuz and Yor(1999), p30), we have

=ik

1—®
log (o) ‘ =

1—®(x)

x0 1 t2
/ t dt‘ < 2|z — xo| < 2°Pan fwn,

which yields that

1 (I)(Qfg)

1__7@(17) < exp{2®Bsn /wn}. 9)

exp{—2’fsn /wn} <
We are now ready to prove Theorem 1.3. As is well-known, for x > 0,
P(t,>z) = P(Sy/Va > 20v/4).

Note that b 2 \/q Vi, < (2§ + b5¢V;2) /2 < xf + biq(V;2 — n) /2, where by = zg/wy. It follows
from (6), (8) and (9) that, for 4 < x < (1/A)wy/ maxy, |ag,

P(S, > zov/gVa) > P(boS, — ba(Vi2 —n)/2 > x?)
> (1 —®(xg)) exp{—Az}fsn/wn}
> (1—®(z)) exp{—A12°Bsy/wn },

5



which implies the £rst inequality of (5).

In view of the following Propositions 2.2 and 2.3, the second inequality of (5) may be
obtained by a similar argument to that in the proof of (5.13) in Jing, Shao and Wang (2003), and
the details are omitted. The proofs of Propositions 2.2 and 2.3 will be given in Section 5 and
Section 6 respectively. O

Proposition 2.2. There exists an absolute constant A > 0 such that
P(S, > 2/qV,) < (1 — ®(x)) exp{Aa®Byn fwn} + Ae™,

for2 < x < (1/A) wyn/ maxy |ag|.

Proposition 2.3. There exists an absolute constant A > 0 such that

P(S, > a+/gVa) < (1 — B(x)) exp{ Az Bsn fwn } + A(xBsn fwn) ",

for2 < x < (1/A)wy/ maxy |ag|.

3 Prdiminaries

The main aim of this section is to derive a Berry-Esseen bound for the associated distribution
of P(S, < z) related to the conjugate method. The result and several related lemmas are
established in a general setting, and will be used in the proofs of the propositions.

For z = x + iy, defne,

K(z) =log () with  ((2) = pe” + qe 77, (10)

where p,g > 0 and p + ¢ = 1. Consider a sequence of constants {b}y = {b1,--- ,bn}
with > b, = 0, and let K, K}, and K} be the values of K (z), K'(x) and K" (x) evaluated at
x = ubg + ayn(u), where ay(u) is the solution of the equation

> K'(uby+ o) =0. (11)

Throughout the section we assume that Cy > 0 is a given constant and |u| < Cy/ maxy, |bg|.
Note that, for any real « with |u| < Cy/ maxy [by|, > K'(uby + «) is negative when oo < —Cy
and positive when o > (Y, and it is strictly monotone in the range —Cy < a < Cy, by virtue
of (13) and (14) below. It is readily seen that (11) has a unique solution oy = ay(u), and
—Cy < ay < .



We continue to assume that X, X5, ..., X, is a random sample without replacement from
{b}n, where n. < N, and continue to use the notation S,, = >",_, X}, p,¢ and w% = Npq as
in Section 1. Defne

H,(z;u) = Ee"*"1(S, < z)/Ee"5,

and assume C' > 0 a constant depending only on Cy, which may differ at each occurrence.
The main result in this section is as follows.

Theorem 3.1. We have

Sgp‘Hn(x;U)—q)(x_mN)‘ < Co 2 /(8 (12)

ON

A

where

my =Y bk, ok =Y BEK) - (Zka,;’>2/ZK,;'.

Theorem 3.1 provides an extension of the classical result for samples from a £nite popula-
tion given by Hoglund (1978). Its proof will be given after £ve lemmas.

Our £rst lemma summarizes some basic properties of K (z).

Lemma 3.1. We have K'(0) = 0,

—pge*t < K'(—z) <0 < K'(z) < pge*, for0 <z <t (13)
pge ™ < K"(x) < pge™, for [z < t; (14)
|K" (2 + iy)| < 2%/%e%pq, for |z| <tand |y| < 7/2. (15)

Furthermore, if |z| < 1/16, then

|K(x)/pg —a?/2| < (1/2)]af’, (16)
|K'(2)/pg —x| < a7 (17)
|K"(x)/pg —1—(q—p)z| < 8a° (18)
Proof. The proof of Lemma 3.1 is straightforward and the details are omitted. O

To introduce the following lemmas, we write, for 1 < £ < N,
N = wby + ayn and §k = v by + Yo, (19)

where v and y, are two real variables specifed later. By using Lemma 3.1, it is readily seen that
6—200 S 6(77]{) S 6200,

el <2Co, Ky < pge*® and  pge™* < K < pge. (20)

7



The property (20) will be used heavily in the lemmas below. In the remainder of this section,

we also defne

p(u,v,y0) = Hﬁ(ﬁk + i&).
Lemma 3.2. There exist 0 < ¢, < 7w/8 and J, > 0 depending only on Cj, such that, for

lyo| < eoand |v| < 502%/2 bk |2,

plwvyo) = exp{ S (Ki+i&;—€KL/2) } (1+R), (21)
where 3(z) is de€ned as in (10) and
RI<Cpo Yo Il exp (3 Y0€2K).
Also, for g9 < |yo| < mand |v| < 6o > b2/ > |bi?,
o, v.g0)] < e T 180n +igo)| < Coxp {3 [ —<BK7/4] . (@)

k+#ko
where 1 < ky < N.
Proof. We £rst prove (21). De£ne

Dy ={k: |vby| <m/4} and Dy = {k: |vby| > 7/4}.

It suffces to show that there exist 0 < ¢ < w/8 and v; > 0 depending only on Cj such that, if
3, then

ol < eoand [v] <1 X 02/ > |bk
Ly =[] B0w+i&) [T 80m)

keDy k€D

= exp{ Y (K +i&K] - ¢K{/2) } (1+ Ry), (23)
where [R;| < C pg Y 1&[% exp (3 > 2K}, and
vl = | TT 8 +ig0)| TT 80n +i6) — T 80w)]|
keDy k€Do ke€Do
(24)

< Cpg YolaP e {3 (1 - K7/}

Indeed, it follows from (23)-(24) that

plwvyo) = exp{ S (Ki+i&d —€K7/2) } (1+R),



where
Bl < |Ri|+ |Bxlexp { 3 (- Ki+€K7/2)}

< 2Cpg Y I& /P exp (i > GKY),
as required.
We next give the proofs of (23) and (24).
Recall we assume that || < 7/8. If k € Dy, then || < 7/2 since |yo| < /8. This fact,
together with (15), (20) and Taylor’s formula: for z,y € R,

1
K(z +iy) = K(2) + iyK'(x) — y* K" (x)/2 — iyg/ (1 — )’ K" (x + ity)dt/2,
0
implies that, whenever k£ € Dy,

|K (1, + &) — Ky — i& K}, + E KL /2|
< & max |[K"(x +iy)|/6 < "% pq |& .
2| <2Cq

ly|<m/2

Therefore,

IT 80n+ige) = exp {° | (K +i€uk; — EKL/2) + Lun }, (25)

keDy
where |Lyy| < €% pg >, |€[*. On the other hand, if k € D,, then |¢;| > /8 since
lyo| < /8. This, together with (20), yields that, whenever k € D,
i€ Ky, — LKL /2] < [(8/m)% + 4/7)e™ pq |,

and hence

[Iom) = e {d,_ i}

k€D
= exp{Y_ | (Ki+i€uki—&K[/2) + Lax |, (26)

where |Lon| < [(8/7)% 4 4/m|e®® pg 3y p, 16kI°
Recalling >~ b, = 0, if we choose €, and &y so small that 4C; max{eg, dp}e®0 < 1/4,
where Oy = max{(8/m)? + 4/, e'“}¢5%, then for |yo| < o and |v] < 6o > 07/ > |bl?,

Cipg Y &l

ACy pg (Nlof + [0 Y [bal?)

4Cy max{eo, 11} pg (Ny?) + |vf? Zbi)

4C) max{eg, 71 }e5° Z .

