ON THE KINOSHITA-TERASAKA KNOT
AND GENERALISED CONWAY MUTATION

STEPHAN TILLMANN

1. INTRODUCTION

The following is an application of a simple technique in the study of mutative 3—manifolds
which is based on Culler-Shalen theory as introduced in [6]. In the present paper, we
wish to investigate the effect of Conway mutation on the character varieties of mutative

knot complements. It is a well known fact that the Alexander polynomial of a knot

FIGURE 1. The Kinoshita-Terasaka knot and Conway’s mutant

remains unchanged under this mutation. The Kinoshita—Terasaka knot ¢ and its mutant
€7, discovered by Conway, therefore provide our smallest example of this type. We wish to

prove the following results about incompressible surfaces in their complements:
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Theorem A. There are closed essential surfaces in the complement M of the Kinoshita—

Terasaka knot which are detected by holes in the eigenvalue variety.

Let X(¢) denote the SLy(C)—character variety, and X,(£) an irreducible component con-

taining the character of a discrete and faithful representation.

Theorem B. X(¢) and X(€7) are birationally equivalent. Moreover, the detected boundary

slopes of the Kinoshita—Terasaka knot and its mutant are identical.

In order to prove these facts, we have to develop some tools which may be described
in a more general context. We call two 3—-manifolds generalised Conway mutants if they
are related by a sequence of mutations along orientable, separating symmetric surfaces (as
defined below) via involutions which induce the negative identity on first homology of the

surfaces. A result which we shall prove along the way is the following:

Theorem C. Let M be a finite volume hyperbolic manifold and M™ be a generalised Con-
way mutant of M. Then Xo(M) and Xo(MT) are birationally equivalent.

We thank Walter Neumann for encouraging conversations and help with some of the

arguments.

1.1. Remark. The arguments used in the following have basically been established by D.
Cooper and D.D. Long in the section on mutation of [3]. Here, we find the construction of

representations of M7 from representations of M, and the following

1.1.1. Theorem. Suppose that X is a component of the character variety of S* — N(K)
with the property that there is at least one representation whose character lies on X and
whose restriction to m (F) is irreducible.

Then the Z—irreducible factor of the A—polynomial corresponding to X appears in both

K and its mutant.

The proof of this theorem together with an easy homology argument and an explicit
description of the map descended to character varieties in fact gives Theorem B. Further-
more, Cooper and Long state that “one finds easily that the Kinoshita—Terasaka knot
cannot have an irreducible representation which restricts to a reducible representation on
the mutating sphere; so that this knot and its mutant have identical [A—|polynomial”.

However, according to our calculations, we have detected such representations. Since the
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existence of these representations is the key to our proof of Theorem A, we give a full

description of our data and methods.!

1.2. Conway mutation. Let ¢ be a knot or link and consider the complement M = S®—¢.
Let F' be an incompressible four-punctured 2-sphere such that its closure S? in S? is an
embedded 2-sphere meeting £ transversally in the four points S? — F. Such a sphere
is known as a Conway sphere for £. S? is the boundary of a ball B3 in S3. We call F a
mutation surface for € and write M_ = B3N M for its inside and M, = M — Int(B?) for its
outside, thus M = M_ U M, . Similarly, we write & = B®N¢ and &, = (53— Int(B?))N¢,
which gives ¢ = ¢_ U £,. F admits several orientation preserving involutions 7, which
correspond to half turns around orthogonal axes. Thus, they form a group isomorphic to

the Kleinian four group. The manifold obtained by mutating € via 7 is
M =M U, M,,

i.e. we obtain M™ by cutting M open along F' and regluing via 7, and say that M and M~
are mutative or mutants of each other.

Such an involution 7 of F extends to an orientation preserving involution 7' of S?. We
call ¢ = ¢_ U ¢, a F-mutant of ¥. Since 7 € Zy X 75, using a four—punctured sphere
as a mutation surface, at most four different 3-—manifolds can be obtained, one of which is
M. The procedure as described above is commonly known as Conway mutation.

