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TOWARDS AN INTERSECTION HOMOLOGY THEORY
FOR REAL ALGEBRAIC VARIETIES

JOOST VAN HAMEL

ABSTRACT. This note considers equivariant intersection homology of stratified
spaces with an involution. Specialisation gives a good intersection homology
theory with 2-torsion coefficients of the set of fixed points, but no grading. To
get a degree filtration, we consider the equivariant conomology sheaves on the
guotient space with respect to the corresponding perverse t-structure.

For algebraic varieties over the real numbers that admit a small resolution,
it is shown that this procedure indeed provides the desired middle intersection
homology theory, which even comes with a natural grading. In particular, it
follows that the 2-torsion homology of a small resolution of a real algebraic
variety is independent of the small resolution.

1. INTRODUCTION

In Borel's 1984 seminar on intersection cohomology, Goresky and MacPherson
posed the problem whether there is a self-dta2 -generalisation of intersection
homology for real algebraic varieties. Apart from self-duality, the main criterion
should be that if a variety has a small resolution, then the intersection homology
should agree with the homology of the resolution.

They give an example of singular curves to show that this homology theory
would not be a purely topological invariant. An example of a Schubert
variety shows that even when the real algebraic variety is normal (hence a
pseudo-manifold), such an intersection homology cannot coincide with standard
intersection homology.

Since a real algebraic variety is the fixed point set of complex conjugation acting
on the complex points of an algebraic variety defined over the real numbers, the
natural thing to do is to try to define the intersection homology of the real points
in terms of the topology of the complex points with the involution. This will give
a topological invariant of the set of real points together with the action of complex
conjugation on a small neighbourhood of the real points inside the complex points.

In Section 3 of this note we will see that indeed the localisation techniques of
equivariant cohomology transform tt#/2-valued intersection homology of the
complex points into & /2-valued homology theory of the real part with the above
properties, except that this homology theory does not come with a natural grading.

In Section 4 we attempt to get a good grading by taking the filtration associated
to a spectral sequence that computes equivariant cohomology in terms of the
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cohomology of perverse equivariant cohomology sheaves on the quotient space.
Since the quotient space does not admit a good stratification with even-dimensional
strata, we ged priori two filtrations, one for the lower and one for the upper middle
perversity.

When our variety admits a small resolution, we get much better results. It should
be said that small resolutions only exist in special situations, and when they exist
they need not be unique; on the other hand, they do occur quite frequently in
practice (e.g., in threefold theory and in the theory of Schubert varieties). Having a
small resolution, it can be shown that both filtrations on our ungraded intersection
homology agree with the degree filtration on the homology of the resolution.
The construction then even gives an intrinsic grading, which coincides with the
grading on the homology of the resolution. Hence in this case we get the self-dual
graded homology theory we are after. In particular, this gives a proof of the fact
that theZ /2-valued homology of a small resolution of a real algebraic variety is
independent of the small resolution (Corollary 4.10).

Whether the degree filtrations associated to the upper middle and lower middle
perversity coincide for arbitrary real algebraic varieties remains an open question.

AcknowledgementsThis paper would not have been written without Robert
MacPherson’s stimulating enthusiasm about the initial idea. | would like to thank
one of the referees for the detailed suggestions how to improve the exposition.

2. LOCALISATION AND SPECIALISATION OF EQUIVARIANT COHOMOLOGY

This section contains a brief review of the theory of localisation of equivariant
cohomology of spaces with an involution.

Let X be a reasonable finite-dimensional (but not necessarily compact)
topological space with an involutiom: X — X. We will denote the transformation
group{1,0} by G. The inclusion of the fixed point set is denoted by

1 XC X,
and the quotient map is denoted by

m X — X/G.

We are interested irG-equivariant conomology. For this we will work in
the derived categor2(X,Z/2) of bounded complexes dB-sheaves o /2-
modules. SinceG is finite, it is easiest to tak&-sheaves in the ‘naive’ sense,
as in [Gr, Ch. V] (but the more general construction of Bernstein and Lunts of
D%(X,Z/Z) for an arbitrary compact Lie grou@ action gives the same result).

