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Abstract

We introduce the combinatorial model of J-folded alcove paths in an affine Weyl group
and construct representations of affine Hecke algebras using this model. We study bound-
edness of these representations, and we state conjectures linking our combinatorial formulae
to Kazhdan-Lusztig theory and Opdam’s Plancherel Theorem.
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Introduction

Path models have a long history in combinatorial representation theory, starting with the cel-
ebrated Littelmann path model for computing multiplicities in the representation theory of
symmetrisable Kac-Moody algebras [21], 22]. In [11] Gaussent and Littelmann adapted the path
model to study Mirkovic-Vilonen cycles in the affine Grassmannian. The work of Ram [35] and
C. Schwer [37] on positively folded alcove paths connects path models to the representation the-
ory of affine Hecke algebras, and the work of Parkinson, Ram and C. Schwer [33] uses labelled
positively folded alcove paths to index points in the affine Grassmannian. In [I7, 18] Guilhot
and Parkinson used alcove paths as a primary tool to prove Lusztig’s conjectures P1-P15 for Go
and Cy with arbitrary parameters. In [30] Mili¢evi¢, P. Schwer and Thomas [30] apply alcove
paths to the study of affine Diligne-Lusztig varieties, and in [29] Mili¢evié, Naqvi, P. Schwer and
Thomas develop a path model for certain double coset intersections, and relate these to chimney
retractions in affine buildings.

In this paper we introduce the combinatorial model of J-folded alcove paths in an affine Weyl
group, and use this model to construct and analyse representations of affine Hecke algebras with
arbitrary parameters. This gives rise to large class of representations of affine Hecke algebras
admitting a combinatorial description in terms of positively J-folded alcove paths. On the one
hand this generalises known formulae for the principal series representation and Macdonald
spherical functions in terms of (classical) positively folded alcove paths (see [35 [37]), and on the
other hand these combinatorial representations have recently found applications in Kazhdan-
Lusztig theory (see [0, [17, [18]). Indeed, a primary motivation of the the present paper is to
extend the rank 2 analysis from [I7, [I8] to arbitrary rank, and to provide conjectural connections
between the combinatorics of J-folded alcove paths and Kazhdan-Lusztig theory.

Let W be an irreducible extended affine Weyl group with spherical Weyl group Wy and spher-
ical root system ® in an n-dimensional Euclidean vector space V' with simple roots ay, ..., a,.
For the purpose of this introduction we will assume that ® is reduced (that is, if o, ko € ®
then £ = £1). This simplifying assumption excludes the BC,, case, however the main results
of the paper also hold for this important case. Let H be the associated extended affine Hecke
algebra defined over the ring R = Z[qgl, ...,q1] where qo,...,q, are commuting invertible
indeterminates subject to the constraint q; = q; whenever s; and s; are conjugate in w (where
50, 81, - ., 5n are the Coxeter generators of the non-extended affine Weyl group).

The combinatorial representations 7z, of H constructed in this paper depend on two pieces
of data: a subset J C I (with I an indexing set for the generators of Wy) and a J-parameter
system v. The latter is a family v = (va)aes, such that if j € J then v,, € {qj,—qj_l}, and
Vo = vg whenever a, 5 € ®; with § € Wjya (here Wy is the J-parabolic subgroup of Wy and
® ; the associated sub-root system of ®). As mentioned above, our construction relies on the
notion of positively J-folded alcove paths: these are folded alcove paths (in the classical sense
of [35]) satisfying a certain positivity condition that are confined to remain in the fundamental
J-alcove

A;j={zeV|0<(z,a)<lforallae®t}

(see Figure Where Ay in type Gy with J = {1} is shaded green, and a positively folded J-alcove



path is illustrated). This constraint forces the path to ‘bounce’ on the walls of the fundamental
J-alcove, as illustrated in the fourth, fourteenth, and twenty first steps of the path in Figure
These bounces play a different role in the theory to the folds (illustrated in steps eight and
twenty four in the figure), and are a new feature of our model.

Figure 1: The fundamental J-alcove and a positively J-folded alcove path, with J = {1}

Our representations 7, are constructed in Theorem @ and are inspired by the work of
Deodhar [6} [7, [8, 9] (see in particular [0, §2]) and Lusztig [25, Lemma 4.7], and in Theorem
we obtain an explicit formula for the matrices 7, (7},) in terms of the positively J-folded alcove
paths described above (here T, denotes the standard basis of 7:Z)

Parabolic induction plays a central role in the representation theory of Hecke algebras, and
in the case of affine Hecke algebras this parabolic induction takes the form of induction of fi-
nite dimensional representations of Levi subalgebras. Given a subset J C I and a J-parameter
system v, one can define a generic 1-dimensional representation of the associated Levi subal-
gebra. Our second main result is that the set of representations obtained by inducing these
1-dimensional representations is exactly the set of representations .

Our combinatorial constructions are connected to Kazhdan-Lusztig theory via the notion of
bounded representations, inspired by the work of Geck [13]. To define this concept, we assume
that there are integers ao, . ..,a, > 0 such that q; = q%. Thus R = Z[q,q~!], and one may talk
of degree (in q) of elements of R. The matrix representation 7, is called bounded if the degree
of the matrix entries of 7;,(T3,) are uniformly bounded, for all w € W. The bound a Jyv of a
bounded representation 7, is the maximum of the degrees of the matrix entries of all 7, (1),
w € W. Our third main result is the complete classification of bounded representations 7.

There is strong evidence from [5] [I7, [I8] that bounded representations have deep connec-
tions with Kazhdan-Lusztig theory and Opdam’s Plancherel Theorem, and we discuss these
connections in Section In particular, we give a general conjectural formula for the bound
ajy in terms of Macdonald’s c-function [27] and Opdam’s Plancherel Theorem [32] and make
conjectural links between the bound a;, and Kazhdan-Lusztig theory.

To summarise, the main results of this paper are as follows.

» For each subset J C I and each J-parameter system v we construct a finite dimensional
representation 7, of the extended affine Hecke algebra H together with a combinatorial
description in terms of J-folded alcove paths (see Theorem and Theorem

» We show that our representations m;, are isomorphic to induced representations from
generic 1-dimensional representations of Levi subalgebras, and that all such induced rep-
resentations arise from our combinatorial construction (see Theorem .



* We classify all the subsets J C I and all the J-parameter systems v for which the repre-
sentation 7, is bounded (see Theorem and Proposition [5.11]).

We now give a brief overview of the structure of the paper. In Section [1| we give background
material on root systems, Weyl groups, positively folded alcove paths, and affine Hecke algebras.
In Section [2] we study the geometry of the fundamental J-alcove in preparation for Section [3]
where we introduce and develop the comblnatorlal model of J-folded alcove paths. In Section [4]
we construct our H-modules M Jv (Theorem W. , and develop a combinatorial formula for the
matrix entries of this representation in terms of positively J-folded alcove paths (Theorems
and , and prove that these modules are induced from Levi subalgebras (Theorem .
In Section [5| we recall the notion of bounded representations from [I7, 18] for weighted affine
Hecke algebras, and we classify the subsets J C I and J-parameter systems v for which M, is
bounded (T heorem. We apply the theory of J-folded alcove paths to study the bound a;, of
M., and state conjectural formulae for a;, and conjectural links with Lusztig’s a-function and
Kazhdan-Lusztig cells (see Conjectures and . We verify these conjectures in various
cases (including 2-dimensional affine Hecke algebras with general parameters). In Section |§| we
consider the A,, case with J = {1,2,...,n— 1}, giving both an example of the theory developed
in the paper, and verifying our conjectures for this case.