(1/4) Y &K, (27)

9

|Lin| + |Lon|
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by using (20). Combining (25)-(27),
iy =exp {3 (K + 160, - €K1/2) b (1+ Ry),
where

|Ry| = |e£1N+EzN — 1] < (|Lin| + ’£2N|)€|E1N|+|£2N\
1
< Cpa Y el exp (7D €K7),

which yields (23).
As for (24), by noting from (25)-(27) that, for any ko € Ds,

TIsm+ic) [T 8| <

11 8 +i&) T 5(%)’

keD1 keD2—{ko} keDy k€ D2
< @exp { Z (K — &R /2) + | Lan| + |£2N|}
< e {37 (K - G/}, (28)

since e~2¢% < B(m;,) < €2, we have

Lyl <) |8 + &) —5(773')” 11 5(77k+i§k)‘ IT 18wl

icDy keD; keD2—{j}
< 2 exp{ 30 (K - K7/ b D |8 +i€) - Bny)]. @)
Jj€D2

Now (24) follows from (29) and
B + i&k) — Bm)| = ‘ka /Olﬁ’(nk + itfk)dt’ < 2¢*% pg [&| < Cpg &,
for k € Do, where we have used the estimates: || > 7/8 for k € Dy, and forall 0 <¢ <1,
|3 (1 + it&x)| = et — TPUIHIE) | < 920 g, (30)

This proves (24) and also completes the proof of (21).

We next prove (22). As in (27) of Robinson (1977), we obtain

B0 +i€)[* = e [1 = 2K7/(1 — cos &)
< exp (2Ky — 2K;(1 — cos&y))
= exp {2K, — 2K}/[1 — cos(yo) — Lix]}, (31)

10



where Ly, = cos(&x) — cos(yo). Note that [ L1, < |1 —cos(vby)|+ | sin(vbg)| < v?02 /2 + [vbg|.
It follows from (20) that, for any given 6o > 0, if [v] < do >_ b2/ > [by|?, then

Z|£1k|KIZ < pQGGCOZ|£1k|
pa e 83/20 32 02)" /(X 1) 4+ 80 D6 D Il / D

< Npqe®®(55/2+ 6y) < D53 /2+60) Y Ki, (32)

IN

where we have used the fact that, by Holder’s inequality,

Z'bk‘ < N2/3<Z|bk|3>1/3 and sz < N1/3(Z’bk|3>2/3. 33)

By taking 6o = min{vi, 72}, where ~; is defned as in the proofs of (23)-(24) and v, is a
constant satisfying e'20(v2/2 + ) < (1 — coseg)/4, it follows easily from (31)-(32), and
| Ky — K (1 — cos &k, )| < C [recall (20)] forany 1 < ko < N, that if [v| < 6o > b2/ > [by|?
and ey < |yo| < m, then

TT 180+ 60| < exp{ 3 [Ki — Ki(1 — cosé)] + K, — Kf, (1~ cos,)}

k+ko
< Cexp{ Y [Ki —3K7/4] }.
forany 1 < kg < N, where we have used the well-known facts:
1 —cos(yg) > 1 —cos(eg) > ei/2 —e5/24 > /3,

since 0 < g9 < w/8. This proves the second inequality of (22). The £rst inequality of (22)
holds true since |3(nx, + ik, )| < €20 foreach 1 < ko < N.
The proof of Lemma 3.2 is now complete. O

Lemma 3.3. Let g5 and &, be defned as in Lemma 3.2. Suppose that [v| < o D02/ |be/?.
Then, for |yo| < &0,

dpuvyo

Zkak Zbkkak UUJJO)‘
< Opg Yl e {3 (- g1/ Y @39

and for g < |yo| <,

‘W‘ < Cpa X Il esp {3 (K — =3k/4) }. (35)

11



Proof. Note that
d
LULTO szﬁ (o, +i65) [T Ao + i€,
k#j

where 1 = v/—1. The property (35) follows immediately from (22) and (30).
We next prove (34). DeEne D, and D, as in Lemma 3.2. We may write

d
M = 1 Z bk 77k —+ ’Lfk (u, v, yo)
keDy
i Y b B+ &) [] By + &)
k€D J#k

By virtue of (28), it suffces to show that

I = )Z ibe K (e +i&) — i Y b KL+ Y b K

keDy keDq
< Clpa) Y |bul&E, (36)
and
|+ €)= KL B +6)| < Cpa) &, fork € Dy, (37)

In fact, as in the proof of Lemma 3.2, by using the Taylor’s formula of K'(z + iy),

1< 37 1K O+ i6) = K — i€+ |0 &Ky

keDq
" 2 6Co
< (1/2) max K" +in)] 3 (b6l + e (o) 3, Il 5]
lyl<m/2 keDy

< C(pa) Y Ibelés,
where we have used (15) and the fact that || > 7/8 when k& € D,. This proves (36). The
property (37) follows from [£;| > 7/8 for k € D,, and hence

. . pg et e — 1|
/ _ K/ —
16" ( + i&k) — K Bk + 16| P

< 2 (pg) |&] < (8e*0 /7) (pq) &2,

The proof of Lemma 3.3 is complete. O

Lemma 3.4. There exists a 6, > 0 depending only on Cj, such that for |v]| < §; D282/ |b/?,
, ~1/2 1
(u+iv)Sn __ —1 " . T2 2
Ee = (Gn(p)) ( E Kk) exp{ E Ky +ivmy 5V GN}(1+R), (38)

12



where G,,(p) = \/T( )p"¢N ", my and 0% are defned as in Theorem 3.1 and
1R < C (ol (pa) D0 I0el? + 1w )R
In particular, by letting v = 0 in (38),
e s = () (S KY) e [ K1+ 01 o), (39)
where |O;| < C} and C is a constant depending only on Cy.

Proof. As in Erdos and Renyi(1959), for any «,

Eve(u—l—iv)sr,L _ / H q +pe(u+iv)bk;+a+i9)e—n(a—&—ie)dg‘
T k=1

Let « be the solution of (11), yo = ¢ /wx, and 7, and & as in (19). Some algebra shows that
B = (manGa) ([ +f ) ol .1/ s
‘¢‘<EO WN €0 O.)N<|’¢1|<7TUJN
= IIL + 111, say, (40)

where ¢ is deEned as in Lemma 3.2.
Let 5, = min{dy, e>ey/v/2}, Where g, and &, are defned as in Lemma 3.2. We will show
that, for [v| < 6;>_02/ > |be|?,

1L < (Clwy) (G (ZK> - exp{ZKk—iv aN}, (41)

I = (Gn(p))_l(ZK,;’> 1zexp{ZquLiva—%1220]2\,}(1—1—}21), (42)

where |R,| < C(v]* (pg) 3 |bx|* + 1/wn ) e 7% /%, Then (38) follows easily from (40)-(42).
The proof of (41) is straightforward by (20) and Lemma 3.2. Indeed, it follows from
(20) that

e %2 < Z K} < 502, (43)
and hence for [v| < ;> b7/ > |be?,
vy < v Z V2K < e5%pgu? Z b;
< 57" Ppa(Y )P O bkl®)? < 61 Pwk < Y K2, (44)
By (43)-(44) and Lemma 3.2, it is readily seen that
L] < C(Galp) ™ exp [ S K- Y K /4]
< CGuln) " o [ K- ok — < S K]
(C/en) @) (DKL) exp {3 K — o ).

13
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as required.
We next prove (42). Note that Y K}, = v ) b K, since > K, = 0,

"y 2 1
o) = {v+ BNEEEEL 2 Sk - (45)

and [7°_e79(v)2qy = (21wi /S0 K})Y2. It follows from (45) and Lemma 3.2 that, for |v] <
01226/ 32 |bwl,

111 = (Z K,Qj) Y p { N Ky +ivmy — %v aN}(l + Ry), (46)

where R is defned as in (21) and
|R,| < / eI 2y 4 6300/ |R|e_g(¢’”)/2d¢ = Lan + Lun.
Y| >eown [Y|<eown

By (20), (43) and Holder’s inequality,

wy Y b Ky 3C, 2 1/2 6C 1/2 2\ /2
‘ Z Kllc/ ’ <e? ( Z kal,c/) <e 0(pQ) (Z bk) : (47)
It follows easily that

vwy Y b K} 3
2Ky

This, together with the de£nitions of R and g(«, v), implies that

Lov < o UN/4/ 3 JeufFeeten) iy
[Y|<eown

< 40 () e (off 3l + N |

[Y|<eown

< (1P () Do [0kl + 1/ )er*oR 1, (48)

As for L3, by noting from (47) that, for [v| < ;> 02/ |be|?,

‘%’ < 516600(296_1)1/2(23172)3/2/2 |bk|3 < egwn/2,

it is readily seen [recall (43)] that

/l o |¢|3e_9(¢,v)/4d7,b < C(l + ) < C[l 4 (pq> Wy |U|3 Z |bk|3]-

|¢]3e*g(w’”)/4dz/1)

Lon < / exp (— ¢y /2)dy < Cfuy. (49)
[ ] >eown /2

Taking the estimates (48) and (49) back into (46), we obtain the required (42).
The proof of Lemma 3.4 is now complete. a
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Lemma3.5. If [v] < min{(pg >_b2)"12, 6,3 62/ |bi|?}, then

d [efiva Ee(“H”)Sn]
‘ dv

1
+ vafve_il’Z"fQV Eeton

< Cep{ YK} Y Il >0 (50)

where 6;, my, on and K, are defned as in Lemma 3.4.