In any case, for an equivariant continuous miapX — Y we have the usual
pairs of adjoint functorg f*, f.) and (f,, f'). In D&(X,Z/2) we have the internal
tensor product, the internal homomorphismgom(—, —), the Verdier dualising
sheaf Dy := ¢'Z/2, where@: X — pt is the constant map, and the dualising
functor

Dy (=) := Hom(—,Dx).
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All of these functors have the usual properties. We also have some specific
equivariant functors:
rS(X,—): D&(X,Z/2) — DP(Z/2) (derived global equivariant sections)

m©: D&(X,Z/2) — D°(X/G,Z/2) (derived equivariant local sections)

m: DP(X/G,Z/2) — D%(X,Z/2) (left adjoint of i)
with the obvious relationg ¢(X,—) =€ ol(X,—) = [(X/G,—) oTC. For a
complex.# of G-equivariant sheaves o\ we write

H'(X;G,.%) .= H(F®(X,.7)).
The relation¢(X, —) =T®ol (X, —) gives us a spectral sequence
ESY =HP(G,HYX, 7)) = HPY(X; G, 7),

which has many names in different context; here we will call it the Borel—
Hochschild—Serre spectral sequence. We also have the analogues for sections with
compact supports, denoted by as usual.

On the complement of the fixed point set the grdaacts freely, so there the
functor 7€ induces an equivalence of categoriBg(X — X¢,Z/2) ~ DP((X —
X®)/G,Z/2) with inverseTt;. Finiteness of the cohomological dimensionf
and X — X© implies the following localisation theorem.

Theorem 2.1. For every % € D%(X,Z/2) we have an N> 0 such that the
inclusiont: X© — X induces isomorphisms

(i) HKX;G,.Z) 5 HK(XC;G,1*.%) forall k > N,

(i) HK(XC®;G,I'.#) S HK(X;G,.Z) forall k > N.

Since the cohomology ringl*(G,Z/2) of G is isomorphic to the polynomial
ring Z/2[n], with n € HY(G,Z/2), we get the following Borel-Atiyah—Segal
localisation theorem.

Corollary 2.2. The inclusioni: X& — X induces isomorphisms

(i) H*(X;G,.7) ®z/2m Z/2N,n "1 = H*(X®;G,1*.F) @721 Z/2[n,n 1]

(i) H*(X®G'".7)@z/2mZ/2In,n" Y = H*(X;G,. %) @z /21 Z/2[N,n"Y].

If & is a complex of sheaves oX® with trivial G-action, we have an
isomorphism of graded /2[n]-modules

H(X%G,&) ~ H* (X% &) © Z/2[n],
z/2

S0 writing

H*(X%G,&)/(n—1) :=H*(X%G, éﬂ)z/ng/Z[n]/(n -1,
we get that
H*(X%G,&)/(n—1) =H* (X% &),
and the the Localisation Theorem implies the following ‘specialisation’ result:
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Corollary 2.3. Let . € D&(X,Z/2) be a complex of G sheaves.

(i) If 1*.Z is quasi-isomorphic to a complex of sheaves dh With a trivial
G-action, we have an isomorphism2§2-modules

H*(X;G,.Z)/(1—n) ~ H*(X®,1*.%).

(i) If 1".# is quasi-isomorphic to a complex of sheaves dh With a trivial
G-action, we have an isomorphisma§2-modules

H*(X;G,.%)/(1—n) ~ H*(X®,1".%).
Corollary 2.4. We have natural isomorphisms & 2-modules
H*(X;G,Z/2)/(1—n) ~H"(X®,Z/2),
H*(X:G,Dx(Z/2))/(1—n) = H*(X®,Dxe(Z2/2)) = H.(X®,Z/2)

Note that here we denote homology with closed supports (often called ‘Borel-
Moore’ homology) byH..(—,Z/2); homology with compact supports (isomorphic
to the usual singular homology) will be denotedd§(—,Z/2).