Finally, we note that throughout the paper we work in the general setting of multiparameter
affine Hecke algebras, with the non-reduced root systems of type BC,, being employed to deal with
the 3-parameter affine Hecke algebras with affine Weyl group of type C, (and the 2-parameter A
Hecke algebras, see Convention . At times this level of generality leads to more complicated
formulae. However since this work is primarily directed towards understanding Kazhdan-Lusztig
theory for Hecke algebras with unequal parameters (where the deep geometric interpretations
of Kazhdan and Lusztig [20] and the associated positivity of Elias and Williamson [10] for the
equal parameter case typically do not hold), and since the 3-parameter affine Hecke algebras
are the most extreme cases of such algebras, we believe that this level of generality is warranted
and valuable. As a general guide to the reader unacquainted with the non-reduced setting one
may wish to assume the reduced case on first reading, in which case all symbols like vo, or qsq
may be read as being 1.

1 Background

This section contains background on root systems, Weyl groups, positively folded alcove paths,
affine Hecke algebras and the Bernstein-Lusztig presentation. Our main references are [3] (for
root systems and Weyl groups, [33, [35] (for positively folded alcove paths), and [24), 31}, B35] (for
the affine Hecke algebra and Bernstein-Lusztig presentation).

1.1 Root systems

Let I = {1,2,...,n}. Let ® be an irreducible, not necessarily reduced, crystallographic root
system of rank n in a real vector space V with bilinear form (-,-). For a € V\{0} let oV =
2a/{a, ), and let @ = {a" | @ € ®} be the dual root system. Let {a; | i € I} be a system of
simple roots, and let T denote the corresponding set of positive roots. We will adopt Bourbaki
conventions [3] when labelling the simple roots. If a = . ;a;a; € ® let ht(a) = >, ;a;
denote the height of . Let ¢ € ® denote the highest root of ®, and define integers m; > 1 by
Y =miag + -+ My,

The coroot lattice of ® is the Z-lattice Q spanned by ®V. The fundamental coweights of ®
are the elements w; € V, i € I, with (w;, ;) = 6; 5. The coweight lattice of ® is the Z-lattice P
spanned by the fundamental coweights, that is P = Zwi+- - -+Zwy,. The set of positive coweights
is Pt = Nw; + --- 4+ Nw,,. Note that Q C P.



Remark 1.1. A root system ® is called reduced if @ € ® and ka € ® implies that k € {—1,1}.
In any irreducible reduced root system there are at most two root lengths (the long roots and the
short roots, with all roots considered long if there is only one root length). For each n > 1 there
is a unique non-reduced irreducible crystallographic root system ® of rank n up to isomorphism,
denoted BC,,. Explicitly we can take V = R" with standard basis eq,...,e,, simple roots
aj =ej—ejpq for 1 <j<n-1and a, =e,. Then

O ={e; —ej,ei tejep,2e, | 1<i<ji<n, 1<k<n}

Note that there are three root lengths in ® (if n > 1). The roots 2ey are the long roots. Note
that P = @ for the BC,, root system, and that the highest root is ¢ = 2e; = 2(a1 + -+ + an).
See Figure [2]

To each root system ® we associate reduced root systems ®3 and ®; by
Og={ae®|a/2¢ P} and P ={aec P|2a¢ D}.

In particular if ® is reduced then &y = ®; = ®, and if ® is of type BC,, then & (respectively
®4) is a reduced root system of type B, (respectively C,,).

1.2 Weyl groups, affine Weyl groups, and extended affine Weyl groups

Let ® be as above. For each a € ® let s, be the orthogonal reflection in the hyperplane
H, = {z € V| (z,a) = 0} orthogonal to «a, thus s,(z) = z — (x,a)a" for x € V. Write
si = Sq, for i € I. The Weyl group of ® is the subgroup Wy of GL(V') generated by the
reflections sy, ..., s,. The inversion set of w € Wy is ®(w) = {a € ®f | w™la € =@} (note
the convention that ®(w) C ®).

For each a € ® and k € Z let H,, = {x € V | (z,) = k}, and let s, be the orthogonal
reflection in the affine hyperplane H, j. Explicitly, sox(z) = = — ((z, @) — k)a”. The affine
Weyl group is W = ({sqr | @« € ®, k € Z}) (a subgroup of Aff(V)). We have W = Q x Wy,
where we identify A € V' with the translation ¢)(z) = x + A. The extended affine Weyl group is
W = P x Wj. Since Q C P we have W < W. If w € W we define the linear part O(w) € Wy
and the translation coweight wt(w) € P by the equation

W = Ty () 0 (W). (1.1)

The Weyl group Wy is a Coxeter group with Coxeter generators {s; | ¢ € I'}. The affine
Weyl group W is a Coxeter group with Coxeter generators S = {s; | i € {0} U I}, where
50 = Sp,1 = tyvs,. If @ = BC, then W = W is a Coxeter group of type Cph.

The extended affine Weyl group is typically not a Coxeter group. Writing ¥ = P/Q we have
W =~ W xX. Each 0 € ¥ induces a permutation (also denoted by o) of {0}UI by os;0~1 = So(i)-
In this way we can identify ¥ with a subgroup of the group of automorphisms of the extended
Dynkin diagram. For example, in type A, the group X is generated by the permutation ¢ +— i+1
mod n+ 1 of {0} UI.

Let £: W — N denote the length function on the Coxeter group W. We extend this length
function to the extended affine Weyl group W by setting ¢(wo) = £(w) for all w € W and
o €Y. Thus X = {w € W | {(w) = 0}. By a reduced expression for w € W we shall mean a
decomposition w = s;, - - - s;,0 with £ = {(w) and o € X.

The closures of the open connected components of V' \ (U ak Ha,k) are called alcoves. Let
A denote the set of all alcoves. The fundamental alcove is given by

Ag={z eV |0< (r,a) <1foralla € ®'}.



The hyperplanes bounding Ag are called the walls of Ag. Explicitly these walls are H,, o with
i€l and H, ;. We say that a panel of Ay (that is, a codimension 1 facet) has type i for i € I
if it lies on the wall H,, o, and type 0 if it lies on the wall H ;.

Note that if ® is not reduced, and if o« € ®T with 2a € ®, then Hg 91 = Haqp. Thus
there are two distinct positive roots associated to this hyperplane. However note that every
hyperplane H can be expressed uniquely as H = H, j, for some a € @f and k € Z.

The (non-extended) affine Weyl group W acts simply transitively on A. We use the action
of W to transfer the notions of walls, panels, and types of panels to arbitrary alcoves. Alcoves
A and A’ are called i-adjacent (written A ~; A") if A # A’ and A and A’ share a common type i
panel (with ¢ € {0} UI). Thus the alcoves wAp and ws; Ay are i-adjacent for all w € W and
ie{0}UI.

The extended affine Weyl group W acts transitively on A, and the stabiliser of Ay is X. The
vertex set of Ay is {z; | i € {0} U I} where xyp = 0 and z; = w;/m,; for i € I (with m; as in
Section , and the action of o € ¥ on this set of vertices is given by o (z;) = ;).

Each affine hyperplane H, j with o € & and k € Z divides V into two half-spaces, denoted

HY ={aeV|{(z,a) >k} and Hy, ={zeV|(z,a)<k}.

This “orientation” of the hyperplanes is called the periodic orientation (see Figure [2| for an
illustration in the non-reduced BCy case).
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Figure 2: Root system of type BCs

For w € W and i € {0} U I we shall use the notation
’LUAQ - |+ wSiAo

to indicate that ws;Ap is on the positive side of the hyperplane separating wAy and ws;Ag.
We will also say that w — ws; is a positive crossing (or simply is positive), and similarly if
wAg |~ ws; Ag we say that w — ws; is negative (see also Section [1.5]).



