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1. Introduction

These technical notes, not intended for publication on their own, are supportive for work I have
done recently with Malcolm Quine and Sergei Zuyev. They were written in May, 2001 and
reprinted for use on my web site in July, 2002.

The notes deal with the typical Delaunay triangle and its circumcircle. The distributions of
various subtending angles within the circle are derived, one of these distributions being used for
a simulation study of the ‘lens’ domain common to two neighbouring Delaunay circumdisks.

An interesting finding is that the typical circumdisk, known to have area C which is dis-
tributed as Gamma(2,λ), can be divided into two parts: a lune whose area has the Exp(λ)
distribution and the above-mentioned lens whose distribution is not exponential.

There are links with existing work by Lutz Muche (Muche, 1996).

2. The typical Delaunay triangle and its circumdisk

Consider a Poisson “particle” process in the plane with intensity λ and also the Delaunay
tessellation constructed from it. Various properties of the typical Delaunay triangle – and its
circumdisk – are known.

With reference to Figure 1, which shows the circumdisk of a typical triangle labelled P1P2P3

in anti-clockwise order, Miles (1970) showed using an ergodic definition of typicality that the
circle’s area, C say, has the Gamma[2, λ] distribution with pdf λ2ce−λc, c > 0. Møller and Zuyev
(1996) derived the same result using Palm-measure typicality. The result is often expressed in
terms of the circumradius R having pdf 2(πλ)2r3 exp−πλr2, r > 0.

Miles also showed that the configuration P1P2P3 is independent of C, with the respective
polar angles θ1, θ2 and θ3 having joint pdf

1
4π2

| sin(θ2 − θ3) + sin(θ3 − θ1) + sin(θ1 − θ2)| (1)

where 0 < θ1 < θ2 < θ3 < 2π. Miles also established, as did Mecke and Muche more for-
mally, that the process of particles outside this randomly-constructed circumdisk is Poisson,
independently of C and of the configuration on the circle.
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Figure 1: The circumdisk of a typical Delaunay triangle P1P2P3. Note that in this example, the centre of the circle lies

within the triangle, but this may not be the case in other realisations.

3. Subtended angles

It suits our purposes to reorganise (1) in terms of the angles α and β subtended at the circle’s
centre. Let α := θ2 − θ1, β := θ3 − θ2 and η := θ1 (see Figure 1). The Jacobian of this
transformation is 1 and so the joint pdf of α, β and η is

1
4π2

[sinα + sinβ − sin(α + β)]

where 0 < α < 2π, 0 < β < 2π−α, 0 < η < 2π−α−β. The joint pdf of (α, β) is, by integration
over η,

f1(α, β) =
2π − α− β

4π2
[sinα + sin β − sin(α + β)] (2)

where 0 < α < 2π, 0 < β < 2π−α. The angles α and β are identically distributed, the marginal
pdf being (for α)

2π − α

8π2
[2− 2 cos α + (2π − α) sinα] α ∈ (0, 2π). (3)

The means of α and β are thus 5/2π + π/3 (6= 2π/3), a result which surprises until one realises
that the two angles chosen are those which do not straddle the dashed reference-axis. The
straddling angle is size-biassed (upwards) and the other two are therefore smaller on average.

Repeating the exercise, with α as the straddling angle and β as an adjacent one, namely
with α := θ1 + 2π − θ3, β := θ2 − θ1 and η := θ1, we arrive at another joint pdf:

f0(α, β) =
α

4π2
[sinα + sinβ − sin(α + β)] (4)

which leads to the marginal pdf of this α, the angle straddling the dashed-axis, as
α

2π2
[2− 2 cos α + (2π − α) sinα] α ∈ (0, 2π). (5)

with mean 4π/3− 5/π.