Sometimes it will be more convenient to work with the knot exterior M’ = S —Int(v(£)),
where v(£) is a tubular neighbourhood of ¢. In the above definitions, we then have to
interchange M and F' with M’ and M' N F respectively. Since the fundamental groups of
these objects are isomorphic, there is no need to treat this distinction rigorously for our
purposes.

Similarly to the above, we can define mutation in a general 3-manifold M along any
incompressible, boundary incompressible surface F', which is not boundary parallel and
admits an orientation preserving involution 7. We call such a pair (F, 7) a mutation surface
for M. In the following, we shall always assume that F' is separating, and restrict ourselves
to the symmetric surfaces as shown in Figure 2 which have been introduced by Daniel
Ruberman in [9]. In the same paper, Ruberman has shown that if (F,7) is a symmetric
surface and M is hyperbolic of finite volume, so is M" and vol(M) = vol(MT7).

!D.D. Long has communicated by email that he thinks the above statement should have said “curves

of irreducible representations restricting to reducible representations on the mutating sphere.”
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(C) T1 (d) T2

(e) G2

FIGURE 2. The symmetric surfaces and their involutions
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1.3. Remark on Conway mutation. We will now explain how Conway mutation can
be realised by at most two mutations along suitably chosen genus two surfaces. This
observation will be crucial for the proof of Theorem B. We may assume that antipodal
punctures are connected by € inside the mutation sphere. The key observation is that in
the notation of the previous section the boundary of M’ is just FN M’ with the attachment
of two annuli joining antipodal punctures. Thus, OM' is a genus two surface as illustrated

in Figure 3(a). Note that Sy C OM’. Gy-mutation via the unique specified involution

(a) OM! as seen from inside M' - 7 acts (b) (M'—M") as seen from inside My — 7
as (a,c)(b,d) modulo conjugation and in- acts as (a,d)(b,c) modulo conjugation and
version inversion

T2

(c) The corresponding curves on G (d) The involutions of S3

FIGURE 3. Specialisation of Conway mutation

takes curves around punctures of S; to curves around punctures which are connected by
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annuli in M’ . Thus, mutation along M’ corresponds to mutation along S, via 71, since we
assumed antipodal punctures to be connected by these annuli and 7 is the only involution
taking antipodal punctures to each other.

We can also find another genus two surface in our knot complement. Take O(M'—M" ) as
pictured in Figure 3(b). This is clearly a genus 2 surface, where again S, C O(M' — M").
Go-mutation along this surface again takes curves around punctures to curves around
punctures which are connected to these by annuli in M . If € is a knot, the punctures of
Sy connected by annuli in M, are different to those connected by the annuli in M, since
otherwise we would have two link components. Thus, for a knot Go—mutation corresponds
here either to the involution 7, or 73, depending on which punctures are connected.

We can now perform each S;-mutation of a knot by merely considering the above de-
scribed Gy-mutations, since we obtain Sy—mutation via the third involution by applying
both of the others. If the mutation sphere intersects two link components, we can merely
produce S;—mutation via 7y using the above specified handlebodies and involutions.

From now on, we will assume that any Conway mutation is actually performed along
the associated genus two surface(s). This has the advantage that the involution induces
the negative identity on the mutation surface, and by looking at Figures 3(a) and 3(b), we
notice that the peripheral subgroup is carried entirely by either the inside or the outside
of the mutation surface.

The corresponding figures show the Kinoshita—Terasaka knot. The projection is obtained
from the one given in Figure 1 by applying a Reidemeister 2 move to keep the illustration
consistent with our assumptions. Thus, in order to obtain the Conway mutant, we now
have to perform mutation via 7, or 73 as opposed to 7; or 73 as suggested in Figure 1. To
obtain Conway’s mutant, we can perform mutation along (M’ — M" ) which corresponds

here to the involution 7y.