1.3 Affine root system

It is convenient to have the notion of the affine root system
d={a+ki|ac® kel

in the space V @ RJ. Identifying V' with its dual, one may regard § as the (nonlinear) constant
function § : V' — R with §(v) = 1 for all v € V. Writing (A, @ + kd) = (A, @) + k (however note
this is no longer bilinear) we have H, ;, = {z € V | (z,a — kd) = 0}, and so the hyperplane H, j,
corresponds to the affine roots +(a — k9).

The simple roots of the affine root system are ag = —¢ + § and «; + 00 with ¢ € I. These
choices give the set of positive affine roots as

Ot = (& 4 Z500) U (=B + Zoh).

Let &y = &g + Z6 (and so Oy = D if D is reduced), and let 53 = o+ N dy.

The action of W on the affine root system (given by the action on half spaces) is given by

w(a+kd) =wa+ké and ty(a+kd) =a+(k—(\a))d forweW;and X € P.
The (affine) inversion set of w € W is
d(w) = {a+kd € dF |w™ (a+kd) € —BF}.
In the notation of the previous section, for w € W and i € {0} U I we have

wAo ~| T ws;Ag if and only if wa; € —®T + Z6. (1.2)

1.4 Parabolic subgroups

Let J C I. The J-parabolic subgroup of Wy is the subgroup Wy = ({s; | j € J}). Since
Wy is finite there exists a unique longest element of Wy, denoted wy, and we have £(wj w) =
l(wwy) = l(wy) — L(w) for all w € W;. We write wy = wy. It is well known (see, for example
[1, Proposition 2.20]) that each coset Wjyw with w € Wj contains a unique representative of
minimal length. Let W7 be the transversal of these minimal length coset representatives. Then
each w € Wy has a unique decomposition

w=yu withye Wy, ueW’, (1.3)

and moreover whenever y € W and u € W7 we have £(yu) = £(y) + £(u).

The support of a root o € ® is supp(a) = {i € I | ¢; # 0}, where o = ), ; i, For J C 1
let &5 = {a € ® | supp(a) C J}, and for w € Wy write ®;(w) = ®(w) N ®;. The following
lemma is well known (see, for example [19, Corollary 2.13]), however we provide a proof for
completeness.

Lemma 1.2. Let J C I. If w = yu withy € Wy and u € W’ then ®(y) = ®(w) N ®,;. In
particular, we have W' = {u € W | ®,(u) = 0}.

Proof. Suppose there exists 3 € ®;(w)\®(y). Since 5 ¢ ®(y) we have £(sgy) > {(y), and since
B € ®;(w) we have {(sgw) < ¢(w). Since f € ®; we have sg € W, but then the element
Yy = sgy € Wy satisfies £(y'u) = £(spw) < l(w) = L(y) + L(u) < L(sgy) + L(u) = L(y') + L(u),
contradicting the fact that v € W/, O

Definition 1.3. Let w € W and recall the definition of §(w) from (1.1). Define 8;(w) € Wy
and 67 (w) € W7 by the equation 6(w) = 05(w)8” (w).



For J C I let
V;=) Raj and V/= )" Ru;
jeJ ieI\J
Then V = V; @V’ (orthogonal direct sum).
Let A — A/ denote the orthogonal projection V — V7, and let

PP={M|xePycv’/

Note that in general the Z-lattice P7 is not a subset of P. For example if ® is of type Ay and
J = {1} then P’ 5 w{ = ws ¢ P (see Figure [3| where V7 is denoted as a solid line, and P’
is indicated by heavy dots). Let {w; | i € I\J} be a choice of Z-basis of P’/ (in the example of
Figure [3| we may take o = wa/2).

Figure 3: The set P’ for type Ay with J = {1}

For J C I'let ®;; and ® ;4 be the long and short roots of ® ;N P, respectively (with ® ;5 = ()
if @ is simply laced). Define

+ +
aE(I’JYl aECIDJ‘S

and let {&; | j € J} be the basis of V; dual to the basis {o | j € J} (that is, (o)

; ,w;) = 0; ; for
all i, j € J).

Lemma 1.4. We have
pr= y, @ end ph= Y @
{jEJlO(jECI)JJ} {je‘]'aje(b]’s}
In particular py (respectively p';) is orthogonal to all short (respectively long) simple roots of ® ;.
Proof. In the simply laced case see [3, VI, §1, Proposition 29]. In the non-simply laced case the
claim is readily checked from the classification (it is sufficient to check for irreducible J). O
1.5 Positively folded alcove paths

Since the extended affine Weyl group W does not act freely on the set of alcoves, it is convenient
for our purposes to consider “alcove paths” as sequences of elements of W rather than sequences
of alcoves. Thus we make the following definition (see [35]).



Definition 1.5. Let @ = s;,5i, - 5;,0 be an expression for w € W (not necessarily reduced)
with ¢ € X, and let v € W. A folded alcove path of type W starting at v, and ending at
end(p) = vyo is a sequence

p = (v, V1, ...,V V0)
with vg,...,vp € W such that vo = v and vy € {vg_1,vk_18;,} for 1 < k < L. A positively folded
alcove path is a folded alcove path p = (vg, v1, ..., vp, veo) such that:

if vg_1 = vy then vg_1 A9 7|~ vi_15;, Ao.
For v € W let
P(w,v) = {all positively folded alcove paths of type w starting at v}.

Let @ = s;,8i, - - - 5i,0 and let p = (v, ..., vp,v0) € P(W,v). The index k € {1,2,..., ¢} is
called:
(1) a positive (respectively, negative) ig-crossing if vy = vg_15;, and vipAp is on the positive
(respectively, negative) side of the hyperplane separating the alcoves vi_1 Ay and vy Ao;
(2) an ig-fold if vy = vgp_1 (in which case vi_1 Ay is necessarily on the positive side of the
hyperplane separating vi_1 Ao and vg_1s;, Ao).
If p has no folds we say that p is straight. Less formally, the above crossings and folds can be
visualised as follows (where x = vy_1):

- |+ - |+ -+
x rS; xrS; €T xIrS; x
+ ik Lo p— U

(positive ig-crossing) (ig-fold) (negative ij-crossing)

If p is a positively folded alcove path, then for each i € {0} U I we define
fi(p) = #(i-folds in p) and f(p) = #(folds in p) =D _ fi(p).
i=0

The coweight and final direction of a positively folded alcove path p are (c.f. )
wt(p) = wi(end(p)) and 6(p) = 6(end(p)), (1.4)

and we write 07(p) = 07(end(p)) and 67 (p) = 67 (end(p)).

1.6 Affine Hecke algebras and the Bernstein-Lusztig presentation

Let (9:)icfoyur be a family of commuting invertible indeterminates with the property that q; = q
whenever s; and s; are conjugate in W. Let R = Z[(qiﬂ)ie{o}u]]- The extended affine Hecke

algebra is the R-algebra H with basis {Ty | we W} and multiplication given by (for w,v € w
and i € {0} U )

TwTy = Ty if £(wv)

L(w) + £(v) (L5)
TwTs; = Ts, + (9 — q; )T if L(ws;) . '

l(w) —

Note that each Ty, is invertible with T, ' = T, — (q; — q; '), and that each T, (with o € %)

is invertible with 7T, ' = T,-1. It follows that each T,, with w € W is invertible. The (non-
extended) affine Hecke algebra is the subalgebra #H spanned by {7, | w € W}.