Proof. Let £, be defned as in Lemma 3.2. By (40), we have
‘d |:6fivaEe(u+iv)Sn}

1,22
+ vode 2V N Fetor

dv
< (V2rwnG(p)) ™ <J1N + Jon + Jsn + J4N), (51)
where
. dp(u, v, w/wN) s B "

by = | / (D butekst = vk ) plu,v, o) ey,
|| <eown

2

/ p(u, v, wy)e” N dip — 21wy G (p) e 27k Bt
[Y|<eown

d —iumpy
[ o]
cown <[Y|<mwn dv

Jiv = |vlok

)

Jan =

Defne g(v, v) as in (45). Similarly to the proof of (48), it follows from Lemma 3.3 that
I < Cloae=Re [ e oo ay
[Y|<eown
2C (pQ) @Z Ky <|U|2 Z |bk|3 + w;}Q Z |bk| |¢|26—g('¢),v)/4d¢>
|| <eown

< 20 ()= (o 300l + Con® DIl [1+ 0% (00) Y 17))
< 20 e=" N nP/ > 8, (52)

since |v] < (pg Y b2)~1/2, where we have used the estimate: > |b.| S- 02 < N Y |bx|* by (33).
Also, by noting

IN

b K//
Y Ky = vok + gi(¥,v) Zw; L

where g, (¢, v) = ¢ + % it follows from (21) in Lemma 3.2 that
k

LY

WN

I < (| [ eyl
[Y|<eown
vCon) [ STl e ). 6
P|<eown

15



Since [~ g1(¢,v) e7 9/ 2dy = 0, and | g1 (¢, v)| < €D g2 (4, v) by (43), as in the proof
of (49), we have

‘/ g1(¢, v) €790/ de‘ < / |91(¢, )| e P2 A < O,
[¥[<eown [¥[>eown
On the other hand, as in the proof of (48),

Lo bl ol < O (ol () 3+ 1)

Taking these estimates back into (53), and noting

DI SRR S AT BN

< 5% N2 pq (3" b2)12 by (20) and (33), we have that for [v| < (pg > b2) /2,

and also ’ S b K}

Zb K/I
C‘W#GZK’“ (\vl3 (pg) Y Ibel* + 1/wN)

C e (1o (pa)*2 (3 )2 + 1) D10/ S
C e "> " o* /> by (54)

As for Js, by using (39) and (42), we obtain that for [v]| < (pg > b2)~1/2,

—-1/2
Cloladwn (DKL) Il (pg) D el + 1 fwn]e= 5
< CeR N n > (55)
where we have used (43), 0% < 5 (pq) S b2 since (20), and some routine calculations.

Finally we estimate J,. In fact, by using (22), (35) and (43), and noting [my| = | > bp K| <
pqe© S |by| since (20), we have

IN

Jan

IN

IN

IN

J3N

Jiv < /sw in <‘dp(u’v’¢/wN>‘ + |my| ’P(u,v,w/wN)D dy

dv
< C(pg)e="* ) byl e N dy
cown <[Y|<mwn
< C(pg) e="F Y el /wy < Ce=™ Y o)) 0. (56)

Combining (51)-(56) and noting [Lemma 1 in Hoglund(1978)]

VA2 <V 2monGnlp) < 1. (57)
we obtain the required (50). The proof of Lemma 3.5 is complete. 0.
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We are now ready to prove Theorem 3.1.
Let T = 6> |be|?/ D |br|?, where § = min{dy, d; } with that &, and &, are defned as in

Lemmas 3.2 and 3.4. Defne

F(v) = BeS /B and  g(v) = dmn—*ok /2,

Note that f(v) and g(v) are characteristic functions of the random variable with distribution
function H,,(z; u) and the normal random variable with mean m  and variance o%;, respectively.

By Esseen’s smoothing inequality,

How) = 0" < [ ) - e + 12/, (69

sup
x

Recalling > b, = 0 and (20), it is readily seen that

ox = > (=D WKl K[V K]

> e %pg > (b — Y bKy Y K = e pg Y bl (59)
This, together with (58), implies that (12) will follow if we prove
(60)

) —gtolas < € oo ST/ ()

Without loss of generality, we assume wy suffciently large so that |O; /wy| < 1/2, where
O, is defned as in (39). Otherwise (60) is trivial by the fact 1/vN < 3 |b|2/(>2 b2)3/2. For

|01 /wn| < 1/2, it follows from Lemma 3.4 that
R—Ol/wN‘
v)—gv) < e —v%0% /2 |—
‘f( ) 9( )’ > Xp( UN/ ) |1+01/WN‘

< C(Jof (pa) Y Iuf? + 1oy ) R (61)
This, together with (59), implies that
J o ) g0 < T (D el
o < 20007 Il I, (62)

where Ty = min{(pq " |bx|?)~V/2, T}.
In the following, we let
and  gi(v) = 7" g(v) = exp{—ZvoR}.

fi(v) = e f(v)

17



By (39) and Lemma 3.5, for |v| < T3,
d[e—ivaEe(u—f—iv)Sn]

+ o e 2 N BetSn
dv N

fi(0) =)l = [Ee"]™!

i\ 1/2
S Ty b DD MG

< CY I/ Il
where we have used |O; /wy| < 1/2 and the fact that, by (43) and (57),
Gn<p)(ZKl/c,)1/2 < eQCOGn(p)wN < C.

This, together with the fact that | £(v) — g(v)| = [ £1(v) = f2(v)] < [v]supec,<, |£1() = g1 ()],
implies that

/ - o] 7 f(0) = g()dv < Clpg)™* > el* /(O bR)*>. (63)

Now (60) follows from (62) and (63). The proof of Theorem 3.1 is complete. a

4 Proof of Proposition 2.1

Roughly speaking, the proof of Proposition 2.1 is based on the conjugate method and an appli-
cation of Theorem 3.1 to the by specifed in (64) below. We need some preliminaries £rst.
Let0 <A <2,0<6<1and|#| <72 Defne fork=1,---,N,

1
b = Abag — 0b%q(a2 — 1) + 0;b*? [(az —1 - D - 1)2] (64)

Since >"a;, = 0and Y ai = N, it is readily seen that maxy, |ax| > 1 and >_ b, = 0. Also,
when b maxy, |ax| < 1/128, we have that, b3y < 1/128,

SR NN < sNBash, (66)
STl < ONB By (67)

So, recalling b = xz/wy, (65)-(67) hold true if 0 < x < (1/128) wy/ maxy, |a|.
Defne K (z) as in (10). We still use the notation K, K, and K, denote the values of
K(z),K'(z) and K" (z) evaluated at =z = by, + cun, Where ay is the solution of the equation

> K'(by+ ) =0. (68)
As shown in the solution of (11), if (65) holds true, then «y is unique and |ay| < 1/32.

We establish four lemmas before the proof of Proposition 2.1.

18



Lemmad4.l. If 0 <z < (1/128) wy/ maxy |ag/|, then

lay| < mm{1/32, (2/N)Zbg}, a2 < (9/8) 6 Ban.

(69)

Proof. The inequality that |oy| < 1/32 has been proved above. By noting |bx| + |an| <

1/16 by (65), it follows from (17), (68) and > b, = 0 that

Nlay| = ‘Z "(br + an) /pq—(bk‘FO‘N)H

< D (be+an)® =) b+ Noj
< > b+ Nlayl/2.

This yields |ay| < (2/N) > b7, and hence the £rst result of (69) follows. Furthermore, by

using Holder’s inequality, |b| < 1/32 and (67),

ax < (4/N)D by < (9/8)6°Bsw,
which implies the second result of (69). The proof of Lemma 4.1 is complete.