1.4. Generalised Conway mutation. Motivated by the preceding section, we call two
3—manifolds generalised Conway mutants of each other, if they are related by a sequence of
mutations along orientable, separating symmetric surfaces F' via involutions 7 which induce
the negative identity on first homology of F. The latter is satisfied by the involutions
specified for T, T5 and (G5. As seen in the previous section, it may be possible to extend

(S3,7) or (S4,7) to a mutation surface with the above properties.
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Note that generalised Conway mutation is an equivalence relation amongst 3—manifolds,

and Theorem C describes an invariant of equivalence classes.

2. CURVES OF CHARACTERS

The representation space of interest to us is R(M) = Hom(m (M), SLy(C)) for a 3-
manifold M. In the case that M is hyperbolic, we denote a faithful and discrete repre-
sentation into PSLy(C) corresponding to the complete hyperbolic structure by 5, and a
lift thereof to SLy(C) by po. The irreducible component containing this representation is
denoted by Ry(M).

We view the character of a representation p as the function trp : m (M) — C. The
associated character variety is X(M). The natural epimorphism taking a representation to
its character is given by t : B — X. We will denote the smooth projective curve which is
birationally equivalent to X by X. The birational equivalence is regular everywhere except
on a finite set of points. These points are called the ideal points of X.

In particular, we let t(9Ry) = Xo. It is a well known fact that X, is an irreducible affine
variety of complex dimension one if M has boundary a single torus (cf. [5]).

Our arguments are based on the following two basic facts, which can be found in [6].

2.0.1. Proposition. A representation p of a group G into SLy(C) is reducible if and only
if tr p(c) = 2 for all elements ¢ of the commutator subgroup of G.

2.0.2. Proposition. If p and p' are representations of a group G into SLy(C), with trp =

trp', and if p is irreducible, then p and p' are equivalent.

2.1. Tracing representations under mutation. Given a separating mutation surface
(F,7) in a 3-manifold M, the Seifert—Van Kampen theorem gives us a convenient decom-
position of 71 (M) with respect to 71 (F), which allows us to write down a presentation of
M7 directly. We wish to construct representations of M™ from those of M. This gives a
map p — p’ with domain a certain subset of R(M). Crucial for this construction is the
behaviour on 7 (F'). This motivates the following terminology.

We call a representation p € R(M) tentatively mutable with respect to (F,T), if the
character of its restriction to 71 (F') is invariant under 7. That is, tr p(f) = tr p(7. f) for all
f € m(F). We denote the set of tentatively mutable representations by &(M). Similarly,
we call a representation p € R(F) tentatively mutable if its character is invariant under 7

and denote the corresponding set by &(F).



8 STEPHAN TILLMANN

Note that 71 (F) is finitely generated, and recall that a character is uniquely determined
by a point in C? for some p which depends on the number of generators in a presentation
of the fundamental group (cf. [6] and [8]). &(M) is therefore obtained from SR(M) by
extending the set of defining equations by finitely many polynomial equations stating that
the coordinates of the respective points are to be equal. Hence, it is a well defined subvariety
of R(M). Since the property of being tentatively mutable is defined in terms of traces, it
is invariant under conjugation, and we may study &(M) in terms of T := ().

The tentatively mutable representations with respect to the symmetric surfaces are de-
scribed by the following lemma. Note that an equivalent version for the case F' = G, with

a more elegant proof is given in [3].

2.1.1. Lemma. Let (F,T) be a symmetric surface as described in Figure 2 and p be a
representation of m(M). If F =T, or FF = Gq, then &(M) = R(M). Otherwise p is

tentatively mutable if and only if it satisfies the following equations

o if F =S5, m(S3) =< a,b> then tr p(a) = tr p(b),
o if F =S, m(S4) =< a,b,c> then tr p(a) = tr p(b) and tr p(c) = tr p(abc),
o if F=T,, m(T2) =< a,b,c > then tr p(c) = tr p(c"'[a, b]).

Proof. We describe the action of the involutions in terms of the generators indicated in
Figure 2. Note that we choose base points for fundamental groups as fixed points of 7.
Since we are working in the character variety, this choice does not matter. In the following
we will implicitly use well known trace identities which hold in SLy(C). The statement of
the lemma has to be verified for all surfaces. We do this representatively for Gbs.