We often write T; in place of T;,. For w € W we write Qw = 9i; - - 94, whenever w =
si, -+ - 84,0 is a reduced expression of w (this can easily be seen to be independent of the choice
of reduced expression using Tits’ solution to the Word Problem). In particular, note that q, = 1
forall o € 3.

Let w € W and choose any expression w = s;, - - - s;,0 (not necessarily reduced). Let vy = e

and v, = s;, - -+ 54, for 1 <k < /£ (thus (vo,v1,...,vp) is the straight alcove path of type s;, - - - s;,
starting at e). Let Ay = vgAg, and let €1, ..., € be the sequence of signs of the crossings, defined
by (see (1.2)):

+1 if Ap_q _‘+ Ay (that is, vp—10, € —dT + Z(S)
€. =
T =1 i Ay T Ag (that is, ve_ju, € DT + Z6).

Then the element B
Xy =T T, € H
does not depend on the particular expression w = s;, - - - 54, 0 chosen (see [15]).
From the defining relations ((1.5)) it follows that X,, — T}, is a linear combination of terms T,
with v < w (in extended Bruhat order), and hence {X,, | w € W} is a basis of H.

If A\ € P we write
X=X,

Then XAX* = XM# = XX for all A\, u € P, and for w € W we have

Xo = Xtyu = X X, = X T (1.6)
where A = wt(w) and v = 6(w) (the second equality follows since ¢y is on the positive side of
every hyperplane through A, and the third equality follows since X, = Tu_,l1 for all u € Wy).

Thus the set {X ’\sz_ll | A€ P, uc Wy} is a basis of H (called the Bernstein-Lusztig basis).
Since sg = t,vs, equation (1.6 gives

Ty = X?'T; " (1.7)

The combinatorics of positively folded alcove paths encode the change of basis from the
standard basis (1), 5 of H to the Bernstein-Lusztig basis (Xy), g7 This is seen by taking
u = e in the following proposition.

Proposition 1.6. [35, Theorem 3.3] Let u,w € W and let i be any reduced expression for w.
Then
XuTw = Z Q(p)Xend(p) where Q(p) = H (ql - qz_l)fl(p)

PEP(W,u) 1e{0}url

Convention 1.7. It is convenient to make the following convention, and we will do so henceforth:
If ® = Ay then qp = q1, and if ® = C,, (n > 2) then qp = q,, (note that there is no loss of
generality as the case qg # q, is covered by the non-reduced system BC,, for n > 1). Thus if
o € ¥ we have q,(;) = q; for all i € {0} U I (recall that ¥ is trivial if ® = BC,,).

With Convention in force, a complete set of relations of H in the Bernstein-Lusztig basis
is given by (for 7,5 € I with i # j and A\, u € P):

T? =1+ (q; —q; )T}

LT - - =131 - - (my; terms on each side)
XAX’U' — X)\'FM
R e e T b if (®,1) # (BCy. 1)
! XA, + [an — ap ' + (q0 — qal)X‘“W] 7?355;3 if (®,4) = (BCp,n).
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The final relation is known as the Bernstein-Lusztig relation (see [24, Proposition 3.6]). Note
that since s;A = X — (A, ;) and (A, ;) € Z the right hand side of the Bernstein-Lusztig
relation is in H.

2 The fundamental J-alcove A;

In this section we extend the definition of “strips” in [17), [I§] to arbitrary affine type, and
study the geometry of these subsets of V' (following Lusztig [25], §2] we call these generalisations
J-alcoves for reasons that will be explained below). It turns out that the geometry of the
fundamental J-alcove A will be crucial to our combinatorial formulae, and so we develop some
of the basic properties of A; and its symmetries here.

2.1 J-alcoves and J-affine Weyl groups
Definition 2.1. Let J C I. The fundamental J-alcove is the set
A;j={zeV|0<(z,a)<lforallae®t}

See Example for an illustration of a fundamental J-alcove. Let us explain this termi-
nology. To begin with, in the case J = I we have A; = Ay, the fundamental alcove. For general
J C I let H; be the set of all hyperplanes H, j with a € <I>(J]r and k € Z. Let A; denote the
set of “alcoves” of this hyperplane arrangement: by definition these are the closures of the open
connected components of V'\ (U mem, H ) We shall call elements of A ; J-alcoves, and it is clear
that A is indeed a J-alcove.

Let

Qs = Z Zao".
acd
Note that if @ is not reduced (hence ® is of type BC,, and n € J) then o) /2 = (2a,)" € Q.
The J-affine Weyl group is

Wil = (sqp | €T, k€ Z) =Qy x Wy,

By the general theory of Section (c.f. [3, §V.3]) the group W}H acts simply transitively on
the set A, and Ay is a fandamental domain for the action of W on V', see [3, §V.3].

Remark 2.2. The notion of J-alcoves can be traced back to Lusztig [25, §2]. There is a
connection between J-alcoves and the J-sectors of Mili¢evié, Naqvi, Schwer, and Thomas [29]
§3.1], which in turn are special cases of the chimneys of Rousseau [306}, §3.1]. Indeed, the J-sectors
of [29] are precisely the intersection of the fundamental J-alcove with a set of the form

rw Eﬁik@
BEDPT\D

for some choice of integers kg, 8 € @T\® ;. See [29, Remark 3.3] for a discussion of the history
of these concepts.

Let K(J) denote the set of connected components of J (that is, the connected components
of the Coxeter graph of the Coxeter system (W, J)). For example, in type Ag if J = {1,3,4,6}
then IC(J) = {{1},{3,4},{6}}. For connected subsets K C I let ¢k be the highest root of ® .
Note that

o= || ok (2.1)
KeKk(J)

Note that if ®; is not reduced, then @ is of type BC,,, and J contains a connected component
K={k+1,k+2,...,n} (of type BCp,_y).

11



Lemma 2.3. Let J C I. The walls of the fundamental J-alcove Ay are Ho, 0 and Hyp 1 with
jeJ and K € K(J). That is,

Aj={z eV |(z,a;) >0 forall j € J and (z,¢K) <1 for all K € K(J)}.

Proof. Write A’; for the right hand side of the displayed equation in the statement of the lemma.
Clearly A; C A}, and so it suffices to show that A, C A;. Thus suppose that x € A’,. Let
a € @5 Writing a = > . a;a; we have (z,a) = 3 . a;(z,a;) > 0. Since o € @ we
have a € ®x for some K € K(J), by (2.1). Since (2,a;) > 0 for all j € J and g — v is a
nonnegative linear combination of roots ay with k¥ € K C J we have (z,ox — «) > 0, and so
(x,a) < (x,pr) <1, hence z € Aj. O

The reflections in the walls of A; generate the J-affine Coxeter group, and we have
wit= T wif. (2.2)
KeKk(J)
Let 87 = s;j for j € J, and let s, = sy, 1 for K € K(J) (where for each K € K(J) we

introduce a symbol O ). Then {sy,_} U {s}; | k € K} are the Coxeter generators of Wt Write
JH = {0 | K € K(J)} U J, and so {sjlje J2f} is the set of Coxeter generators of Waf.

2.2 The set PY) = A;NP

(J

In this section we determine the set P(/) = A; N P of coweights contained in the fundamental

J-alcove.
Lemma 2.4. Let J C I and let A € P. There exists a unique \* € (A + Q)N Ajy.