An important remark is that the grading d#*(X;G,.#) does not induce a
grading onH*(X;G,.#)/(1—n), since the ideal1—n) is not homogeneous.
Indeed, the groupH*(X;G,.#)/(1—n) is canonically isomorphic to the group
HK(X;G,.Z) for any large enougtk. In particular, this means that in the above
circumstances we do not automatically recover the grading oiX®,1*.%) from
the grading orH*(X;G,.7).

For example, ifX is a smooth manifold of pure dimension then Corollary 2.3
gives two isomorphisms betweeH*(X;G,Z/2)/(1 —n) and H*(X®,Z2/2);
one via the equalityi*Z/2x = Z/24e, and one via the equality'Z/2x =
@yvcxeZ/2v[—codimV C X)]. In general, the corresponding automorphism of
H*(X©,Z/2) is not the identity, nor does it preserve the grading: it can be shown
to be the cup product with the total Stiefel-Whitney class of the normal bundle of
XC in X (compare [DIKh§ 2.4]).

Remark.Theorem 2.1 and its corollaries also hold with compact supports. In the
next sections we will use notation Iikid(*c) to indicate results that are valid with
closed as well as compact supports.

3. INTERSECTION HOMOLOGY OF FIXED POINT SETS

In the previous section we saw that we could recover the homology and
cohomology of the fixed point set from the equivariant homology and cohomology
of the total space, although we lost the information about the grading. This suggests
that whenX is a pseudo-manifold with an involution, we can define an intersection
homology (with perversity) for X© by specialising the equivariant cohomology
of the intersection sheaf complég ,(X,Z/2) at (1—n).

In order to stress the fact that this construction doetsgive any grading, we
will use the notation

IHp®(XG,Z/2) =H"(X;G,ICp(X,Z/2))/(1—n).
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Similarly we define fixed point set intersection homology with compact supports
IH%’C(XG,Z/Z) by taking cohomology with compact supports on the right hand
side. In both cases the result will not just depend on the topological $fackbut

on a small neighbourhood &€ inside X together with the involution.

Remark3.1 There are several conventions regarding the degrees in which the
intersection compledC is placed. In this section | follow [GM] by adopting
the homological convention th&€ is isomorphic to®x when X is a topological
manifold. In other words, for arbitrar) the intersection homology is defined by
IHR(X,Z/2) = H7K(X,IC(X,Z/2)).

By construction, the standard results on intersection homologyXfoget
transported to our specialised equivariant intersection homolog)®f in
particular, we get the desired properties for real algebraic varieties as mentioned in
the introduction.

3.1. Arbitrary perversities.

Theorem 3.2.Let X be an n-dimensional pseudomanifold with an involution. For
any perversitiep < q we have natural maps

HE (X®,2/2) — IH29 (X8, 2/2) - IHE9(XC,2/2) - HO(X,Z/2),

(©)
with the following properties:
() The composite map is cap product with the total fundamental class

Mg € He(X®,Z/2)

which is by definition the congruence class mod(o- n) of the equivariant
fundamental class$ue H™"(X; G, Dx(Z/2)).
(i) All maps are isomorphisms when X iZg&2-homology manifold.

Proof. The natural maps iD°(X,Z/2)
Z/2[n] — ICp—I1Cq— Dx(Z2/2)

(see [GM, Prop. 5.155.5]) areG-equivariant, and they are all quasi-isomorphisms
when X is a Z/2-homology manifold. The constructions and the last part of the
theorem follow immediately. O

Forp, g, r suchthatp+qg < r, we have natural pairings
IHR(X®,2/2) ® IHI(X®,z/2) — IHY(X®,Z/2)

IHR(X®,2/2) ® IHI(XC,Z2/2) — IHL(XC,Z/2)

Theorem 3.3. Let X be an n-dimensional pseudomanifold with an involution and
let p and g be complementary perversities. The above pairing and the trace map
Ie(X,ICt) — Z/2 induce a perfect pairing