The fundamental group of G, is defined by the four generators a, b, ¢, d, and the single

relation [a, b][c,d] = 1. The involution 7 is described as follows:

(a) =a', 7()=ab"'a™', 7(c)=abla'c'h, T(d) =b"'d aba™!

Recall from [8] that the character of a representation is parametrised by the point

(tr p(f), trp(fg), tr p(fgh)) € C*,



MUTATION 9

where f, g, h € {a,b,c,d} and f < g < h in a lexicographical ordering. Using the relation

in the fundamental group, we have the following identities:
7(c) = ab ta e = (b7 ed)cH(d e M),
7(d) = b~ 'd taba™" = (b e)d ' (c7'h).

Thus, 7 sends each generator to a conjugate of its inverse. The images under p and pr
therefore have equal trace. We have to verify double and triple products. It turns out that
the desired results either follow directly or require the very same trick, which we illustrate

with the following example:
tr pr(ad) = tr p(a™ (b"'ed "¢ 7)) = tr(a) tr(d) — tr(ab " ed ' c'b)
= tr(a) tr(d) — tr(ab 'd ‘aba ') = tr(a) tr(d) — tr(d 'a) = tr p(ad).
U

If 7 induces the negative identity on H;(F'), then the character of any abelian represen-
tation is contained in T(M). Now any reducible representation has the same character as
some abelian representation. Hence, Red(M) C S(M) and the closed set t(9Red(M)) of
characters of reducible representations is carried by abelian representations and contained
in T(M). Using the Mayer—Vietoris exact sequence, one can show that Hy(M) = H{(M").
This induces a natural isomorphism between the respective abelian representations and
hence between the closed sets in X(M) and X(M7) corresponding to reducible representa-

tions. This proves the following

2.1.2. Proposition. If M is a 3-manifold and (F,T) a separating mutation surface such
that T induces the negative identity on first homology of F, then Red(M) C S(M) and
t(Red(M)) = t(Red(M7)).

Now assume that M is a hyperbolic manifold (with or without boundary), and consider
(F,7) as defined for generalised Conway mutation. According to Ruberman’s proofs in
section 2 of [9], we may choose the lift py of the discrete and faithful representation such that
punctures which are interchanged by 7 have images with trace +2. Since the conditions in
the above lemma are imposed on generators corresponding to boundary curves interchanged
by 7, we have py € &(M). Furthermore, by its faithfulness, py cannot be reducible on F

unless the second commutator group of 7 (F) is trivial. Hence pg is irreducible on 7 (F).
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In general, it is not clear whether there always is a tentatively mutable representation

which is irreducible on F'. The following fact will be of importance:

2.1.3. Lemma. Let (F,7) be a symmetric surface. The subvariety of reducible represen-
tations has codimension one in the variety S(F) of tentatively mutable representations of

F. Moreover, this property is preserved under t.

Proof. We have to verify the lemma for all specified surfaces and involutions. The argu-
ments are along the same lines, let us therefore consider the twice punctured torus. We have
m(Ty) =< a,b,c >. The space of representations has therefore nine dimensions. &(73)
is defined by the additional equation tr p(c) = trp(c™'[a,b]), and is hence eight dimen-
sional. But the set of reducible representations has seven dimensions, since we need two
equations to state that two of the generators have a common 1-dimensional subspace with
the third, and reducible representations always satisfy the required trace equality. Passing
to the character variety, we merely subtract the three dimensions taken by conjugation

throughout the above. This proves the claim for the twice punctured torus. O

2.2. A natural map m: T(M) — T(M"). Given a symmetric surface (F,7), there is a
fixed point of 7. If we take this as the base point of the following fundamental groups, we

get a decomposition
7Tl(M) ~ 7T1(M,) *’Ir1(F) 7T1(M_|_).

M(M) can be viewed as a subspace in R(M_) x R(M, ), and the inclusion map is given
by the restriction of p to the respective subgroups. If for a given p_ € RR(M_), there exists
pr € R(M,), such that they agree on m;(F'), we say that p_ extends to a representation
in R(M). Similarly, R(M™) C R(M_) x R(M,).