Proof. Let A € P. Then A\ € A for some J-alcove A € Aj. Since Wjﬁ acts transitively on
Ay, and since Ay € Ay, there is w € Wf}ff such that wA = A; (and in particular, wA € Ay).
Since w is a product of reflections in hyperplanes H,; with a € <I>j and k € Z, and since
Sak(A) = A= ((\, @) —k)aV it follows that wA € A+Q s, proving the existence of \*. Uniqueness
follows from the fact that Ay is a fundamental domain for the action of W}H on V. ]

Definition 2.5. Let A(/) denote the unique element A* of (A + Q) N Ay (c.f. Lemma .
Note that A(/) and A7 are, in general, distinct. See Example

The following lemma gives a useful characterisation of P/). For \ € P let
In=A{ieJ|(\aj) # 0} (2.3)
Lemma 2.6. Let J C I and A € P. Then A € Ay if and only if the set Jy has the following
properties:

(1) if j € Jy then (N, a;) =1;

(2) for each K € K(J) we have |JyN K| <1;

(3) if j € Jx then (wj, oK) =1 where K € IC(J) is the connected component of J containing j.
Proof. Write A = >, ;ciw;. If A € PN Ay then ¢; € {0,1} for all j € J. Moreover, for each
K € K(J) there is at most one j € K with ¢; = 1, for otherwise (A, o) > 2. Moreover, if j € K
with ¢; = 1 then for a € @} we have (\,a) = (wj,a). In particular, taking o = i € ®; we
have (w;, k) = 1. The converse is clear, using (w;, a) < (w;, pk) for all a € PF.. O

Corollary 2.7. The set P\Y) consists precisely of the elements
A=) awit Y w;
i€I\J jed’

with a; € Z and where J' C J is a set satisfying |J NK| <1 for all K € K(J) and if j € J'NK
then the coefficient of aj in px is 1 (then J = Jy).

Proof. This follows immediately from Lemma [2.6 O

12



2.3 The set W’ and the elements y, and 7,
Define a subset WY C W by

WY = {weW |wAs C Ay}

Thus W/ N'W is in bijection with the (classical) alcoves contained in the fundamental J-alcove.

We note, in passing, that W has the following characterisations (in particular, the third char-
acterisation below shows that W”/ may be regarded as an affine analogue of W, see Lemma
and recall the definition of ®(w) from Section .

Lemma 2.8. We have

W = {we W | l(sgpw) > L(w) for all B+ kb € By + 75}
={we w | £(shw) > L(w) for all j € Jofty
={weW|dw)N (D, +7Z5) =0}

Proof. We have w € W if and only if the alcove wAq lies on the same side of H, 8.k as Ag for all
(B,k) € @5 xZ, if and only if {(sg rw) > £(w). Hence the first equality. For the second equality,
we similarly have w € W if and only if the alcove wAj lies on the same side of Hy, o and Hy, 1
as Ap for all j € J and K € K(J) (see Lemma [2.3). The third characterisation follows from
the first characterisation and the fact that if § — k6 € ®T then {(sgrw) < ¢(w) if and only if
B+ ké € d(w). O

Definition 2.9. For A € P() let

Ya=wn Wy and Ty =y,

where Jy, is as in (2.3)).
Note that both y, and 7, depend on the subset J, however this dependence is suppressed in
the notation.

Lemma 2.10. For A € PY) we have ®(y,) = @j,r\(I)}r\JA ={ae®@ | (\a)=1}L

Proof. Tt is clear from the definition that ®(y,) = Q)j\@j\h. A root a € @} does not lie in
<I>}' I if and only there exists j € J) such that the coefficient of «; in « is strictly positive. By
Lemma this occurs if and only if the coefficient of o; in « is 1, and hence the result. O

The following theorem gives an explicit decomposition of W7/ (see Example for an
illustration).

Theorem 2.11. We have W’ = {n\u | A € PY) and u € W'},

Proof. We first show that 7, € WY for all A € P(Y). The hyperplane in the parallelism class
of @ € ®; passing through A is H, () ), and we have (A\,a) € {0,1} (as A € P)). Thus the
hyperplanes in the parallelism classes of ®; separating the alcove ty Ay from Ay are precisely
the hyperplanes H, 1 with a € <I>}' such that (\,a) = 1. By Lemma these are precisely the
hyperplanes separating tyAg from tyyyAo (because the corresponding linear hyperplanes H, o
are the hyperplanes separating e from yy, and translation by A preserves orientation and shifts
these hyperplanes). Hence 7349 C Ay and so 7 € W,

Let u € W7 and suppose that myu ¢ W/, That is, \udg € Aj. Since 7y Ag C Ay (from the
previous paragraph) it follows that there is a hyperplane H, j separating tyxyyAo from ¢y uAy
with a € <I>j and k € {0,1}. Translating by ¢_, implies that the hyperplane H, o separates yy
from yyu, contradicting Lemma Thus {ryu | A € PY) and u e W'} C W/,
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For the reverse containment, suppose that w € W7, Write w = tyujus with A = wt(w),
u; € Wy, and ug € W7, It is clear that A € P) (as w(0) = X and 0 € Ag). Since ®;(us) =
(by Lemma there are no walls of A; separating tyui from tyujue. Thus tyuiAg C Ay.
The argument of the first paragraph, combined with the fact that ®;(ug) = (), shows that
the hyperplanes separating ¢, from ¢yu; are precisely the hyperplanes H, ; with a € <I>}L with
(A, a) =1, and it follows that u; =y). So w = Thug with ug € w. O

Remark 2.12. The first paragraph of the proof of Theorem shows that if A € P/) then
yx may be characterised as the unique element of Wy such that tyyy € W”.

The following immediate consequence of Theorem will play a role later. Recall the
definition of 6;(w) and 7 (w) from Definition

Corollary 2.13. If w € WY then 0;(w) = Ywt(w), and so w = th(w)HJ(w).

Proof. By Theorem w = Tyu = tyyru with A = wt(w) and u € W, hence the result. O

2.4 The J-translation group T}

We have seen in Lemma that P(/) is in bijection with P/Q; and hence the former inherits
a group structure of the later via A — A 4+ Q. In this section we introduce the J-translation

group
Ty ={n|Ae PV}

and show that this subset of W is a group realising the above group structure (see Corollary|2.15)).
This group interpolates between P (when J = () and ¥ (when J = I). The following lemma
gives some important basic properties of the elements yy and 7).

Lemma 2.14. Let A\, € P\Y). Then
(1) A+ =X +yap and (-0 = —yy'x;
(2) YAV = You @ = Yu¥a and vt =y o)
(3) ™A = Ty = TuTr and = T(—)) -

Proof. (1) Since yy € Wy we have Ay € A+ Qy, and so to prove that (A1) = A y\p
it suffices, by the uniqueness in Lemma to show that A\+yyu € P™). To do this, let a € (IDj,
and write 8 = y; 'a. Then (A+y\u, ) = (A, a)+(u, B). Since A € PV we have (\, ) € {0,1}. If
(A\,a) = 0 then a ¢ ®(y,) (by Lemma2.10) and so 8 = y; 'a € ®F, and so (A\+yu, ) = (i, B),
giving 0 < (A +yxu,B8) <1 (as B € @} and pp € Ay). If (\,a) =1 then o € ®(yy) and so
B e —@F. Thus (A +yyp,a) =1+ (u,B8) and so 0 < (A +y p,a) <1 (as —1 < (i, ) < 0 as
B e —<I>}' and p € Ay). Hence X +y\u € P,

To show that (—\)/) = —y;l)\ one shows, in a similar way, that —y;l)\ e P,

(2) By (1) it suffices to show that yxy, = yiyy,, and y;l = Yoy To prove the first
statement we shall show that ®(yxiy,,) = ®(yayu). It follows from Lemma that