IHR(X®,Z2/2) @ IHZ(XC,Z2/2) — Z /2.
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Proof. Since the composite map
ICo,®ICq — IC{[n] — Dx[N|
is a Verdier dual pairing by [GM, Th. 5.3], we get that the induced map
M(X,ICp) — som(I¢(X,1Cq),Z/2[n])
is an isomorphism, so the result follows from Lemma 3.4 below. O

Lemma 3.4. With notation as above, let# be a bounded complex of G-
equivariantZ /2-modules. Then the canonical pairing

H*(G,.#)oH" (G, #om(#,2/2)) — H*(G,Z/2)
induces a perfect pairing
H*(G,.#)/(1—n)H*(G,#om(.#,2/2))/(1—n) — Z/2.

Proof. This is the ‘*hypercohomology’ version of the standard duality in the
cohomology ofG. O

3.2. Middle perversity. If X is aZ/2-Witt space (as in [GM§5.6]) it admits a
middle intersection shed€ (X,Z/2), hence we get ungraded specialised middle
intersection homology groups f&© with closed and compact supports by putting

IH(®C)(XG,Z/2) — H(*C)(X;G,IC(X,Z/Z))/(l_n)'

Again, by construction it inherits all the usual properties from the intersection
homology of X :

Theorem 3.5. With notation as above, the intersection pairing
IHg(X®,Z/2) ®IHE (X®,2/2) — Z/2.
is perfect.
Proof. Immediate from Theorem 3.3. O

Small maps and resolution®Recall that in [GM] a proper surjective morphism
f: Y — X of (not necessarily complete) irreducibl-dimensional complex
algebraic varieties is calldtbmologically smalif for all g > 0 the locus of points

{(xeX(C): AT N(£,1C(Y(C),Z/2))x # 0}

has algebraic codimensiang. In particularf is finite over a Zariski-opel) C X
and we define the degree df as the degree of over U. A normalisation
map is homologically small, and so issmall resolution a proper surjective
morphism f: X — Y of irreducible varieties, such that is smooth, f is a
birational isomorphism, and for every> 0 the locus{x € X: dimf~1(x) >r}
has codimension- 2r.

We will be interested in the case whexXe Y and f are defined oveR, so that
f is equivariant with respect t@& acting via complex conjugation oX(C) and
Y(C). More generally, we can consider any continud@sisaction onX(C) and
Y (C) (with respect to the Euclidean topology). By slight abuse of terminology and
notation we will say thaG acts via acontinuougnvolution onX andY.
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Theorem 3.6. Let f: Y — X be a G-equivariant homologically small map of
degreel between complex algebraic varieties with a continuous involution. Then

IH9(Y(C)®,2/2) ~ IH'Y(X(C)®,Z/2)
Proof. We have thatf,IC(Y(C),Z2/2) ~IC(X(C),Z/2) by [GM, Th.6.2]. O

Corollary 3.7. If f: Y — X is a G-equivariant small resolution of a complex
algebraic variety with a continuous involution, then

IHO(X(C)®,z/2) ~H(Y(C)®,Z/2).

Kunneth formula.In view of [GM, Prop. 6.3], a Kinneth formula for fixed point
set middle intersection homology follows from the fact that

HY(G,.#®.4)/(1-n) ~H*(G,.#)/(1-n)®H"(G,.#)/(1-n)
for bounded complexes”, .4 of G-equivariantZ /2-vector spaces.

4. A DEGREE FILTRATION

In this section we will show that for any perversityour specialised equivariant
intersection homology groupH%(XG,Z/Z) admits a filtration that can be
considered as a degree filtration.

This filtration comes from g -perverse version of the Grothendieck spectral
sequence associated to the composition of derived funE@rs Mx/G oTC. For
this we use the-perverse t-structure on the derived category of sheaves/@

Then we analyse the case of an algebraic vanéetgver the real numbers that
admits a small resolution. There we see that the middle intersection complex
TCIC (X(C),Z/2) actually splits (up to a bounded mapping cone) into a direct
sum of shifted copies of a complex of shea¥€$X(R),Z/2) on X(R) which is
(up to a shift) perverse for both the upper and the lower middle perversity. The
splitting provides a grading oifH (X(R),Z/2) compatible (up to a shift) with
our degree filtrations for both the upper and the lower middle perversity.

