Additive and Abelian Categories

A zero object Z € C is an object which is both initial and terminal.

A subobject of an object A in a category C is a monomorphism v : B — A. If v : C — A
is another monomorphism, say that w and v are equivalent as subobjects of A if there is an
isomorphism ¢ : B — C such that u = v¢.

A pointed category is a category admitting a zero object.

In a pointed category, a biproduct of X,Y is the data (B,px,py,ix,iy) such that (B,px,py)
is a categorical product of X and Y, (B,ix,iy) is a categorical coproduct of X and Y, and this
data is compatible in the sense that px oix = idx, py oty =idy, px oty =Oyx, pyoix = Oxy.
The category A is additive if it satisfies the following conditions:

1. There is a zero object in A.

2. For any X,Y € A, a categorical product X x Y € A exists.

3. Each hom-set A(X,Y) is an abelian group, and composition of morphisms is bilinear, i.e.

the maps A(Y,Z) x A(X,Y) = A(X, Z), (f,g) — f og are Z-bilinear.

In an additive category, if a product (X x Y, px,py) exists, it extends uniquely to a biproduct
(X xXY,px,py,ix,ty). Similarly for a coproduct.

A functor F' : A — B between additive categories is an additive functor if F(f +g) = Ff + Fg.
Let (X i> Y) € C, a pointed category. A kernel of f is an object K € C, along with a map

(K er X), such that f o (ker f) = 0, and whenever (W R X) satisfies f ow = 0, there exists

a unique w : W — K such that
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Let (X EN Y) € C, a pointed category. A cokernel of f is an object C' € C, along with a map

Y coker, C), such that (coker f) o f = 0, and whenever (Y < U) satisfies u o f = 0, there
exists a unique (C' % U) such that
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The image of f: X — Y is im f = ker(coker f), whenever it exists.
The coimage of f: X — Y is coim f = coker(ker f), whenever it exists.

The additive category A is called an abelian category if all morphisms admit kernels and cok-
ernels, and furthermore that every monomorphism arises as a kernel, and every epimorphism
arises as a cokernel.

A abelian. The sequence (A ENY; N C) € Ais exact at B if im f = ker g as subobjects of B.



Easy exercises about biproducts and additive categories:

1.

2.

10.

If Z,Z' € C are zero objects, there is a unique isomorphism Z = Z’.

Let C be a pointed category, and X,Y € C objects. Define the zero map X Wy oy o1t happens
to be additive, show Oxy is necessarily the identity in the abelian group C(X,Y).

If X is an object in an additive category A, then A(X, X) is naturally a unital ring.

Let C be a category with binary products and coproducts. Given an object A € C, define the
diagonal map As: A — A X A and the codiagonal map V4 : AL A — A.

Let C be a pointed category with binary biproducts. Show that each hom-set is naturally a
commutative monoid, with N-bilinear composition. If C is additive, does this commutative
monoid structure necessarily agree with the abelian group structure?

(A more efficient definition of biproducts) Let C be an additive category, and suppose we have
a diagram of the form
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satisfying the three equations

pxix =idx, pyiy =idy, ixpx +iypy =idp.

(This diagram and set of equations is a binary biproduct diagram). Show that these maps then
equip B with the structure of a biproduct of X and Y. Conversely, show that the equation
ixpx + iypy = idp holds for any biproduct.

Let e1,...,e, be a basis of the k-vector space V. This basis determines injections i; : k — V/,
A = Aej equipping V' with the structure of a coproduct of n copies of k. There is a unique
compatible product structure making V into a biproduct k®": what is it?

Important exercise. Suppose C is a pointed category with binary biproducts. Explain how a

map A® B L C & D may be represented as a matrix of maps

[f]:(fAC ch):<fAciA—>C’ ch:B—>C>
fap fBD fap:A—D fgp:B— D

Write down formulas for each of the maps in the matrix. Show that the maps in the matrix
uniquely determine f. Show that [f o g] = [f][g], i.e. that composition is matrix multiplication.

Write down the maps ix, iy, px,py in the biproduct A & B in matrix form. Write down the
diagonal A — A @ A and the codiagonal A § A — A in matrix form.

(Non-essential exercise: a category with addition but not subtraction) The category Rel has sets
as its objects, and relations as its morphisms: A morphism R : A — B is a subset of B x A,
with notation bRa meaning (b,a) € R. The composition rule for R: A — B and S: B — C is

SoR:A—C, c¢(SoR)a <= 3be B such that ¢Sb and bRa.

a) Show this is a pointed category (identity morphism, composition is associative, zero object).

b) Show that the disjoint union of sets can be equipped with a biproduct structure. (5) now
implies that morphisms can be added. Can they always be subtracted?



Some exercises on abelian categories:

1.

Show that if u : B — A and v : C' — A are subobjects of A in Vecty, that they are equivalent
subobjects iff imu = im v (where the image is a vector space image, not a categorical one).
Let C be a pointed category (so that kernels and cokernels are defined). Show the following:

a) Kernels are always monic.

b) Cokernels are always epic.
In an abelian category, a morphism which is both monic and epic is an isomorphism.

In an abelian category, every arrow f factors as f = me, where m is monic and e is epic. (Full
disclosure: I have no idea how annoying this proof really is but it looks kinda annoying.)

Show that the category of quiver representations Rep,@ is abelian. (Either show it directly, or
show Rep, @ is isomorphic to the category kQ—mod, where k@ is the path algebra).

Let0 > AL B% C S 0bea sequence in an abelian category. Verify the usual stuff:
a) Exactness at A iff f is monic.
b) Exactness at C' iff ¢ is epic.
c) Exactness at A, B, and C iff f = ker g and g = coker f.

Determine why each of the following categories fails to be additive/abelian:

1.

2.

The category of groups and group homomorphisms.
The full subcategory of k-vector spaces whose dimensions are powers of 2.

The full subcategory of even-dimensional k-vector spaces.

. The full subcategory of Z-modules admitting a finite basis.

K*(Z—mod), the homotopy category of bounded-below complexes of Z-modules. Hint: start
with the nontrivial morphism (- -+0—-2Z—-0—---) > (---—>0—2Z/(2) -0 — ---). Since
K*(A) may not be abelian, we care about its triangulated structure instead, where distinguished
triangles would take the place of short exact sequences.