D(yrya) = {0 € ®5 | (@) = 0 and (3 a) =1, or (\,a) =1 and (4, v} 'a) = 0},

Suppose that & € ®(ya4y, ). If (A, @) = Land {u,y; 'a) = 0 then a € ®(y,) and —y; 'a ¢ D(y,),
and so o € ®(yyy,). If (\,a) = 0 and {(u,y,'a) = 1 then o € 5\D(y,) and y, ‘o € D(y,),
giving o € ®(yyy,). Conversely, suppose that a € ®(y,y,). Then a € (I)j with y;lygla <0,
and there are two cases. If y;'a > 0 and y;l(ygla) < 0 then (\,a) = 0 (as a ¢ P(y)))
and <u,y)_\1a> =1,50 a € ®(yrqy,pu)- If ygla < 0 and y;l(—ygla) > 0 then (A\,a) = 1 and
(11, =y ') = 0, and 5o again @ € ®(yayy,u). Hence yayu = Yatyyu = Yap @) = YuYa-

The statement y;l =Y_yia follows from the general formula ®(w™!) = {—wa | o € ®(w)}.
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(3) By (1) and (2) we have
AT = IYALLY = ExbyawYAY e = T ) OY k) = T -
Similarly 7;1 = T O

Corollary 2.15. We have Ty = P/Q;. In particular, Ty is an abelian group of rank |I\J|.
Moreover T acts freely on WY with fundamental domain W*.

Proof. Lemma (3) shows that T; is a group, and that the map f : P — T given by
f(A) = 7y is a group homomorphism. This homomorphism is surjective (as M) = X\ for
A€ PU)) and ker(f) = Q.

If A\ € PY) and w € W’ then by Theorem we have w = 7,u with u = wt(w) € PY)
and v € W”. By Lemma (3) we have 7y - w = T\T, U = TOtp) () Us and hence 7y - w € W/
by Theorem m Thus T; acts on WY. It is clear that this action is free, and that W is a
fundamental domain. O

Remark 2.16. By Corollarythe map T; — P/Qy with 7\, — M) 4@ is an isomorphism.
In contrast, we note that the map T; — P/ with 7, — A/ is a surjective, not necessarily
injective, group homomorphism (the fact that the map is a surjective homomorphism follows
from Lemma (3) and the obvious fact that (A(V))7 = A7, and to see that the map is not
necessarily injective consider the extreme case J = I where P/ = {0} while T; = P/Q = %
may be nontrivial).

Recall the classical formula £(ty) = cot |(A, )| (obtained by counting hyperplanes crossed).
The following proposition gives an analogous formula for the elements 7).

Proposition 2.17. For A € P“) we have

()= Y [(\a)l

acd\®;

Proof. By [28, (2.4.1)] we have (for A € P and w € W)

Utyw) = Y [(ha) —x " (wla),

+
acd]

where x~(-) is the characteristic function of —®*. Now suppose that A € P(/) and consider the
contribution |(\, a) — x~(yy '@)| to £(7) in the above sum from o € ®7. If & € @7 then either
(\,a) = 0 in which case x~(y;'a) = 0, or (\,@) = 1 in which case y~(y; ‘@) = 1 (in both cases
using Lemma . Thus if o € <I>j then the contribution to the sum is 0. If a € ®{\®, then

X~ (y;la) = 0, hence the result. 0

Example 2.18. Figure [4| illustrates the decomposition of w (which equals W in this case)
into J-alcoves for type G with J = {1}. The J alcoves are shaded blue and green, with the
dark green region denoting the fundamental J-alcove A (the grey alcoves are also part of Aj).
Moreover the elements 7y with A € P(/) are shaded grey, and the decomposition of A; given by
Theorem and Corollary is illustrated by dotted lines. Note that A7 % A(/) in general
(c.f. Definition , for example ng) = wyq while Wi] = %WQ. We have wi — wy = %wz and so
P’ = 7w, where wy = %wg (this lattice is denoted as the union of the solid and open circles on
the hyperplane Hy,, o). We have P;/Q; = Z/2Z.
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Figure 4: J-alcoves and the group T; for & = Gy and J = {1}

2.5 Symmetries of the fundamental J-alcove

In this section we determine the subgroup of w stabilising the fundamental J-alcove Aj.
Definition 2.19. Let G; = {g € Wy | gA; = A;} be the subgroup of Wy stabilising A .

Theorem 2.20. We have G; = {g € Wy | g®; = ®F}. Moreover, for g € G; and a € ®F
we have ht(ga) = ht(a). In particular g maps the simple roots of ® 5 to the simple roots of ®;,
and hence induces a permutation of J. This permutation maps connected components of J to
connected components of J.

Proof. Let g € G;. Then for all « € ®% and all A € A; we have 0 < (gA,a) < 1. We
claim that this forces g_qu}r = <I>JJF. For if g7l ¢ <I>}L then either g~'aw € —®7, or there is
i € supp(g ') with i ¢ J. In the former case, choose any j € supp(¢g~'a) (and so j € J) and
let mf{ be the coefficient of o; in ¢x, where K is the connected component of J containing j.
Then X = w;/mf € Ay (for if § € ®7\Px then (X, 5) = 0 and if 5 € ®f then 0 < (X, ) <
(A, or) =1), and (\,g'a) < 0 gives a contradiction. In the latter case, taking A = 2w; € Ay
gives [(gA, )| = [(A, g7 a)| > 2, again a contradiction. Thus g®F = @F. On the other hand, if
g®t = @1 and A € A, then for a € & we have (g, o) = (A, g~ 'a), which lies between 0 and
1 (since g7l € <I>}r and A € Ay), and so gA; = Aj.

Let g € G;. Since g®% = &7 we have ht(ga) > ht(a) (because each ga; has height at
least 1 and g is linear). Since g~! € G; we also have ht(g~!3) > ht(B) for all 3 € &, and by
hypothesis we have 8 = ga for some a € @7, and so ht(a) > ht(ger). Thus ht(ga) = ht(a) for
all o € qf}. In particular each g € G ;7 maps simple roots of ®; to simple roots of ® 7, and hence
induces a permutation of J by ay;) = ga; for j € J.

We now show that for each g € G; the permutation g : J — J maps connected components
to connected components. Let K be a connected component of J, and let ¢ be the highest root
of ®x. We claim that gpx = ¢k is the highest root of some connected component K’ C J. For
if not, then there is ¢ € J such that a = gy + «; is a root of & ;. But then g la = YK +ag-1(;
is a root, necessarily of @, of height exceeding ht(¢x), a contradiction. Thus g maps highest
roots to highest roots, and so g maps K to K. O
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Lemma 2.21. If A\ € PY) and g € G then

aAg  =yon gnag t=Tn,  and  U(7y) = (7).

Proof. To prove that gy g~! =y, it is sufficient to show that ®(gyrg™") = ®(yga). If a € ®(y,0)

then o € <I>j with (g\, @) = 1. Thus (A, g 'a) = 1 and so g~ 'a € ®(y,). Hence gyrg~'a € —<I>j,
showing that ®(yzn) € ®(gyag~!). On the other hand, suppose that o € ®(gyrg~'). Since g
maps simple roots of ®; to simple roots of ®; we have gsjg_1 = Sq4(5) € Wy for all j € J, and
so gyxg~' € Wj;. Thus a € ®;, and so g ta € <I>Jj. If g7'a ¢ ®(yy) then gyrg~la € T, a
contradiction, and so g~ 'a € ®(y,). Thus (A, g 'a) =1, and so (g, o) = 1, giving a € P(yy )
as required.

It then follows that grag™" = t,n(gyag™) = toaygr = Ta for all A € PW). By Proposi-

tion we have ((74y) = zaeqﬁ\% I\, g ta)| = Zaeqﬁ\% (A, )| = (7). ]
Corollary 2.22. The subgroup ofW stabilising Ay is Ty x G ;.