4.1. Strictly G-equivariant stratifications and perverse t-structures.

Definition 4.1. Let X be a topological space with an action 6f= {1,0}. A
stratification . of X will be a finite partition of X in locally closed subspaces
with the following properties (cf. [BBD, 2.1.13]).

e Each stratumS e .# is a topological manifold where every connected
component has the same (finite) dimension.

e The boundary of each stratum is a union of strata of smaller dimensions.

e For anyis: S— X the functor(is). has finite conomological dimension
and for any locally constant shea&# of Z/2-modules of finite rank, the
H"((is)«.7) are locally constant along ar§y € ..

We say that a stratification” is strictly G-equivariantif it also satisfies the
following properties.

e For eachSc .7 we havea(S) = S and eitherS® = Sor S° = 0.
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A stratified G-spacewill be a topological space with an action & and
a strictly G-equivariant stratification. Clearly, for any strictl§g-equivariant
stratification of X we have that?’ /G := {S/G: S S} gives a stratification of
X/G, and.#® = {Se.7: S° =S} gives a stratification 0K® which both satisfy
the properties of [BBD, 2.1.13]. For any’-constructible complex ofz-sheaves
% on X we have that.% is . /G constructible and*% is . constructible.
Of course, neitheX /G nor X® will in general be a pseudomanifold in the sense
of [GM], but this does not matter here.

As usualp: .¥ — Z will be a perversity such thgt(S) only depends on the
dimension ofS. Since we use the BBD-formalism in this section, our special
perversities are:

The zero perversit): S— 0.
The lower middle perversitym|: S— —|dimS/2|
The upper middle perversitym]: S— —[dimS/2] = —|(dimS+1)/2].
The top perversity: S— —dimS.
Here | x| denotes the largest integerx and [x| denotes the smallest integerx.
Observe that after the usual reindexing, the lower middle pervelsity actually
corresponds to the lower middle perversityof [GM] if X is odd dimensional and
to the upper middle perversity of loc. cit. if X is even dimensional. Thaual p*
of a perversityp is defined byp* =t —p.

Recall that thep-perverse t-structure oD (X,Z/2) is given by

PD=0(X,Z/2) = {¢: #"i5¢ =0forSe .7, n>p(9)}
PDZO(X,Z/2) = {€: A" =0forSe ., n<p(S)}

and similarly onX/G and X©. The heart of this t-structure is the categorypoef
perverse sheaves (@f/2-modules) onX. The cohomology sheaves associated to
this t-structure will be denoted by#* (%) . For the perversities mentioned above,
the t-structure on the subcategory .of -constructible sheaves does not change
when we refine? (see [BBD, Prop. 2.1.14]).

Observe that,: D(X®,Z/2) — D(X,Z/2),1,: D(X®,Z2/2) = D(X/G,Z/2),
andr.: D(X,Z/2) — D(X/G,Z/2) are p-exact.

4.2. Specialisation and perverse t-structures.A key property of the cohomol-
ogy of G=Z/2 that is used in equivariant localisation is the fact that the nontrivial
cohomology class) € H(G,Z/2) = Z/2 induces for everyG-module M and
everyn > 0 an isomorphisnH"(G,M) ~ H™1(G,M).

In the context of derived categories,gives for every bounded complex &f-
sheavesz on X a morphism of unbounded complexa§(%¢) — 1C(%)[1] of
sheaves orX /G such that the mapping cone is a bounded complex.

Lemma 4.2. For every bounded complex of G-sheav&son X there is an
N € Z such that the canonical map®(%’) — 1€(%)[1] induces an isomorphism
PN (TC%) ~ P 1(1C%) for every n> N and any perversity.