Lemma4.2. If 0 < x < (1/128) wy/ maxy |ax|, then

‘ZKk—)\sz/Z < 242°Bsn/wy,

} Zka,; —N2?| < 242°Bsn/wi,
‘ Z K —wi| < 4127
’Zka,’C' < 627

‘ Z biK,;’ — N2 < 212°Bsn/wn.

(70)
(71)
(72)
(73)

(74)

Proof. We prove (70). The others are similar and omitted. Applying (16) with z = by, + ay

and using Holder’s inquality,

’ Z (K —27"pg (b + ay)?] ‘ < 2pq(z bx|> + Na3y).
This, together with > b, = 0, (66)-(67) and (69), implies that
> me= 22| < |30 (K- 27 pa (b + aw)?]|

+271pg| D0 — AN + 2Nk}
< 2403wk sy = 242> Ban Jwn,

as required. O
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LetY;, 7 = 1,2, ...,n bearandom sample of size n without replacement from {6, bo, ..., by }
defned by (64), T} = T,,(\,0,01) = > 1, Yi, miy = mn (X, 0,60,) = > b K],

on’ = 0% (N 0,00) =) KL — (O K/ KL,
and H(u) = Eexp(T;) (T} < u)/Eexp(T)).
Lemma4.3. There exists an absolute constant Ao > 0 such that, for 2 < x < \gwy/ maxy |a|,
exp{\?2?/2 — Ax®Bsn Jwn} < Eexp(T) < exp{\?2?/2 + Az®Bsn /wn }. (76)

Proof. Without loss of generality, assume Ay < min{1/128,1/(8C4 + 4)}, where C} is
defned as in (39). Recall that maxy |b,| < 1/32 by (65). It follows from Lemma 3.4 with
Co=1/32,u=1andv = 0 that

Bexp(Ty) = (Gulp) (S K exp{3 Ki}(1+ RY), (77)

j=1

where G,,(p) = v2r () p"g¥ " and |R*| < Cy /wy. By Stirling’s formula,

N
(M )iran = raty 20+ 0m?)

where |Oy| < 1/6. This, together with wy > x maxy |ax|/Ao > 128 (recall maxy, |ax| > 1),
implies that

W' Gr(p) M1+ RY) = 1+ Oswy', (78)
where |O3] < 2C) + 1. On the other hand, it follows from (72) that
O K VPwy =1+ 04, (79)
where |O,| < 82. From (78)-(79), for 2 < x < Agwy/ maxy, |ax|,
exp{—2412°Bsn Jwn} < O KJ)TVPGu(p) 7 (1 + RY) < exp{A12’Bsy Jwn},  (80)

where A; = 2C + 83 and we have used the fact that 1/wy + b* < 23033y /wy since b = x/wy
and G5y > 1. Now (76) follows easily from (70), (77) and (80). The proof of Lemma 4.3 is
complete. O

Lemma4.4. There exists an absolute constant A; > 0 such that, for 2 < x < A\; wy/ maxy |a|,

Imyy — \N22?| < 242° By /wy, (81)
03" = N2?| < 2227 /wn, (82)

20



If in addition 1 < A\ < 2, then
Ay = sup |H;(u(y)) — ®(y)| <12CHn/wy < 1/4, (83)
Yy

where u(y) = y oy +mi and C is defned as in Theorem 3.1.

Also, for all y satisfying m3y > y + 20y,
P(T? > y) > (1/2) exp{—m} — 20y} Eexp(T)). (84)

Proof. Without loss of generality, assume A; < min{1/128,1/(25C)}, where C'is defned
as in Theorem 3.1. Then (81) and (82) follow from (71)-(74) by a simple calculation.

If 1 < X\ < 2, by noting Bsn/wn < xfsny/(2wy) < min{1/128,1/(50C)} since fsn <
max, |ay|, it follows easily from (65)-(67) that pg >~ b2 > 422 /5 and

(pa) 2 D 0P/ Q0% < 126 fwn < 1/(4C). (85)
By (85) and Theorem 3.1 with Cy = 1/32 and u = 1 (recall maxy, |bx| < 1/32),
Ay < C(p(l)_l/2z |bk|3/<z bp)*? <12 CPsnjwn < 1/4,

which implies (83).
We next prove (84). In fact, by (83) and the conjugate method, for all y satisfying m7y >
Y+ 20y,

P(T; 2 ) [ Bew(r) = [ et

—_ / eV dH? (u(y)
(y—m¥)/oN
* * 2
> ey [ am )
—2
> e (P(IN(0,1)] < 2) — Ay)

> (1/2) exp{—mi — 20%},
where N(0, 1) is a standard normal random variable and we have used the fact that
P(IN(0,1)] <2) > 3/4.
This proves (84) and also completes the proof of Lemma 4.4. O
After these preliminaries, we are now ready to prove Proposition 2.1.

21



In addition to the previous notation, we further let 73,, = T,,(1,&, &),
miy =my(1L,€,&), oy =o0x(1,6,&), ev=(2"+h—my)/owN
and Hy,(u) = Eexp{Ti,}[(T1, < u)/E exp{Ti,}. Note that
bS, — Eb*qVi, + &40 Vi = T
It follows from the conjugate method that,

P(bSy = €62Vin + & b'¢*Van 2 2% + h) = P(Tiy 2 2% + h)

= Eexp{Tln}/ e 'dHy,(t)

2+h

Eexp{Ti,}e " /oo e N dH,, [olN(t +en)+ mlN]
0
= Eexp{Ti,} e~ h (ﬁN + RN) (86)
where
Ly = /DOO eIV DL + 2y,
Ry = /OOO e~tring {Hln [alN(t Yen) Fmin| — Bt + sN)} .

We next estimate £ exp{Ti,}, Lx and Ry for 0 < & < 1/2, & < 36, |h| < z?/5and 2 <
x < nwy/ maxy |ag|, where we assume n suffciently small such that » < min{1/128, Ao, A1},
with \g and \; defned as in Lemmas 4.3 and 4.4. This n chosen guarantees that Lemmas
4.1-4.4 hold true, and since G5 < maxy |ag|,

ﬁgN/wN S .TﬁgN/(sz) S 7’]/2 S 1/256 (87)

Clearly, by Lemma 4.3,
exp {x2/2 — Ax363N/wN} < Eexp{Ti,} < exp {.1‘2/2 + Aw3ﬁ3N/wN}. (88)

In order to estimate £, we note that

1 o 1 2
Ly = —— [ eovthlren?y
V2T /0
_g2 o0
e ex/2 6—(5N+0N)t_%t2dt
Var Jo
6—5?\,/2
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Write () = {1 — ®(t)} /@' (t) = /2 [ e~¥*/2dy. It is readily seen that,
3/4<typ(t)<1 for t>2, and |[¢'(t)|=[tw(t)—1]<t? for t>0. (90)
On the other hand, v {ey 4+ on} = L1, and by virtue of (81)-(82) and (87),
len — h/on| < 2822 B3 Jwi (91)
and if in addition |h| < z?/5,

lexy +on — x| < 3|h|/(27) + 41 22 B Jwn < 22/3. (92)

Using (90)-(92), it follows from Taylor’s expansion that, for |h| < z?/5and 2 < x < nwy/ maxy, |a|,

Lin = Ylen +on}
= () +¢'(0) {ey + on — z}, [where 6 € (x/3,52/3)]
= w(x)(1+7+05:c53N/wN),

where || < 9]h|/z* and |O5| < 120. Therefore, taking account of (89), we get for |h| < 22/5

and 2 < x < nwy/ maxy |ag|,
Ly = e/ {1—®(x)} =N/ (1474 052 Bsn/wy). (93)
As for Ry, by (83) and integration by parts,
[Bx| < 25up |, |t + max| = ®(1)] < 24C By .
This, together with (90), implies that for z > 2,
Ry = OﬁxﬁgN/CUNQIQ/Q{l —q)(x)}, (94)

where |Og| < 32/27C.
Combining (86), (88) and (93)-(94), it is readily seen that for any || < z?/5and 2 < x <

Nwy/ maxy |ag|,

P(bSh = €02qVin + &b Vay = 22 + )
1—®(x)
< [149[h|z?] exp {—h + Az®Bsn Jwn } .

