
Quick reference:

• Familiar categories: Set (sets and functions), Group (groups and homomorphisms), AbGroup
(abelian groups and homomorphisms), Vectk (k-vector spaces and k-linear maps), Matk (natural
numbers and matrices), CRing (commutative rings and ring morphisms), Top (topological spaces
and continuous maps), Met (metric spaces and continuous maps), HilbR (real Hilbert spaces and
bounded linear operators).

• An isomorphism f : A → B admits a g : B → A such that gf = idA, fg = idB.

• An epimorphism e is right-cancellable: fe = ge =⇒ f = g.

• A monomorphism m is left-cancellable: mf = mg =⇒ f = g.

• X ∈ Ob(C) is terminal if for any Y ∈ Ob(C), there exists a unique morphisms Y → X.

• X ∈ Ob(C) is initial if for any Y ∈ Ob(C), there exists a unique morphisms X → Y .

• (P, pA : P → A, pB : P → B) is a categorical product for A and B if for every pair of morphisms
(fA : X → A, fB : X → B), there exists a unique morphisms ϕ : X → P satisfying pA ◦ ϕ = fA
and pB ◦ ϕ = fB. We use the notation ϕ = (fA, fB)P .

• (C, iA : A → C, iB : B → C) is a categorical coproduct for A and B if for every pair of morphisms
(gA : A → Y, gB : B → Y ), there exists a unique morphisms ψ : C → Y such that ψ ◦ iA = gA
and ψ ◦ iB = gB. We use the notation ψ = (gA, gB)C .
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• Given a covariant functor F : A → B and objects A,B ∈ Ob(A), define

ΦA,B : A(A,B) → B(FA,FB), (A
f−→ B) 󰀁→

󰀓
FA

Ff−−→ FB
󰀔

F is called full if ΦA,B is surjective for all A,B. F is faithful if ΦA,B is injective for all A,B.

• A functor F : A → B is an isomorphism of categories if there is S : B → A such that FS = idA
and SF = idB.

• Given functors F, S : A → B, a natural transformation η : F ⇒ S is a collection of maps

(FA
ηA−→ SA) ∈ B for each object A ∈ A, such that whenever (A

f−→ B) ∈ A, then

FA FB

SA SB

ηA

Ff

ηB

Sf

(This is a diagram in B)

• A natural transformation η : S ⇒ T is a natural equivalence of functors if each component ηA is
an isomorphism. In this case, we write S ∼= T .

• An equivalence of categories A and B is a pair of functors S : A → B, T : B → A, together with
a pair of natural isomorphisms making idA ∼= TS and idB ∼= ST .
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Preliminaries:

1. Isomorphism defines an equivalence relation on the objects of a category.

2. An isomorphism is automatically both a monomorphism and an epimorphism.

3. Monomorphisms and epimorphisms in Set are injective and surjective maps, respectively.

4. Z ↩→ Q is an epimorphism in CRing. (Epis need not be surjective, and monic + epic is not iso!)

5. Terminal and initial objects (should they exist) are unique up to unique isomorphism.

6. Determine initial and terminal objects in all of the categories above.

Working with products and coproducts:

1. Determine/guess the products and coproducts in the categories above (when they exist). Actu-
ally prove the product and coproduct in CRing. What makes Vectk, Matk and AbGroup special?
(This is the notion of a categorical biproduct.)

2. In a categorical product (A×B, pA, pB), the projections pA and pB need not be epimorphisms.
(Silly example: Set. Better example??)

3. In a categorical coproduct (A ∐ B, iA, iB), the inclusions iA, iB, need not be monomorphisms.
(Hint: What is the coproduct in CRing, commutative rings?)

4. Show that a terminal object satisfies the universal property for an empty product. Show that if
X is terminal, then A×X ∼= A in a natural way. Write the corresponding statement for initials.

5. * Let {Xi}i∈I be a family of objects in a category, for some (possibly infinite) index set I. Define
the product Πi∈IXi and state its universal property. Show that even if all finite products exist,
arbitrary products may not exist.

6. ** Let Field be the full subcategory of CRing consisting of fields. Show that not all pairs of fields
(K,F ) admit a product. (Bonus points: show that even in the full subcategory of characteristic-
zero fields, a product need not exist).

Functors and natural transformations:

1. Show that if a category A has a single object, and every morphism is an isomorphism, then A
is the same thing as a group. Show that a functor F : A → B between two such categories is
the same thing as a group homomorphism.

2. Define F : Group → AbGroup as the functor taking a group G to its quotient G/[G,G], where
[G,G] is the (normal) subgroup generated by all commutators. Show that this is a functor (why
does it land in the right category? Where does it take morphisms?)

3. Define F : Group → AbGroup on objects by FG = Z(G), the centre of G. Why does F not
extend in a useful way to a functor?

4. Show that Vectk and Matk are not isomorphic categories. Give an explicit equivalence of cate-
gories between Vectk and Matk. (Moral: an isomorphism of categories is more like a homeomor-
phism, wheras equivalence is more like a homotopy equivalence).

5. A pointed space is a topological space X along with a distinguished point x ∈ X. Define the
category Top∗ of pointed spaces, and write down the product, coproduct, initial and final objects.
Let π1 : Top∗ → Group be the fundamental group functor. Does it preserve any of the above?

6. * Let (−)∗ : Vectk → Vectk be the duality functor. Write down explicitly the transformation
η : idVectk ⇒ (−)∗∗, and check that everything works.

7. * Let InnR be the category consisting of finite-dimensional real inner product spaces (V, 〈−,−〉V ),
and morphisms f : V → W are those R-linear isomorphisms preserving the inner product:
〈f(u), f(v)〉W = 〈u, v〉V for all u, v ∈ V . Show that in this category there is a natural transfor-
mation idInnR ⇒ (−)∗. (Hint: first write down a “natural” isomorphism V

∼−→ V ∗).
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