Let p € &(M) be a representation which restricts to an irreducible representation on
m (F). We say that p is F-irreducible. By Proposition 2.0.2 p_7 is equivalent to p_ on
71 (F), i.e. there is an element X € SLy(C) such that p. = X 'p 7X on 7;(F). By
Schur’s lemma, X is defined up to sign since p is F-irreducible.

We can now define a representation p” of M7 as follows: Let p} = p, on m (M) and
pr=X"1p . 7X onm (M_). p” = (p", p;) € R(M7) is well defined, since both definitions
agree on the amalgamating subgroup, and the map p — p” only depends upon the inner

automorphism induced by X. Note that both p and p” are irreducible and p” € S(MT).
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2.2.1. Lemma. Let (F,T) be a symmetric surface such that F is separating in M. Then

there is a 1-1 correspondence of characters of F—irreducible representations in S(M) and
S(M7).

Proof. The above construction for a representation of the mutant manifold gives us a map
between the respective representation spaces. We have to show that this map is well defined
for equivalence classes of F—irreducible representations. Let p = (p_, py) and 0 = (0_,04)
be conjugate via Y € SLy(C), and construct p” = X 'p_7X and 07 = Z7'0_7Z as
above. We need to show that p” is conjugate to o7 via Y. Note that p_7 = Yo_7Y ! by

our assumption. Thus, restricted to 7 (F), it follows that
X YWor¥ ' X=X""p 1 X=p_=Yo Y '=YZ lo_rZY .

Thus, X 'Y = YZ ' modulo Cgp,¢(p(m1(F))). Since p is F-irreducible, we have
Cosry(ty(p(m(F))) =< —E >. It follows that on m; (M_)

pl = Xﬁlp,TX =XYWo ¥ 'X=YZ'o 7 ZY =Y YL

Hence p7 is conjugate to o7 via Y. This shows that the map is well defined on equivalence
classes of F-irreducible representations. Furthermore, we can define an inverse map since
(M7™)™ = M. This proves the claim. O

Note that throughout the above, we may interchange M _ and M, . By the above Propo-
sition 2.1.2, we now have an isomorphism m : T(M) — F(M) — T(M™) — F(MT™) defined
everywhere apart from a subset F(M) of characters of irreducible representations which
are reducible on 7 (F'). § is a well defined subvariety of ¥ by Proposition 2.0.1.

If R is an irreducible component of R(M) containing an F—irreducible representation,
it follows from Lemma 2.1.3 that § N t(R) has codimension one in t(R) := C. Since the
map m is defined on an open, dense subset of C, the image m(C) C X(M7) is contained
in a component C” of X(M7). The map m is therefore an isomorphism between C' and
C™ defined everywhere but on a codimesion one subvariety. In order to show that m is a
birational equivalence, it is now sufficient to show that it is rational.

Consider the tautological representation as described in [6]. Let K be the function field

of R and let L be the function field of C. The tautological representation P : m (M) —

b
SLy(K) is defined by P(y) = (a d) where the functions a, b, ¢ and d are defined by

Cc
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c(y) d(v)
tautological representation P™ on R, which is the component in R(M™) corresponding to

b
p(y) = (a(v) (7)) for all p € R. We have tr P(y) € L C K. Similarly, we have a

R under the map p — p".

Let p = (p4,p-) € R and p” = (py, X 'p_7X) € R" be its image. We have P |y, =
P7 |p,. By Proposition 1.1.1 of [6], we know that any representation equivalent to an
irreducible representation on an irreducible component of SR(M) belongs itself to that
component. Hence X 'pX € R and P |j; is defined by elements in SL,(K). This gives
tr P7(y) € L for all v € 7 (M7). The map m is hence rational from C to C7. The existence
of an inverse yields that the function fields L and L™ are isomorphic and that C and C”
are birationally equivalent.