This proves (7).
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Similarly, by letting h = 0, it follows from (86), (88), (91) and (93)-(94) that if, in addition,
z? < wy/Bsn, then

P(bS, = €12qVin + & b¢*Vay = 2?)
= o(z)
exXp {_A333ﬁ3N/WN - 8?\//2} [1 - {|O5’ + \06\65%/2} xﬁ:&N/WN]
> exp {—412°Bsn/wn } [1 — Ay xﬁSN/wN}
> exp{—A3z’fan/wn}, (95)

v

by choosing 7 suffciently small. From (95), the property (6) will follow if we prove that, for

2?2 > wy /B3y and 2 < z < nwy/ maxy, |ag

P(bSy = €02qVin + & Vg Ve = 22)
1—®(x)

> exp {—Ax’fsn/wn} . (96)

We will prove (96) by using (84). Let A = 1 + 28z03x/wy, 6 = X and 0; = A&.
Note that, 1 < A\ < 3/2 Dby (87),0 < 6 < 3/4since0 < ¢ < 1/2and |#,| < 72 since
|£1] < 36. By virtue of (81)-(82), (87) and z? > wy/Bsn, We have m%, < \2x?+24 23 B3y /wh,
o < 2w < 223 B3y /wy and

my — M\x® — 205 > AA—1)2? — 2823 Bsn /wy > 0.
Now, by (84) with y = Az? and Lemma 4.3, for 22 > wy/fsn and 2 < o < nwy/ max;y, |ax),

P(bSn VPV, + 61 b1V > $2> = P(TF > \a?)
1

S exp{—m}, — 203 } Eexp{T;)

% exp{—2?/2 — 2z — Az®Bsn /wn}
> (1 — ®(x)) exp{—A12°Bsn Jwn},

v

v

which implies (96). The proof of Proposition 2.1 is now complete. O
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5 Proof of Proposition 2.2

By the inequality (1 +y)Y/2 > 1 +y/2 —y? forany y > —1,

V2—n 1/2
P(S, > x\/qV,,) =P San\/n_q<l+ L >

n
2
< P(Sn Zx,/nq[l—l—%—h})

nQ
< P(V2 = 36:8(;()(,3 ~12 45 at))
+ (S0 > aymg(1+ ‘2% - %(;(Xf? SRR I))
:= Rip + Ron, say. ) (97)

Note that Ry, = P(bSn — 10%qVi, + 360 % Vo, > 2% — h0>, where, whenever 2 < z <
(1/128) wx/ maxy, |a|,

_ 180pz* > af N 362> | E(XE-1)? < 373 B3N

2 2 -

ho

n n

WN
and also 0 < hy < z?/5. It follows from Proposition 2.1 with £ = 1/2, &, = 36 and ko = hy
that there exists an absolute constant A > 128 such that, for all 2 < = < (1/A) wy/ maxy |a|,

Ron < (11— ®(2)) exp{Az’Fsnjuy }- (98)
This, together with (97), implies that Proposition 2.2 will follow if we prove, for all z > 0,
R, < 2V2e %, (99)

Theorem 2.1 of de la Pena, Klass and Lai (2004) will be used to prove (99). To use the
theorem, let Y; = X2 — 1, A = Y YV, and B = (2 Y2 + 4p>_a})'/2. It follows from
k=1 k=1
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Theorem 4 of Hoeffding(1963) (also see Lemma 6.2 below) that, for any \ € R,

Eexp {)\A — )\;82}

j

HEeman - v
<expqy — 2)\2p2a;‘;} 1+ E(AY 1 I(AY; > —1/2))}11

it

— EQ\VII(\Y; < —1/2>)r

<exp{ -2 ai}[1+22EvE]
2% al + 2)\2nEY2}

= exp{ - 2>\2p2ak + 2/\2])Z(a,,C - 1)2} <1,

where we have used the inequality e*~** < 1 + aI(z > —1/2). This yields that two random
variables A and B > 0 satisfy the condition (1.4) in de la Pena, Klass and Lai (2004). Now,
by noting (EB)? < EB* < 6p>_ aj and applying Theorem 2.1 of de la Pena, Klass and Lai
(2004), we have

(‘/171 > 61:(; (XP—1)*+ BpZa@W)

< P(A > 22 B+ (EB)2>

\/_
< e %UV2E exp (tA/\/B?+ (EB)?)
S \/56—6:ct/\/§+t2 S \/56_4:62, (100)
by letting t = /2. Similarly,
” 1/2 )
P(—%nz6x(2(x,§—1)2+5pzaﬁ> )gx/ie*“. (101)
k=1

By virtue of (100) and (101), we obtain (99). The proof of Proposition 2.2 is now complete.
O

6 Proof of Proposition 2.3

Throughout the section, let ¢;,1 < j < N be iid random variables with P(¢; = 1) = 1 —

N

P(e1 = 0) = p, which are also independent of all other random variables, and By = > ;" (¢, —
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p). By the inequality (1 +5)*/2 > 1+ y/2 — y? for any y > —1 again, we have

2 _ 1/2
P(S, > 2/qV,) = P(Sn > :c\/n_q<1 n V”n ") )

2 2 . \2
P(Snzx\/”_q(anzn e 2n) )>

n

IN

= P(ngak > ZIJ\/n_Q<1 + Zsk(;f —Y - (Zsk(zig — 1))2) ‘BN = 0)
:P(Z(gk_p)gk+% Z VRV Zx—h’BN=0>
1<k#j<N

:P(TN+ANZ$—h|BN:O),
where h = xpq Y (a3 — 1)?/n?,

T
I = Z(Sk — P)Gk, Ay = 2 Z VkVj,

1<k#j<N

where, forall j = 1,--- | N, v; = (¢; — p)(aj — 1) and

aj x(a? -1 z(1-2p)/, , 2 1 2 2
0= g (@ -0 e - ),

and where, in the proof of (102), we have used the fact that >~ a;, = 0, a} = N and
(ex —p)* = ex(l —2p) +p* = (55 — p)(1 = 2p) + py.
We need the following lemmas before the proof of Proposition 2.3.

Lemma6.1. For any random variable Z with E|Z| < oo,

1 TWN A
E<Z|BN - 0) - / EZeitBy/on g
Bn<p) —TWN

where B,,(p) = 2nwy P(By = 0) and
1 < V21/B,(p) < 1+wi’

Proof. Note that By = Z;il e; —n is an integer and for any integer £,

" ikt o 2r ifk=0
/_f dt—{ 0 ifk£0.
The proof of (103) is now obvious. The estimate for B,(p) follows from P(By
(M)p"g™—" and Stirling’s formula. O
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Lemma 6.2. Let the population {C'} y consist of N values ¢y, -, cy. Let Xl, e ,Xn denote
a random sample without replacement from {C'} 5 and let Yy, .-+ .Y, denote a random sample
with replacement from {C'} 5. Then for any continuous and convex function f(x),

Ef(ixk) < (3 T) (105)
ZXQ Z X, X ) < Ef( 3 ffkifj) (106)

By

1<k#j<n 1<k#j<n
Proof. (105) is Theorem 4 of Hoeffding(1963). We next prove (106). As in the proof of
Theorem 4 in Hoeffding(1963), for any function f, there exists a function g¢(z1, - - - , ,,) which
is symmetric in x4, - - - , x,, such that
Ef( 3 Yf,jg) = Egs(Xy, -, X). (107)
1<k#j<n
By noting

(Y )= Y s[(Ne) - 2a]

1<k#£j<n k1, kn=1 j=1 j=1

as in (6.6) of Hoeffding(1963), g, can be written as

k 9 k
.gf Ty, » L ZP k Zla"' 72']677.17”. 7rk)f|:(zrj$ij) - Z%’ﬂ??j}a (108)
j=1 j=1

where the sum ' is taken over the positive integers k, iy, --- ,ix, 71, ,7% SUch that k =
2,...,m, Zle r; = nand iy, ..., are all different and do not exceed n. The coefEcients p
are non-negative and do not depend on the function f. In particular, when f(-) = x,

Gz(z1, -+ 2y KOZ%-FIQ Z T Xy, (109)