Proof. Applying the homological functor’#* to the distinguished triangle
(%) — 16(%)[1] — Cone we see that this follows from the fact that the
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mapping cone is bounded and that for any bounded complex of sh&#tés
vanishes fom large enough. O

Hence for any bounded complex Gf-sheavess’ on X we may define
D C = PN (TCE)

for n large enough. The key result that will be used in this paper to prove things
about perverse sheaves of the fot#;"¢ is the following observation.

Lemma 4.3. For any homomorphisria” — ¢” of bounded complexes of G-sheaves
on X and any perversitp we have that

AR
if and only if

HEC = ALE
Proof. Either condition is equivalent to the fact that the mapping coneSf —
TC%¢" is a bounded complex. O

Corollary 4.4. The perverse shed&#5°¢ has supports in X and
(6 =PHEEC =PHE (17F).

Proof. Immediate from Lemma 4.3 and the sheaf-theoretic version of Theorem 2.1.
O

In other words775°% can be considered as an equivariant specialisation of the
sheaf%’, even though in generd*(X;G,%)/(1—n) will not be isomorphic to
H*(XC,025%).

Corollary 4.5. Let ¥ be a bounded complex of G-sheaves on X. If we
have ap-perverse sheaf”? supported on ¥ (with a trivial G-action) and a
morphism% — ¢ or ¢ — & such that#5¢ ~ #5 7, then & ~ VA€

and H* (X6, 2) ~ H*(XC,B#5%) ~ H*(X;G, 2)/(1—n).

Proof. SinceG acts trivially on 22, we have thatr® % = @;-02[—i]. Since &
is p-perverse,R7Z" of the right hand term is? for everyn > 0. Now apply
Lemma 4.3. ]

Corollary 4.6. Let ¢ be a complex of G-sheaves on X, theffyDx(€) ~
Dye(PHLE).

Proof. By Corollary 4.4 and the general properties of Verdier duality, itis sufficient
to prove that#g Dye (i*€) ~ Dyc (PHLI*E).

Let Z/2[G] be the group ring ofG. Consideringi*¢ as a sheaf of
Z/2[G]-modules, we get thabZg"Dye(i*6) = 27 20Ny /5 (1", Dxe) =
D Dy (i"C ®z/2¢Z/2) On the other hand, by duality of perversity we get
@xe(p%mi*%) = W7m©xe (%”omz/z[q (Z/Z, I*Cg))

Hence the statement reduces to the claim that for very Idgeve have
%NQXG(i*Cg(gz/z[G] Z/2) = %7’\]@)(6(%”12/2[6] (Z/Z,I*Cg))



10 JOOST VAN HAMEL

Since any bounded below (resp. above) complex of sheaves has bounded
below (resp. abovep-perverse t-structure, it is sufficient to prove that for
any r > 0 and any large enough we have T_n_;_n+1i"C ®z/2g Z/2 =
TN—r,N4r] ZE0My 12 (Z/2,i*€")[2N], and this follows from the standard duality
and periodicity in the cohomology @ = Z /2. O

4.3. Construction of the filtration on specialised equivariant intersection
homology. Let X be a stratifiedG-space, let¥ be a bounded complex of
G-sheaves ofZ/2-modules onX and let p be a perversity. Consider the
Grothendieck spectral sequence

PESS(%) = H'(X/G,P#E%) = H'T5(X; G, ).
associated to the isomorphism of derived functors
rg = rx/G o) Tﬁ

The spectral sequence gives for evarg finite filtration--- CF* c F'~1 c ... of
the cohomology groupi"(X; G, %), with rth graded piece equal REL""(¥).
This filtration passes to the quotiedt (X;G,%¢")/(1—0), since on the level of the
spectral sequence the megs s — P#:%’[1] associated to) € H1(G,Z/2) gives
a mapPE"S(¢) — PE"St1(%). Observe that theth graded piece of this filtration
on H*(X;G,%¢)/(1— o) is a subquotient oH" (XC,P#L%).