Note that the above argument already shows that R and R" are birationally equivalent.
In particular, since py is F-irreducible, we have Xy(M) = Xo(M7™) for all finite volume

hyperbolic manifolds. This proves Theorem C. Furthermore, we have

2.2.2. Proposition. Let M and M™ be generalised Conway mutants. If every component
of T(M) and T(MT) which contains the character of an irreducible representation contains
the character of a representation which is irreducible on w1 (F), then T(M) and T(MT) are

birationally equivalent.

We remark that a similar construction of a map p — p” is possible for certain F'-reducible

representations which are described by the following lemma (the proof of which we omit):

2.2.3. Lemma. Let p € R(F) be an upper triangular representation and assume there
exists X € SLy(C) such that X~'pX = pr. Then we have the following cases:

o If p(mi(F)) is abelian, then either p(Tf) = p(f) for all f € m (F) or p(tf) = p(f)~!
for all f € m(F).

o If p(m(F)) is non-abelian and there exist an element g € w1 (F') such that the images
of g and 7(g) do not commute, then p(tf) = p(f)~' whenever p(f) is parabolic,
and for all non—parabolic images, we have that the upper left entries of p(ta) and

r y

0 o1 and
z

p(a) are equal and there exists a constant c(p) such that if p(a) =

p(Ta) = (;; :) , then c(p) = 2221, X is defined up to sign.
T
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o If p(m(F)) is non-abelian and the images of g and 7(g) commute for all g € m (F),
then we have p(Tf) = p(f) for all non—parabolic images and we have either p(Tf) =
p(f) for all parabolic images or p(Tf) = p(f)~" for all parabolic images.

Thus, the action of 7 cannot be realised by an inner automorphism if and only if p |F is
reducible and does not satisfy the conditions of the above lemma. We call representations
accordingly mutable or non-mutable. Note that for representations which are reducible on

F' the conjugating element may or may not be uniquely determined.

2.3. Conway mutation and the A-polynomial. As we have mentioned in the intro-
duction, the relationship between the A-polynomials has been established in [3].

We have observed that the peripheral subgroup of a knot is carried by a handlebody
associated with the mutation. By the construction of the above map, the eigenvalue pairs of
representations which restrict to irreducible representations on (G5 therefore do not change.
Recall the following from [2]. Reducible representations have the same character as an
abelian representation and the fundamental group of a knot complement abelianises to ZZ.
Since the longitude is an element of the first commutator group, reducible representations

contribute the factor (I — 1) to the A—polynomial. Hence we can conclude:

2.3.1. Proposition. Let £ be a Conway mutant of ¢. If F(¢) is finite, then Ae(l,m) is a
factor of Ae (I, m).

3. THE KINOSHITA—TERASAKA KNOT

We now try to retrieve topological information about the complements of the Kinoshita-
Terasaka knot € and its mutant €”. Both of these knots have eleven crossings and trivial
Alexander polynomial. Using SnapPea, we can verify that the complements M and M7
have hyperbolic volume 11.21911773.... Walter Neumann has used Snap to determine

that the two complements are not commensurable.

3.1. Proof of Theorem B. We wish to determine the set § of characters corresponding
to irreducible representations which are reducible on the four punctured sphere. This will
be achieved by direct computation.

The fundamental groups of the inside M and the outside M, of Sy can be computed

from a Wirtinger presentation derived from the projection given in Figure 1. We follow
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the conventions given in [1].

m(M_)=<a,b,c,0,f]|ry,ry,rs> m(My) =<a,b,c,d,e| 1,719,735 >
(ri)) b=faf* (r)) a=ce ‘b tecec te the
(ry) cfe e tafat =1 (rs) cece 'ctae ta™!
(r3) o =cba *, (r¢) d=cba*,

m(S4) =< a,b,¢c > m1(S4) =< a,b,c > .

Introducing the symbol f in order to give meridians linking number one with the respective
knots, we obtain Wirtinger presentations of 71 (M) and 71 (M7) by the following amalga-

mations:

7T1(M) =< 7T1(M,),7T1(M+),f ‘ a = (L,b = b,C = C,a = d,f: f >,
and m(M") =<m(M ),m(M,),fla=ctb=d ' c=at0o=b"1f=f">.