1<k#j<n

since gy is symmetric on (x, ..., x,,), where K, and K are constants. Since

E > ?k?;zKoEzn:X,erKlE > XX,

1<k#j<n k=1 1<k#j<n

by (107) and (109), we have that
() - B SR () - 2)
N—
T

holds true forany c¢;,--- ,cy € R, and hence K, = %=L and K, =

N On the other hand, by

letting f = 1in (107) and (108),
S plhkyin, - igerisee ) = L. (110)
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By virtue of (107)-(110), it follows from the Jensen’s inequality that, for any continuous and

convex function f(x),

Ef<n§1;X£+N];1 3 )”(k)?]) = Ef(g.(X1,---, X))

1<k#j<n
1<k#j<n
This yields (106) and hence completes the proof of Lemma 6.2. O
Lemma6.3. (i). We have
E( S By = 0) < An?Bly, (111)
1<k#j<N
N N
E(Z e > v”?|By = o) < Anfy, (112)
k=1 j=1,#k
3/2 9 29
E(‘ S vw| " By = o) < An2B,. (113)

1<k#j<N

(it). If g, 1 < k < N, are iid random variables with

independent of all other rv’s, then

3/2
E(‘ Z NN VkVj ‘BN:0> < Am*(t)n*Biy, (114)
1<kAT<N
3/2
E(‘ Z (1 —nj)vey; BN:0> < Am(t)n*Biy. (115)
1<k#j<N

Proof. We £rst prove (113). Note that

Z ;= Z gjen(al —1)(ap — 1) + QpZEk(a% —1)?

1<k#j<N 1<k#j<N
02 Y (a2 1)@ - 1).
1<k#j<N
By the c,-inequality, we have

E’() Z ViV

1<k#j<N

3/2

‘BN — o) < AL + AL + I3), (116)
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where

3/2

[1:E<‘ Z @gk(ai—l)(az—l)’ BN:O>,

1<k#j<N
3/2
[2:p3/2E(‘ng(ai—1)2 BN:O),
3/2
L=p| Y (@1t
I<k#j<N

Since " a? = N,

‘3/2

o< oS- < (Dal) < (T ll) < ek ai)

Recall that X, X», ..., X,, isarandom sample without replacement from {a} v = {a1,--- ,an}.
Suppose that Y7, Y3, ..., Y,, is a random sample with replacement from {a} 5. Note that Y; are
iid random variables with Ef (Y1) = + > f(ax) for any f(.). It follows from Lemma 6.2 and
the classical results for iid random variables that

n 3/2 n 3/2
L= pRE| S (-1 < p B> (1)
k=1 k=1

n 3/2 3/2
< op?? E‘ S (O -1 = BOZ 1)) 4+ 2°2 [nE(Y? - 1)
k=1
3/2 - 2 2 2 2 3/2 3 2 2 3/2
< dp ZE’((Yk 12— B2 -1 +2p (Z(ak—n
k=1
3/2
< 16972 Y Jaf — 11 +2° | (0 — 1)
2
< 18p5/2<z |ak|3) < 1802 3y (118)
Similarly, it follows from Lemma 6.2 and the classical results for U-statistics that
N —1\3/2 N — 1.3/ 3/2
() h = ()R Y (- -
1<k#j<n
3/2 n 3/2
< 28| Y (F-nO7-1)| 2 E)Y (XE - 1)
1<k#j<n k=1
< An?(E)Y1)*)? +36n% B3y < Ain® Biy. (119)

Combining (116)-(119), we obtain the required (113).
We next prove (112). Note that, by >~ a2 = N,

N N
Vg Z vi = ep(a; —1) Z q(a? —1)
j=1,7k j=1,#k
N
—plai = 1)) e = 1) + (2pex — p*)(af — 1)°.
j=1
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By the c¢,-inequality, we have

N

N
E(Z |Vk Z Vj‘3/2

k=1  j=1%#k

BN:O> < Ay + Is + Ig),

where, as in the proofs of (117)-(119),

N N 32
L = ZE)ek(ai—m 3 eiad 1) BN:O>
J=1,7#k
32 N 32 N
= pZ}ak—l‘ (‘ Z Ej(a?_l)‘ ‘ Z q—n—l)
j=1,#k j=1#k
A?’Ln—l al 2 3/2 3/2
< Z\ak 1] Z a2 — 1% < An? B2y,
j=1,#k
N N /
Iy = pZ|az 1|3/2E<‘Zaj(aj—1)’ )BN:0> < An® By,
k=1 j=1
N
Iy = Z]ak—1]3 (!2}95 }3/2‘31\/:0) < Apzzmg < An’piy.

This yields (112).
The proof of (111) is simple. Indeed,

S B(mw? By =0) < A(Xlml) E(l - ) - p)P2|By=0)
1<k#j<N
< A p2<z |ak’3>2 = A1n25§N.

We £nally prove (114) and (115). By (113) and the ¢,. inequality, it suffces to prove

N

B(| S o= m@) o —m(e)as|”

1<k#j<N

By=0) < Am*(t)n*fy,  (120)

5| Y e mioym|”

1<k#j<N

(BN:()) < Ambn?B,.  (121)

In fact, recalling that n,, are iid random variables with En; = m(t), independent of all other
random variables, it follow from conditional expectation arguments and moment results for

31



degenerate U-statistics and (111) that

B(| S o= m@n —mtyms|

1<k#j<N

BN:O>

<4 3 B(lm = m(®)n; = mi)mrl2|By = 0)

1<k#j<N

< Am’(t) Y E(]ykyj\s/Q‘BN ~0)

1<k#j<N
< Am?(t)n® B3y

This proves (120). Similarly, it follows from conditional expectation arguments and moment
results for partial sums and (112) that

3/2
E(| 3 tm—m@mw| | By =0)
1<k#j<N
N N 3/2
= E(’Z(nk—m(t))yk Z vj BN:0)
k=1 j=1,#k
N N 3/2
< Am(t)ZE(’yk Z v BN:0>
k=1 j=1,#k
S Am(t) n2 §N7
which implies (121). The proof of Lemma 6.3 is now complete. O

To introduce the following lemmas, we defne
f(t) = E(e"™ ) |By = 0), fi(t) = E("™|By =0), fo(t) = E(Ae™™|By =0),
andfork=1,--- N,
gt ¥) = Eexpli(er — p)(tgr + ¢ /wn )}
We also use the notation A = 3y /wn.

Lemma 6.4. If |¢t| < (1/128)A~1, then for 2 < = < (1/128)wy/ maxy |ax| and any 0 <
m(t) <1,

FOI < AL+ Jtal) [m2(8) e O Ly 1/0m 5

+ AtPPm(t) A% + Alt|m*3 (1) A*3, (122)
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Proof. Defne {ny, k =1,---, N} as in Lemma 6.3 (ii). Furthermore, let

Tiy = Y mklex— D)o, Ty = Y (1 —m) (e — )grs
. x . x
My = 5 > mnuy;, Aov = — > (1 =)y,
1<k#j<N 1<k#j<N
. x
My = — > (=)@ =)y
1<k#j<N
Note that
Ty + Ay = Tiy + Ty + Ny + 2055 + Ay (123)

It follows from (123), |e® — 1| < |t| and |e — 1 — it| < 2|t|*/2, that

|f(t)| = ‘E(eit(TfN+T5N+A’fN+2A§N+A§N)|BN _ O)‘
< BTN NN By = 0)] + |t E(IAjy ]| By = 0)
< ’E<€it(Tf‘N+T5‘N+A§N)|BN = 0)} + 2|t ‘E(A;Neit(TfNJrTQ*NJrA;’N)’BN _ O)’

+8[t*2 B (| Asn P2 By = 0) + [t|E(JAT x| By = 0)

Ei(t,x) + Zo(t, x) + Z5(t, ) + Zu(t, ). (124)
We £rst estimate =3(¢, x) and Z4(¢, ). By Lemma 6.3 (ii), we obtain that,
E(|Asx 2By = 0) < Ac®Pm(t)n~" By < Am(t)A%,
and, by Holder’s inequality,
E(|Aiyl|By = 0) < [B(AN By = 0)]7° < Am*A0)a*.
These facts yield that

Es(t, ) + Za(t, x) < AJtPPm(t) A2 + Ajt|m*3 (1) AY3. (125)

Next we estimate =, (¢, z). Write Biy = > nk(ex — p), Bay = >_(1 —m) (e — p), and
Note that, given ny, - - - , 0,

17y, Biy € of{ek, k € B}, T5n, Ny Biy € o{eg, k € B},
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and By = Biy + B;y. It follows that 77, and B}, are independent of 13,,, A%y, Biy, given

m,- -+ ,nn, and hence by Lemma 6.1,

E1 (t7 33)