If α and β are chosen randomly, with equal weight given to all pairs, then the joint pdf is
1
3 [f1(α, β) + f0(α, β) + f0(β, α)] or simply

f(α, β) =
1
6π

[sinα + sin β − sin(α + β)], 0 < α < 2π, 0 < β < 2π − α. (6)
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So the random subtended angle has pdf

f(α) =
1
6π

[2− 2 cos α + (2π − α) sinα] α ∈ (0, 2π). (7)

with mean 2π/3. Other low-order moments are:

E(α2) =E(β2) =
2(4π2 − 15)

9
E(αβ) =

15 + 2π2

9

Var(α) =Var(β) =
2π(3− 2π)

9
Cov(α, β) =

15− 2π2

9

ρ(α, β) =
15− 2π2

2π(3− 2π)
= 0.229737.
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Figure 2: Three pdf’s for the subtended angle α. The central distribution is the unbiassed random choice. The distributions

to the right (or left) are respectively for the angle straddling (or one not stradding) the reference-axis. The three functions

are equal at α = 2π/3.

In the sequel, we often use the half-angle 1 a := α/2. So it is convenient to note its pdf:

fa(a) =
4 sin a

3π
[(π − a) cos a + sin a] a ∈ (0, π). (8)

This result is known from Muche (1996), proved by a very different method involving statistical
symmetry.

4. The adjacent triangle and an associated lune

The disk centred at H in Figure 3 is a typical Delaunay circumdisk, D (say), with |D| = C. The
angle α is a random subtended angle and so PQ is a random side. A disk whose boundary passes
through both P and Q changes in size as its centre moves away from H along the right-bisector
of PQ. The size may get smaller at first (if α < π) but if the moving centre reaches PQ in this
case, the disk grows in size thereafter. The “growth” (be it +ve or -ve) stops when the disk first
hits another particle of the Poisson process; the particle hit is at T and the “growing” disk’s
centre reaches a point called J (which in this Figure is beyond the line PQ, but might well not
be). We denote the disk, when it stops, by D1.

1In later work with Quine and Zuyev, my ‘half-angle’ was confusingly called α.
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Figure 3: A darkly-shaded lune formed by the “growth” of a new disk.

The union of the two disks grows in area throughout this transition. When it stops, the
darkly-shaded lune ∆ := D1 \D is a stopping set in the sense of Zuyev (1999). From Zuyev’s
theorem, we have that |∆| ∼ Exponential(λ) independently of C and of any information within
D. Thus the area of the union is Gamma[3, λ] since C itself has a Gamma[2, λ] distribution.

There have been no suggestions in the literature about how one might partition D into two
parts, each with independent Exponential[λ] areas, but Figure 3 is immediately suggestive. One
might investigate the partition D \D1 and D ∩D1.

Hope that this might work rises when one notes that a triangle which has been randomly
selected from the three neighbours of a typical Delaunay triangle is itself a typical Delaunay
triangle. So the disk with centre J is a typical Delaunay circumdisk too! By rôle reversal, we
can think of D \ D1 as a stopping set of a “growth” process built around the “J-disk”. Thus
this lune-area also has an Exponential(λ) distribution independent of the area of the J-disk.

To my knowledge, these facts alone do not prove that the lense D∩D1 has an exponentially
distributed area. Proof is needed. Thus we wish to prove that areas of the three domains – the
two lunes and the intersecting “lense” – have independent Exponential(λ) distributions.

Let X := |∆|, Y := |D ∩D1| and Z := |D \D1|. Also let s :=
√

π/C|HJ| = |HJ|/R. Given
C and a := α/2, we can show that X + Y , the area of the J-disk, is for s ≥ 0,

X + Y = C(s2 − 2s cos a + 1) (9)

whilst we can write Y as two terms, namely the areas either side of PQ.

Y =
C

2π
(2a− sin 2a) +

C

π

{
(s2 − 2s cos a + 1) arccos

( s− cos a√
s2 − 2s cos a + 1

)

− sin a[s− cos a]
}

=
C

π
[a− s sin a + (s2 − 2s cos a + 1) arccos

( s− cos a√
s2 − 2s cos a + 1

)
]. (10)

For any given C and a, Y is a monotone decreasing function of s, starting at C and declining to an
infimum of C(2a − sin 2a)/2π. On the other hand, from (9) and (10), X increases monotonely
with s from 0 to ∞. A typical plot is shown in Figure 4 whilst the monotonic relationship
between Y and X is shown in Figure 5 . Note that, if a < π/2, X + Y attains a minimum value
of C sin2 a at s = cos a (see Figure 4).
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Figure 4: Plot of X, Y and X + Y as a function of s for a = π/3.
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Figure 5: Plot of Y versus X for a = π/3.