We give a brief overview of direct matrix computations, which we have done using
mathematica. The complete calculations will hopefully be abbreviated. First, we wish to
compute all representations p_ € R(M_) with tr p(a) = tr p(b) = tr p(c) = tr p(d) = tr p(f)
such that p_ is reducible on F. If the image of p_ is abelian on F', it follows that it is
abelian on M and subsequently on M and M".

Therefore assume that the image of p_ is reducible and non-abelian on F'. Since we are
only interested in the equivalence class of a representation, we may assume that p_ (7 (F))
is generated by upper triangular matrices. It follows that trp(a) # +2, and we can
conjugate the representation such that it stays upper triangular and p(a) is diagonal while

one of p(b) and p(c) has a non—negative upper right entry. These assumptions give p(a) =

0
7 , plc) = b , p(f) = Y 7Y as elements of SLy(C), which must satisfy
0 ¢! 0 pt y oz

the relations r; and ry, such that the traces of all generators are equal, p(b) is upper
triangular and the image of 71(S4) is non—abelian.

This gives four representations p; to ps. p; and ps have one parameter p and no relations,
p2 has three parameters p, u,  and one relation, p, has one parameter p and the relation

p? = —1.
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Using the identifications given in the presentations of (M) and m;(MT™), we now put
I m

ple) = and use the relations r4 and 75 to find out which of the above represen-
n o

tations of M extend to representations p of M and M7 respectively. It turns out that
p1, p2 and p3 extend to representations p of M and M7 respectively, whereas ps does not.
The representations which follow are all given in one parameter p, which is an eigenvalue

of a meridian and specified as the zero of some polynomial in C[p]. We have the following

parametrisations:
pE p | M_ | parametrisation
R(M) | p Fy =1—p?+3p* — 4p° + 2p®
R(M) | ps Fy=1—p*+3p8 — 3p!0 — p!2 4 4plt — 2p16 _ pls | 20
R(M) | ps Fy =1 —2p* + 3p* — 5p° + 2p°
R(MT™) | ;17 Gi=1-p>+ 3p* —4p° + 2p8
R(M™) | por | Go=1—p"+3p® = 3p'0 — p'2 + 4p'* — 2p'6 — p'8 4 p
R(M7) | ps7 |Gy =1—2p* + 3p"* — 5p® + 2p®
R(MT7) | psT Gy=1—-3p?> —p* +3p° — p8

Note that F} = G1, F5, = GG9, F3 = (G5 and that G4 is not a factor of any of the above.
Using resultants, one can verify that any two distinct polynomials from the above list have
no zeros in common. Since the above give finite sets of points F(£) and F(¢") respectively,

Theorem B follows from Propositions 2.2.2 and 2.3.1.

3.2. Proof of Theorem A. The relationship between boundary slopes and sequences of
representations is established in [6] and nicely summarised in [3] as follows. A sequence
(pn) of representations on a curve is said to blow up, if there is an element g € 7, (M) such
that tr p,(g) — oc.

If there is an element in 71 (0M) associated with this blow up, then up to inversion there
is a unique element h € m(OM) such that tr p,(h) stays bounded. Then A is parallel to
the boundary components of a properly embedded, non—boundary parallel incompressible
surface in M.

If the sequence of traces stays bounded for all elements in the peripheral subgroup, then
there is a closed essential surface in M.

Furthermore, we wish to explain briefly the relevance of the eigenvalue variety. There

is a well defined eigenvalue map, taking a representation to a point in C? by means of
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projection to the eigenvalues of meridian and longitude corresponding to a common in-
variant subspace. The closure of the image is a curve defined by a single polynomial in
two variables. Let C' be a component of R. We call a pair (I,m) of eigenvalues a hole if
the image of a connected open neighbourhood in C' under the eigenvalue map contains a
neighbourhood of (I, m) but not (I, m) itself.