Eexp {it(Tiy + iy + Niy) + By} |dv

_ ! /
Bn(p) [p|<mwn
< 2/ E\E, exp{itT}y + 1Y Bjy/wn} ‘d@b
[Y|<mwn

= 2
/|1/)|<7TUJN H

(e = P)ltgi + ¥ /on)} o (127)

where E,, denotes the condition expectation given n,, k =1,--- | N.
Let ¢; be an independent copy of ;. Note that, by Taylor’s expansion of ¢'#,

BE|Eyexp {inu(ex — p)(tge + ¥ /wn)} |
= E(Eyexp {in(er — e5)(tgr + ¥ /wn)})
= Eexp {ink(ex — ;) (g + v /wn)})
< 1= (1/2)(tge + v /wn)* EngE(er — €1)” + (1/6)|tge + & /wn [ EniEley, — ei]*
< 1—pgm(t) (tgr + v /wn)* + (pa/3) m(t) [tgr + v /wn .
This, together with that fact that > g, = 0 and for 2 < z < (1/128)wx/ maxy, |ax|,
‘pngz - 1) < 2By /wy and > pglgsl* < 5B /wy, (128)

yields that for [¢| < (1/128)A~!, |¢| < (3/8)wy and 2 < z < (1/128)wy/ maxy, |ay,

J(t, ) =

INIA

IN

IN A

IA

(e = p)ltgr + ¥ /wn)} |
(T 218y exp Gimelen — o)t + v /on )} )
exp { = (pa/2m() Y (tgr + ¥ /on)* + (pa/6)m(t) S ltge +wfwonl*}
exp { — (pa/2)m(?) Zt? m(t)y?/2

+(2pa/3m(t) Y ltgnl® + 2/3)m(B)[F foow |
exp { = (pa/2)m(t) 3 g% + (2pa/3m() D ltgsl* — m(t)w* /4]
exp { = (1/2)m(t)t* (1 = wfhy oy — (5/3)[t]Bsn /o ) — m(t)? /4]
exp{—m(t)t2/4 — m(t))?/4}. (129)

To estimate J(t, ¢) for (3/8)wy < |[¢| < mwy, We £rst note that

BB, exp {im(ex — p)(tgr + ¥ /wn)} | = Eexp {im(ex — 3)(tgr + 9 /wn)})
=1 —2pq + 2pq E cos [n(tgr + ¢ /wn)]
=1 —2pgm(t) + 2pgm(t) cos (tg + ¥ /wn). (130)
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Defne D = {k : |gx| < 2A} and D¢ = {k : |gx| > 2A}. Itis readily seen that, for k € D,
lt| < (1/128) A" and (3/8)wn < |¢| < Twy,

1 1 23
< — - - < < ——
<tgp+ Y/ wy 7r+64 or il T <tgr + ¢ /wn o1

64 =
and hence cos (tg; + ¢/wy) < cos(23/64) < 0.95. On the other hand, it follows from (128)

that, for 2 < x < (1/128)wy/ maxy, |ak|,

P 2 I _ _
4(Npg) D) < =D < D gk < (pa) 7 (1 + 2 fwn) < 2(pg) 7
N keDe

where | D¢| denotes the number of D¢. Thus |D¢| < N/2and |D| = N — |D¢| > N/2.
By virtue of (130) and all above facts, we obtain that for || < (1/128)A~!, (3/8)wy <
Y] < rwy and 2 < z < (1/128)wy/ maxy, |ag|,

g0y < (T ElBye (e~ p)ta+vfon) )

keD

< H exp{ — pgm(t) [1 — COS (tgk + 1/1/wN)}}

< exp{ — (1/40) m(t) wi }. (131)

Combining (127), (129) and (131), it follows that, for |¢| < (1/128)A~tand 2 < z <
(1/128)wy/ maxy, |ag|,

21(t,z) < Am(t) "2 mOP /4 L Ay e (/40O (132)

Finally, we estimate =, (¢, z). Note that Ay = -5 > . pe V5 D pep Vi Where B and B¢ is
defned in (126). Similarly to (127),

— 2|t]
Eo(t,x) = /
Bn<p) || <mwn
4|t|x/
< E[ E E E,|v;
n? [Y|<mwn 77| j|

B (At T Tiv i sio Blow ) g

E, (Vk exp {itTy + 1By /wn} ) H dip

jEBC keB
4|t|x
< | 2’ / L Z (1 = np)mElv;| Elv| Qi (2, ¢)]dw
W Jwl<mon tczpen
41t t
< S By Bl / Ut ), (139
n 1<j#k<N \<7rwN

where

Qi(t, ) = [ |Eyexp {im(e — p) (tg + v /wn)} |.

I#5,k
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As in the proof of (132) with minor modi£cations, we have that, for |¢| < (1/128)A~1,

2 <z < (1/128)wy/ maxy |agx|, and forall 1 < j # k < N,

/ EQuu(t, $)d < Am(t)"V2e MO 4 Ay e (/40m3
[Y|<mwn

This, together with (133) and the fact that

2
S BlwlBlul < (2003 (@ + 1)) = 1604,

1<k#j<N

yields that, for 2 < = < (1/128)wy/ max;y, |ax| and |¢] < (1/128)A1,

Do(t,2) < Alta|(e O 4 e/ 1OmO )

(134)

Taking estimates (125), (132) and (134) into (124), we obtain (122). The proof of Lemma

6.4 is now complete. O

Lemma 6.5. Suppose that 2 < = < (1/128)wy/ maxy, |a|.
@i). If |t] < (1/128)A~ ! and |[¢] < mwy, then

N
[T latt ) < e @i g e/,
=17

forall 1 <k #j <N, and

‘d H%(t ¢) ‘ S 4(#, + |w’) (e—(t2+¢2)/4 + 6—(1/40)(,012\,)'

dt
(ii). If |t < (1/128)A~Y/3 and || < (1/128)A~1/3, then

’ Hgk(tv V) — g(t,w)’ < AAY3 €,(t2+¢2)/47

and if in addition |¢| < 1/4, then

‘d H.i;?t(tvw) i d.g(;z; 77/})‘ < AA4/3<1 + ¢6>67¢2/47

where

2 2
olt.0) = L1 S gu(r0) - 1)+ S

(135)

(136)

(137)

(138)

Proof. By letting m(t) = 1in (129) and (131), together with minor modi£cations, we obtain

(135). Note that, under the conditions of part (ii), s := [t| + |[¢| < (1/64)A~'/3 and

1> (gn(t ) = 1)+ (2 +97)/2] < 2(s*+5%)A,
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by (128) and Taylor’s expansion of e?*. (137) follows easily from some routine calculations.
See, for example, Lemma 10.1 of Jing, Shao and Wang (2003) with minor modi£cations.
We next prove (136) and (138). Note that

d 11 ge(t, ¥
c;t =g'(t¥) [ [ ot v
where g*(t,v) = Y [gu(t, 1)) 2l "and
% = —tg(t, )+ (D % +t)e BT/ (140)

Simple calculations show that

‘d Hgk@vw) o dg<t7¢)
dt dt

( < Tiv + (Tax + Tan)e G902, (141)

where

Y

Tiv = 19"t )] | T ot ) - glt )
Tow = 9" 00) + || D larlt) = 1) + (2 + )2,

gt ) — Z dgkc(;l/)) ‘

Tsn =

By the inequality |e®* — 1 — iz| < 22/2, it is readily seen that, for any ¢ and +,

ge(t,0) — 1] < (pg/2)(tg + ¥ /wn)?, (142)

and

‘ dgk(t» 1/1)
dt

Since pgg? < 2 by (128), it follows from (142) that, if || < (1/128)A~/3 and |¢| < 1/4, then
lgx(t, 1)) — 1| < 1/4 and hence

+pq g (tgr + ¥/ wn)| < (9a/2) lgk] (tgr + ¥ /wn)?. (143)

lge(t, )] = 1+ 61pq(tgr + ¢/ wy)?, (144)

where |0;| < 1. In view of (143) and (144), it follows from (128) again that

T < |2 (et - )2t
< QPQQZ\ngtngrWWNP
< 8(pa)*(1+ |ul?) (ng+21gk|/wN)
< 80P+ ) ((Sloef) "+ (o) N2/}
< 81+ [vl*)AY,
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Similarly, by recalling > g, = 0, we have

g o)+t < |pad) gi =1 +200)° > lgklltge + v /wn/?
< 10(1+[WPA

which, together with (137) and (139), implies that 71x < A (1 + |¢[3) AY3 e=¥*/4 and Joy <
A (14 |9|%) AY3, Taking the estimates of 7, Jon and Jsy into (141), we obtain (138).
Similarly, by noting that

d
Z|%\ < pa Y lonl tg + ¢ /wy]
tlpa > gl + 1l (pa > lge®)' <4t + [wl),  (145)

IN

it follows from (135) that

d o) N dgr(t,
RN e IR

j=1,#k
<At + ) (e TR 4 e (10,
which implies (136). The proof of Lemma 6.5 is now complete. O

Lemma 6.6. Suppose that 2 < = < (1/128)wy/ maxy |ay|. Then, for [t| < (1/128)A~1/3,

filty —e 2

< Aminft, 1H{A (1 + )™ 4 wif), (146)
and

)fl ) — g(t, 0)‘ < Amin{le], 1} (AY (1410 4 wif), (147)
where ¢g(t, ) is defned as in Lemma 6.5.