If we apply this construction to the constant sh&gP and the zero perversity,
we get the degree filtration

Fr=PH(X%2/2
i>r
on H*(X;G,Z/2)/(1—0) = H*(X®,Z/2). With € = Dx andp =t we get the
degree filtration

F'=PH(X®,Dyxe) = P Hi(X®,2/2).
i>r i<—r
By analogy we now apply this construction # = IC,(X,Z/2) to definea
degree filtration onH? (X©,Z /2). We will see below that this gives the right result
in at least one nontrivial situation: the case of the middle intersection homology of
a real algebraic variety admitting a small resolution.

Remark4.7. Up to a bounded mapping cone, the compigk(Z/2)x actually
decomposes into a direct sum of shifted cohomology she@yes 7" Z /2[—i] =
Di=0Z/2xs[—i], andTCDx decomposes inteh;-o D x[—i] = B0 Dxe|[—i]

up to a bounded mapping cone. A similar decomposition ofthkC p into shifted
copies of7Z’I1C,, would provide a grading om%(XG,Z/Z) rather than just a
degree filtration. We will see below that we have such a decomposition for the
middle intersection complex on a variety over the real numbers that admits a small
resolution, but | have no idea whether such a decomposition exists in general.



INTERSECTION HOMOLOGY FOR REAL ALGEBRAIC VARIETIES 11

4.4. Middle intersection homology. When X is a Z/2-Witt space, the upper
middle and lower middle perversities give rise to a single middle intersection
homology sheafC (X,Z/2) and specialisation gives us a single ungraded middle
intersection homology groupH ¢ (X®,Z/2). However, our filtration depends
again on a choice for the upper or the lower middle perversity. Of course, one
would hope that these two filtrations are essentially the same, but to me this seems
unlikely without extra conditions oiX and the involution.

In the setting of real algebraic geometry, the situation looks better. We will
see below that thém| - and the [m]-filtration coincide (possibly up to a shift)
whenever there is a small resolution. For real algebraic varieties without small
resolutions this remains an open problem.

4.5. Small resolutions. Let X be a (not necessarily complete) algebraic variety
of pure dimensiorN defined over the real numbers. Recall from Section 3.2 that a
small resolutionf: Y — X is a proper surjective morphism (defined over the real
numbers) such that is smooth,f is a birational isomorphism, and for evary- 0

the locus{x € X: dimf~1(x) >r} has codimension- 2r.

Lemma 4.8. If f: Y — X is a small resolution of an algebraic variety of
dimension N defined over the real numbers, the/2yr)[[N/2]] is an [m] -
perverse sheaf and.Z /2y g)[[N/2]] is an [m]-perverse sheaf on X

Proof. Let . be a stratification oX(R), such thatf,Z /2 is . -constructible.
Let Se . be a stratum of dimensiod < N. By definition, for anyx € S, the
fibre of Y(R) — X(R) overx has dimension< (N —d)/2, hence

H#"(if.2/2)=0forng [0,[(N—d—1)/2]]
HN(i5f,2/2) =0forn¢ [[(N—d+1)/2],N—d]
For igf.Z/2 this follows from the proper base change theorem. iFgcbe/Z

this follows from the fact thatS is smooth of dimensiord, Y(R) is smooth of
dimensionN and f is proper, so that

isf.Z/2=isf.Dyr) [-N] = Ds(i5h1Z/2)[-N] = s#om(i5f.Z /2,2 /2)[d — N].
From the inequality|a/2| — |b/2] < —|(b—a)/2] for a,b € Z we deduce
that (N—-d—1)/2] —[N/2] < —[(d+1)/2] <—|d/2] and |[N—-d—-1)/2| —
I(IN+1)/2] <—[(d+2)/2] <—[(d+1)/2| = —[d/2]. It follows that
HN(isf.Z2/2[[N/2]]) =0forn> —|d/2]
HN(isf.Z2/2[[N/2]]) =0 forn> —[d/2].
Similarly, the equality [a/2] — |b/2] = —|(b—a)/2] gives us that
[((N—-d+1)/2] — [N/2] = —[(d—1)/2| > —[d/2] and [(N-d+1)/2] —
|[IN+1)/2| =—|d/2] > —[d/2]. It follows that
H"(i5f.2/2[|[N/2]]) =0forn< —|d/2]
A(i55,2/2[[N/2]]) =0 forn < —[d/2].
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Corollary 4.9. Let f: Y — X be a small resolution of an algebraic variety over
the real numbers of dimension N. Then