Proof. Let w € W and suppose that wA; = Aj. Let A = wt(w), and so w(0) = A € PM). Then

T/\_lw(O) =0,andsog = T/\_lw € Wy withgAy; = Ay,andsog € Gy. Thusw =ng € T;Gy. O

Note that the group T x G plays the role of the “extended affine Weyl group” of A; in
the sense that if J = () we have T; x G; = W.

3 J-folded alcove paths and J-parameter systems

In this section we introduce positively J-folded alcove paths, generalising the positively folded
alcove paths of Ram [35] and the 2-dimensional theory from [I7, 18]. We also introduce the
notion of a J-parameter system, a combinatorial object that will be useful in indexing later
objects in this paper.

3.1 J-folded alcove paths

We introduce the following definition, giving a J-relative version of positively folded alcove paths.

Definition 3.1. Let @ = s;,5i, - - 5;,0 be an expression for w € w (not necessarily reduced)
with o € ¥, and let v € W/, A J-folded alcove path of type W starting at v is a folded alcove
path p = (vo,v1,...,vp,ve0), as in Definition with vo,...,ve € W/, A positively J-folded
alcove path is a J-folded alcove path p = (vo,v1, ..., v, ve0) such that:

if v = v, with kalsikAO C Ay then vi_1Ag +|_ kalsikA&
The end of the J-folded alcove path p = (vp, ..., v, ve0) is end(p) = veo.

Thus J-folded alcove paths are folded alcove paths confined to the fundamental J-alcove.
However note that positively J-folded alcove paths are not necessarily positively folded al-
cove paths, because if vy_1 = vy with vy_1s;, A9 € Ay then there is no requirement that
vg—140F|” vg_18i, Ao. See Example for an illustration. Positively (-folded alcove paths are
the same as positively folded alcove paths.

For v € WY let

P(w,v) = {all positively J-folded alcove paths of type @ starting at v}.
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Definition 3.2. Let @ = s;,8;, - s;,0 and let p = (vp,...,vp, ve0) be a positively J-folded
alcove path. The index k € {1,2,... ¢} is:

(1) a positive (respectively, negative) s;, -crossing if vy = vg_1s;, and viAg is on the positive
(respectively, negative) side of the hyperplane separating the alcoves vi_1 Ag and vy Ap;

(2) a (positive) s;, -fold if vy, = vi_; and vg_18;, Ao C Ay (in which case vy_1Ag is necessarily
on the positive side of the hyperplane separating v,_; Ag and vi_15;, Ao);

(3) a positive (respectively, negative) bounce if vy = vg_1 and vg_1s;, Ao € Ay and vg_1Ap is
on the positive (respectively, negative) side of the hyperplane H separating vi_1 A4 and
vg—18i, Ao. Necessarily H = H, o (respectively, H = H, 1) for some a € <I>JJr and we say
that k occurs on the hyperplane H, o (respectively, Hq 1).

Less formally, these steps are denoted as follows (where z = vj_; and s = s;, ). In each case,
the alcoves contained in 4 ; are shaded green.

H a,0 H a,l
— +
x5 Ag xsAo
positive s-crossing s-fold negative s-crossing positive bounce negative bounce

It will turn out that bounces play a very different role in the theory to folds, and so we
emphasise the distinction between these two concepts. Put briefly, all of the interactions a path
makes with the walls of A; are bounces, and the folds can only occur in the “interior” of Aj
(that is, folds occur on the panel between two alcoves that both lie in A7, while bounces occur
on panels that lie on the boundary of Aj).

Let p be a positively J-folded alcove path. For each i € {0} UT and o € & we write

fi(p) = #(i-folds in p)
b (p) = #(positive bounces in p occurring on H, )
b, (p) = #(negative bounces in p occurring on Hy 1)
balp) = b7 (p) + V7 ().

Remark 3.3. By Lemma we have b (p) = 0 unless o = pg for some K € K(J), and
bl (p) = 0 unless o = o or @ = 2 for some j € J. Of course the case & = 2a;; only occurs if
®; is not reduced and j = n, and in this case b} (p) = b3, (p).

3.2 Coweights and final directions of positively .J-folded alcove paths

By Corollary the set W+ is a fundamental domain for the action of Ty on W”. While in
many respects this choice of fundamental domain is “natural”, in examples and applications it
turns out to be important to have additional flexibility in order to better incorporate symmetries
present (see, for example, Section @
Let F be a fundamental domain for the action of T; on W”. Thus each w € WY has a unique
expression as
w=T7wu with A€ PY) and u € F,

and we define the coweight of w relative to F and the final direction of w relative to F by
wt(w,F) =X and 6(w,F)=u.

If p is a positively J-folded alcove path then the coweight of p relative to F and the final direction
of p relative to F are

wt(p, F) = wt(end(p),F) and 6(p,F) = 0(end(p),F). (3.1)
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In particular, note that wt(p, W”/) = wt(p) and 0(p, W”/) = 67(p), where wt(p) = wt(end(p))
and 6”7 (p) = 07 (end(p)) (see Definition .

Example 3.4. Figurelf|illustrates a positively J-folded alcove path in type Gy with J = {1} with
two choices of fundamental domain F shaded blue (see Figure [4] for the root system conventions).
In both cases the path has 3 bounces (two positive, and one negative, occurring at the fourth,
fourteenth, and twenty first steps), and 2 folds (a 2-fold and a 0-fold, occurring at the eighth
and twenty fourth steps). In Figure @(a) we have 67(p) = 21 and wt(p, W’) = wt(p) = wy. In
Figure [6[b) we have 6(p, F) = 020 and wt(p, F) = ws.

(a) Fundamental domain F = W/ (b) Fundamental domain F = {e, 2,020,021, 02,0}

Figure 6: Positively J-folded alcove path for ® = Go with J = {1}

There is a natural action of T; on positively J-folded alcove paths, as follows (recall the
definition of A() from Definition .

Lemma 3.5. Ifp = (vo,v1, ..., v, v00) is a positively J-folded alcove path of type & = s;, - - - s;,0
and A € PY) then
Tx D = (TAV0, TAVL, - -+, TAVE, TAVLO)

is a positively J-folded alcove path of type W, and folds are mapped to folds and bounces to
bounces. For any fundamental domain F we have

wi(ry - p,F) = (A +wi(p, F)and 6(ry-p,F) = 6(p, F).

Proof. Since Tj acts on W7 we have T\, ..., v, e € WY, and moreover bounces are
mapped to bounces, and folds to folds (because if vy = vi_1 then vy_1s;, € W if and only
if Ty\vg_18;, € W ). It remains to show that the image of a fold remains positively oriented.
Thus, suppose that vp_1 = v, and vi_1s;, € W, Then v,_1Ap is on the positive side of the
hyperplane separating the alcoves v;_1A¢ and vi_15;, Ao, and this hyperplane has a linear root
a € &1 with a ¢ ®;. We have 7, = t,y,, and since y, € W; we have yya € ®*, and hence
the fold remains positively oriented. The statements about the coweight and final direction are
then clear using Lemma [2.14 O

3.3 J-parameter systems and the v-mass of a path

Recall the definition of the parameters q;, i € {0} U I from Section and Convention
The modules that we construct in Section will be indexed by two pieces of data: a subset
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J C I, and a choice of a J-parameter system v as defined below. Roughly speaking (and
restricting temporarily to the reduced case), a J-parameter system amounts to choosing elements
Vo, € {qj, —qj_l} for each j € J in such a way that if j,j' € J with s;» and s; conjugate in Wy,
then v, ;= Va- The formal definition is as follows.