Proof. We only prove (147). (146) follows from (147) and (139) with ¢ = 0.
First assume |t| > 1/4. By Lemma 6.1, we have

fit) = imn VYdy =TI (t) + T1(t) + T15(t) + IT14(t), (148)
where
1) === [ gttvjan
10 = (05— =) | attvnio - B:(p) L s S0
1) = /| v (TL o000 =)
[1,(t) = B:(p) /( e [T ox(t, 0)dy.
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In view of (104), (135), (137) and (139), it is readily seen that
[ILo(8)] + [TI3(0)| + |TL(t)] < AAY3 (1 +1%)e ™/ 4 AwyS. (149)

In order to estimate IT;(t), write g\™ (¢,0) = E(ey — p)™e™9:(E+p) m = 1.2, 3. We £rst

note that, by Taylor’s expansion of e,

) 2
gt ) = gk(taO)-f-ﬂg,il)(t,O) - ;b?g,?)(t,O)
wWN N
3w3 3)
 Gaz 9 (£,0) + Ri(t, ), (150)

where |Ry,(t,4)] < (1/24)(¢/wn ) Eler — p|* < (1/24) pgy* Jw?;, and
gP(t,0) = pq+itgE(ex —p)® + Ru(t), (151)

where |Rix(t)| < t2giEler, — p|*/2 < pqt?gi/2. By virtue of (150)-(151) and the fact that
S =0, [e ¥ 2dp = 2rand [¢Fe¥*/? =0,k = 1,3, we have

IL (1) - g(t,0) = 7 / 0) — (1.0} ) do
- =/ [Z(gk(t,w—gk(no»w/z} gy
— R(), (152)
where
1 o 2 t2 2
IR(t)| < E/_ (Z\Rk(t, Z\le ) @+2)/2 gy

< Awy (1+ t%qui)e B2 < A1A4/3 (1+2)e /2

Combining (148), (149) and (152), we obtain (147) for |¢t| > 1/4
Next assume |¢t| < 1/4. Note that f,(¢t) — g(¢,0) fo fi(s) — ¢'(s,0))ds. It sufEces to
show that, for |¢| < 1/4,

|fit) =g (t,0)] < AAYP+ Awl. (153)
We continue to use the decomposition of f;(¢) in (148). In view of (136) and (138),
L)+ |10 < AN 4 Awy®
for |¢t| < 1/4. It follows easily from (140), (145) and (149) that,
[1L5(t)] < AAY® 4+ Awy,
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for |t| < 1/4. In order to estimate 717 (t), we £rst note that, as in (150)-(151),

dg(t,0)  dgi(t,0) i dg(t,0) w2 dg®P(t,0) .
_ - — Ri(t 154
dt dt wy dt 2w dt + B Y), (154)

where | Ri(t, 1) < (1/6)(|¢]/wn)’ltgel Eler — pI* < (1/6) pq |ge| [t] [ /w3, and

dgy(t,0)
dt

where | R, ()] < |t\giE\5k —plt/2 < pq\t!gz/z It follows from (154)-(155), > gr = 0,
pq Y g2 < 2and [ e ¥*/2 = 0 that, for |¢] < 1/4,

N R

= igpE(ex —p)® + Rjp(1), (155)

dt
Ao S Ry (0)] + A / SR w)e 2y
< Awg’pg Y gi+Awytpg Y gkl < AN (156)

IA

Therefore, by (140), (152) and (156), we have that, for |¢| < 1/4,

1) - ¢(4,0)| — \/%_W‘ /_‘: (dg(;;iﬁ) B dggft, O)ew%)dw‘

T
< |t |[IL(E) — g(t,0)| + —==e/?

V2r

< AAYS,

Combining (148) and all above estimates for 17, (t), k = 1,2, 3,4, we obtain (153).
The proof of Lemma 6.6 is now complete. O

Lemma 6.7. Suppose that 2 < z < (1/128)wy/ maxy, |ay|. Then, for [t| < (1/128) A~Y/3,

()] < A1+ %) A (e 4wy, (157)
1F() = fi()] < AAZRP2 4 A1+ ) A2 (e wiP). (158)

Proof. We £rst prove (157). Write e} = (e, —p)(tgx +1/wy). Note that, by (128), Evy, = 0,
>~ a? = N and Taylor’s expansion of ¢%,

Z ‘E(I/keisz)’ Z |Eyk(eitgk(£k—10) _ 1)6i(€k—p)¢/wN‘ + Z ‘Eyk(ei(ak—p)iﬁ/uw _ 1)‘
> ltgrl(a; + D E(ex — p)* + ([¥]/wn) Y (a; + 1) E(ex — p)?
21tlpg(>_ 1gxl®) 2O lawl*)*® + 2l lwy

6[t| Bsn wn + 2 |wn < 6(Jt] + [¢]) Ban wi-

INIA A

IN
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This, together with Lemma 6.1, (135) and the independence of ¢, implies that

Z E(ykyjeizsf)dw‘

1<k#j<N

1f2(0)] = #n(p)‘ /wSmuN

2x
n2 |

N

ST Bme)| [E@e=)| T] latt v)lde

YISTON 1 <kzi<N 1=1,#j k

IN

IN

Aan 2 (14 [t])? B2y Wi (e_t2/4 + w?\,e—(l/m)‘“?v)

< A(1+t2)A2(67t2/4+w;,6),

which yields (157).
By virtue of (157) and (113), the proof of (158) is simple. Indeed, by (113), we have

|f(t) — f1t) —it f2(t)] = ‘EeitT" (e"* —1—itA,)|By = 0)’
< 2tPRE(|A| By = 0) < AP gy
and hence
1f@) = O] < () = ful) =it (O] + 2] | f2(2)]
< AN 4 AL (14 £2) A% (e 1wy,
as required. The proof of Lemma 6.7 is now complete. O

Lemma 6.8. Suppose that 2 < = < (1/128)wy/ maxy |ax|. There exists an absolute constant
A such that, for all |y| < 4«,

P(Ty +Ax >y |By=0) < (1—®(y))+AzAe /24 ANY3,

Proof. Note that Lemmas 6.4, 6.6 and 6.7 are similar to Lemmas 10.1-10.3 in Jing, Shao
and Wang (2003). The proof of Lemma 6.8 is similar to Lemma 10.5 of Jing, Shao and Wang
(2003) with some routine modi£cations. We omit the details. O

We are now ready to prove Proposition 2.3. Note that max |ay| < wy,

h = xpq Z(ai —1)*/n? < 2 max|ag| Bsy/n < A,
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and |x — h| < 2z. It follows from (102) and Lemma 6.8 that

P(S, > x\/qV},)

IN

P(Tx +Ay > 2 —h|By =0)

(1= ®(x — h)) + AzAe M2 4 AN

1— ®(x) + A(L 4 z)Ae /208 L ANY3

(1 —®(2))(1 + Az?Ae™) + AAY?

(1 — ®(x)) exp{Ax®Ban Jwn } + A (2Bsy Jwn) '’

ININ A

IN

where we have used the result:
(I)(IF) - CD($ — h) < hCID'(x — h) < he—(w—h)2/2 < AB_IQ/Q—HBA‘

This yields Proposition 2.3.
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