Denote the monotone increasing function s 7−→ X by C ga(·). ga can be written

ga(s) =
1
π

(s2 − 2s cos a + 1) arccos
( cos a− s√

s2 − 2s cos a + 1

)
− 1

2π
[2a− 2s sin a]. (11)

We know that X has pdf λ exp(−λx) independently of (C, a), so we can immediately write
the conditional distribution function of s given (C, a) as

Fs(s|C, a) = 1− exp[−λCga(s)] s ≥ 0. (12)

8. A simulation study: Y is clearly not Exponential!

It is simple to generate the independent random variables C, a and X. Given these, one can
calculate the random variable s as the unique root of X = Cga(s). Then Y can be calculated
using (10). I have done this 100000 times and plotted the resulting histogram for Y .
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Figure 6: Frequency distribution of Y for a sample of 100000 simulated cases with λ = 1. Overlaid on the empirical results

is the pdf of the exponential distribution of mean 1.

The data produced were also classified into 10 equi-probable classes, leading to class frequen-
cies of 19158, 10532, 8819, 8071, 7886, 7631, 8015, 8486, 9272 and 12128. Under a null hypothesis
that the true distribution of Y is Exponential(1), we expect 10000 in each class. The result-
ing Pearson-χ2 statistic is 11064.2; obviously the hypothesis is rejected. The distribution is
longer-tailed, with greater weight at very small and very large values.

The first three sample moments (about the origin) were 0.9951, 2.3278 and 8.1773 respec-
tively. We know theoretically that EY = 1.

As a check, the simulation was repeated for X + Y and Z := C − Y ; results were highly
consistent with the known Gamma[2,1] and Exponential[1] laws respectively.

Thus we have demonstrated (though not exactly proved mathematically) that Y does not
have an Exponential(λ) distribution even though:

• both X and Z have Exponential(λ) laws;

• both X + Y and Y + Z have Gamma[2,λ] laws;

• X is independent of Y + Z;

• Z is independent of X + Y ;

• X + Y + Z has the Gamma[3,λ] law.

Footnote: Length of a typical Voronoi edge – link with Muche

Equation (12) can be made unconditional.

Integrating over C first, we have

Fs(s|a) = 1−
∫ ∞

0
exp[−λcga(s)]λ2c exp(−λc) dc

= 1− 1
[1 + ga(s)]2

s ≥ 0. (13)

The unconditional distribution function of s is, for s ≥ 0,

Fs(s) = 1−
∫ π

0

1
[1 + ga(s)]2

4 sin a

3π
[(π − a) cos a + sin a] da (14)
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a result which has obvious relevance to the length ` :=
√

C/πs of a typical edge (ie. HJ) in a
Poisson-Voronoi tessellation. (Here I do not mean a random edge of a typical Voronoi polygon,
but a typical edge of the tessellation! )

From (12), we have

F`(`|C, a) = P{s ≤
√

π/C`|C, a}
= 1− exp[−λCga(`

√
π/C)] (15)

The unconditional distribution function of ` is, for ` ≥ 0,

F`(`) = 1−
∫ ∞

0

∫ π

0
exp[−λcga(`

√
π/c)]

4 sin a

3π
[(π − a) cos a + sin a] λ2c exp(−λc) dadc (16)

Muche has found this distribution of ` already.

References

Miles, R. (1970) Math. Biosciences, 6, 85–127.

Muche, L. (1996) Math. Nachr., 178, 271–283.

Mecke, J. and Muche, L. (1995) Math. Nachr., 176, 199–208.

Møller, J. and Zuyev, S. (1996) Adv. Appl. Prob., 28, 662–673.

Zuyev, S. (1999) Adv. Appl. Prob., 31, 335–366.

7