(i) The quasi-isomorphisiC (X(C),Z/2) ~ f.Z /2y c) induces isomorphisms
MUAEIC (X(C),Z/2) > 1.2 /2y(w)[[N/2]]
M IC(X(C),2/2) ~ £.Z/2¢g)[[N/2]]
(i) We have natural isomorphisms
IHE (X(R),Z/2) = Hiy) (X8, I"brg IC (X(€),2/2))
IHE (X(R),Z/2) ~ Hi,y (X8, Ml 1C (X(C), 2/2))
compatible with the corresponding degree filtrations.
(i) The degree filtrations on IQ(X(R),Z/Z) corresponding to
[mJETS(1C (X(C),Z/2)) and [ME$(1C(X(C),Z/2)) coincide (up to a shift in

(© AN (©)
degree byl if N is odd).

Proof. Immediate from Lemma 4.8, the sheaf version of Corollary 3.7 and
Corollary 4.5. O

This means that wheK admits a small resolutiod — X, we have an intrinsic
definition of an intersection complex on the real part by writing

IC(X(R),Z/2) = AL 1C (X(C),Z/[IN/2]]
(= b 1C (X(C),Z/2)[IN/2]]).

Putting

IH{¥(X(R),Z/2) := H} (X(R),IC(X(R),Z/2)),

we get an isomorphismH(@g)(X(R),Z/Z) = IHEFC)(X(R),Z/Z) and a graded

isomorphismIH'? (X(R),Z/2) ~ H{°(Y(R),Z/2). Corollary 4.6 gives us the
required nondegenerate pairing of grade® -modules

IH,(X(R),Z/2) x IH%_,(X(R),Z/2) — Z/2.

In particular, it follows that different small real algebraic resolutions have the
sameZ /2-homology.

Corollary 4.10. When Y— X and Y — X are two small resolutions of
an algebraic variety defined over the real numbers, the{YkKR),Z/2) and
H.(Y'(R),Z/2) are isomorphic as graded /2-vector spaces, and the same holds
for homology with compact supports.

Remark. After distributing the first version of this note, Parusinski kindly sent
me a manuscript of a work in progress in which he proposes an explicit chain
complex on any real algebraic variety which gives 2-torsion homology groups that
are isomorphic to the homology groups of any small resolution. In particular,
he obtains a different proof of Corollary 4.10. At this stage it is not clear
whether Parusinki's ideas will lead to homology groups with a nondegenerate
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intersection product. A proof of Corollary 4.10 by completely different methods

was announced by Totaro in [T].

CONCLUSION

For a (not necessarily complete) algebraic varieXy defined over the

real numbers we have introduced ungraded middle intersection homology

IHg(X(R),Z/2) andIHg (X(R),Z/2) of the real part which statisfies the desired

properties. These groups only depend on the topology of complex conjugation

acting on a small neighbourhood BfR) inside X(C).

The ungraded intersection homology comes with two natural degree filtrations,
corresponding to the upper and lower middle perversity. In particular, this allows

us to define upper and lower middle intersection Betti numbed§(&Y) .

When X admits a small resolution, the two degree filtrations (hence the two sets
of Betti numbers) coincide up to a shift. Moreover, in this case we actually get a

compatible grading omH g).
Questions that remain open for an algebraic var¥etyver the real numbers that
does not admit a small resolution:

e Do we have that
IHE (X(R),Z/2) = Hiyy (X(R), % IC (X(C), Z/2))

forp=|m| andp=[m]?

e Do M7 1C(X(C),Z/2) and [ML#5°I1C (X(C),Z/2) coincide (up to a
shift)?

e Do the upper and lower middle intersection Betti numbersX¢R)
coincide (up to a shift)?
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