We therefore observe a blow up of the second type either if there is a component in the
character variety of dimension greater than one (so the inverse image of a point in the
eigenvalue variety contains a whole curve) or if there is a hole in the eigenvalue variety.
Examples for the first kind of behaviour haven been constructed in [3]. The second kind
of behaviour has according to [4] not previously been observed.

Now consider the character of a representation p” of M™ parametrised by a zero z of G,.
We choose an open neighbourhood U in an irreducible component of R(M™) containing p”,
such that U — {p"} only contains representations which are F-irreducible. This is possible
since it has been shown in [5] that the dimension of components of X is greater than zero.
Let (p,") be a sequence of representations in U such that lim, . t(p,") = t(p"). Our map
sends U — {p"} to some set in R(M). This gives us a sequence of representations (p,) in
R(M). We may assume that p,” |,y = pp |mr, where M is a suitably chosen handlebody
containing €. If the sequence (p,) converges, it converges towards a representation which
is reducible on 7;(F), and the eigenvalue of a meridian is z or z~!. But according to the
above results of our calculation, such a representation of M does not exist. Hence, the
sequence (p,) blows up, i.e. there is an element g € 71 (M) such that lim,, . tr p,(g) = occ.
Since the eigenvalues of meridian and longitude are carried by M_, they stay bounded and
we have detected a closed essential surface in M.

Since the dimension of F(M7™) and F(M) is zero respectively, the components containing
characters of representations corresponding to these points have dimension one by Lemma
2.1.3. Hence, the above argument shows that there are holes in the eigenvalue variety of
M. This completes the proof of Theorem A.

3.3. The representations corresponding to F(¢) and F(¢").

e Fi(p) =1— p?+ 3p* — 4p° + 2p8, where p, is subject to Fi(p) = 0 and p] is subject
to Fl(pfl) =0:
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prla) = pile) = (p 01> pi(b) = pi (b) = (p 2+p —21p2 —p2)

0 p 0 P
pr(e) = pi(c) = (ﬁ L) pr(d) = i (d) = (p S _p)
» 0 p
o (PR 1
m(e)—pl(e)—( B O)

e Fy(p) =1—p*+3p® —3p'% — p'2 + 4p™* — 2p'6 — p!8 4 p?° where both py and pi are
subject to Fy(p) = 0:

0 p
) = i) = [P @ PP =)
= p1(b) =
0 P
p —1+p*—pb
pa(c) = p3(c) = ( -1 )
0 p
p (= p?+ (1= 2p" = p° 4+ 2p° — p")
pa(d) = p3(d) = (() -1
P
T pl4+p> —pt4p2—p?
pa(e) = p3(e) = 5
1 p—p
—4 4 6 10
p —p—p +p°—p
pa(f) = ( ° )
0 p

p p’4(1 — pt 4 b+ pB — 210 +p14>

p3(f) = ( 0 )

(Note that only the representations corresponding to F» are mutable.)
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e F3(p) =1 —2p? + 3p* — 5pb + 2p®, where both ps and p} are subject to F3(p) = 0:

;mw=(§pi) ;mw=(i p_;p)
ps(c) = (g’ p11> () = (p(‘) 1+pp—p>

p 1+p*—p? _(pt+p 1
) Ps(f)—( _1 0)

1 -2 2
. p— 1 , p —1l—-p~+p
ps(c) = p3(d) = _

0 p) 0 p!

-1 2 4 p 2-2
- P 1 —p“+p - 3 7_1)2
%@:(o ) %mz@;&gﬂ

p p(1-p?)

e Gy(p) =1—3p? — p* + 3p® — p8, where p] is subject to G4(p) = 0:

-1 2 4
p— 0 p —2—p +p
T a) = T b) —
pi(a) ( 0 p) p1(b) (0 p! )
1 —2 2
p - 1 p —1l—p~“+p
T c) = T d _
pi(c) ( 0 p) p1(d) (0 pl )
-1 2 4 -1
, p— 1-p°+p . p—+p 1
e) = —
P4( ) ( 0 » ) P4(f) ( 1 O)
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