Definition 3.6. A J-parameter system is a family v = (vq)ace, with:
(1) Vo = V33 if € Wja;
(2) Va, € {a;,—q; '} for j € J with 2a; ¢ ®;
(3) Vaa, € {q0, —qp '} and Va, Vaa, € {qn, —q; '} if ®; is not reduced.
By convention we set v, = 1if a ¢ ®;. Thus we have v,;vaq,; € {qj, —q;l} for all j € J.

Example 3.7. If ® = Cy3 and J = {1,2,3,6,7,9,11,12, 13} as depicted below
o e e o e A Co =)

then there are 32 distinct J-parameter systems. Specifically, these systems are given by the
independent choices Va,, Vag, Vag, Vai; € {1, —d; '} and Vay, € {13, —q13 } (and then Vo, for
Jj = 2,3,7,12 are determined by condition (1) in the definition of J-parameter systems). If,
instead, ® = BCy3 then there are 64 distinct J-parameter systems due to the additional freedom
in choosing vaa,; € {do, —qg '}

If v=(Va)aca, is a J-parameter system, for A € P and y € W; we write

v = H v(()é)"o‘> and v(y) = H VaVou- (3.2)

a€<1>JJr aed(y)

Note that if A € PN V7 then v} =1 (as (A\,a) = 0 for all a € 7).
In the following definition we introduce the v-mass of a positively J-folded alcove path. This
quantity will play an important role in the combinatorial formula of Theorem 4.12]

Definition 3.8. Let v = (vq)aca, be a J-parameter system. The v-mass of a positively J-folded
alcove path p is

acd? ie{0yurl
Example 3.9. The path in Figure [6] has v-mass
Qu(p) =i, (a2 — a3 )(a0 — ap 1),

where vqo, € {q1, —ql_l}. A positively J-folded path with ® = BCy and J = {2} is illustrated
in Figurelﬂ This path has v-mass Q,(p) = ngVgag (91 — ql_l) = (voézvzm)‘?vga2 (q1 — ql_l). We
have vqa,Vaa, € {q2, —q;l} and vaq,, € {qo, —qal}, and note that the exponents 3 and 2 in the

expression for Q;,(p) count the number of bounces on the walls Hy, o and Haq, 1.

Figure 7: Positively J-folded path with ® = BCy and J = {2}
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Recall, from Lemma that T acts on the set of positively J-folded alcove paths.
Lemma 3.10. If p is a positively J-folded alcove path and A\ € PY) then Qiv(Tr-p) = Qv(p).

Proof. We showed in Lemma that folds are mapped to folds and bounces are mapped to
bounces. Moreover, if a fold/bounce of p occurs on a panel of type i then the corresponding

fold/bounce of 7y - p occurs on a panel of type (i) for some o € ¥. Since q,;) = di (see
Convention the result follows. O

We shall need the following technical results concerning the functions v* and v(y) in Section
Lemma 3.11. Let v be a J-parameter system. If X € PY) and y € Wy then
v(yya) = vV (y).

Proof. From the definition of v(-) we have

1 if a e @(yya)\2(y)
= JI (avae)™ =[] vi*, where oo =< -1 ifac ®(y)\e(yy,)
ac®tnd, acd} 0  otherwise.

On the other hand, it follows from Lemma (see also Corollary that

1 if yil(l S q)j\(I)J\JA
v = H v,ﬁﬁ’y”@ = H vie where o, ={ -1 ifylac (—<I>j)\<I>J\JA
aE{J'} oqu):"; 0 if y_IOé S (I)J\J)\.

Since ®(yy) = <I>j,“\<I>J\JA (see Lemma [2.10)) it follows that if v € ®7 then

a € ®(yy)\@(y) <=y la € dT\P s,

a € B(y\e(yyr) <=y la € (=P7)\0 ;.
Thus o, = o},, and hence the result. O

Lemma 3.12. Let v be a J—pammetver system.
(1) If j € J with 2c; ¢ @ then v = V2

(7
(2) If ®; is not reduced then von/2 = Van V3, -

Proof. Let K € KC(J) be the connected component with j € K. If ®f is reduced then there are
at most two root lengths in @ (with all roots long in the simply laced case), and since all roots
of the same length are conjugate in Wy (as K is connected), for j € K we have

(a\-/,oe> <a\'/70‘> (a\/v?pl > <O‘\'/72pK>

v
o
J = =
v « sh lo )
«

+ +
€d; acdy,

where vg, (respectively vi,) is the constant value of vg on short (respectively long) roots § in

P, and where p and pg are as Section It follows by Lemma [1.4] that v®5 = vij.
If @ is not reduced then direct analysis of the BC,, root system gives

a; o II \xayﬁﬂ__\ﬁayﬁp%>( 2 yayQpKX

v e = Vo, VanVaa,

+
acdy

If j € K\{n} we have (a,2px) = 0 and (o, 2p)) = 2 and so v =v2 =2 andif j=n

(5] (7R
then (o, 2p%) = 0 and (), 2p) = 2 giving v®/2 = v,, V3, as required. O
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Lemma 3.13. Let K € K(J) and let o € 5 be a long root of @ (with all roots long if Pk is
simply laced). Then v® v(sq) ™' = vq.

Proof. Let w = sj, -+ s;, € Wi be of minimal length subject to w™ta = ay, for some k € K (if

P is reduced) or wla = 2a, (if @k is not reduced). Let By = « and define By, ..., 3 € )
by By = sj,0r—1 for 1 <r < ¢, and so f; = ay, (or f; = 2a, if Px is not reduced). Since each
By is a long root of @ we have (8)_;, ;) € {—1,0,1} (see [3, IV, §1, Proposition §]) and so

r—1»
v v v v v % v
By = 8581 =Br_1 — <5r—1a04jr>04j,« =B — oy,

because (3Y_;,a; ) € {0, —1} contradicts minimality of w, see for example [4, Lemma 1.7]).
r—1 Jr

We claim that
Vv
VIrv(sg )t =v, for0<r <d.

We argue by downward induction on r. If r = £ then 8y = ay, (if ®x is reduced) or 5y = 2ay, (if
® i is not reduced), and the result follows from Lemma starting the induction.
Since sg,_, = $;,53,5j, (with length adding) we have

V(s )T = V() u(ss)

Note that if ®x is not reduced then j, # n for 1 < r < £ (because s,_1 - - si(2ex) = 2e,),
and so by Lemma we have vo‘ﬂvrv(sjr)*2 =1 for all 1 < r < ¢, and the result follows by
induction. ]

Lemma 3.14. Let v be a J-parameter system. If K € K(J) and y € W then

V(yser) .

V(y) Vyapy( _ {VQOK Zf YPK € (I):"f_
7 = - ‘ N
Vor if yox € —®7.

Proof. We may assume without loss of generality that y € Wx (making use of Lemma [3.13)).
Let a € . If y~la # ok we claim that

1 ifyta e d(spy)
(picy ') = { =1 ify~la € —B(sy,)
0 otherwise.

To see this, note that by [3, Chapter VI, §1.8] if 8 € ®. then (p},B) € {0,1}, and since
Sor(B) = B — (¢, B we have 8 € ®(s,, ) if and only if (¢), 3) = 1, and the claim follows.

Let € € {—1,1} be such that ypx € e®™. Using the claim, and the fact that (), px) = 2,
we have

1 ifytae (syy)
Vv -1
VUK — H PRy = Ve H ver  where o, =14 -1 ifyla e —D(s,y)

acd} acd} 0  otherwise.

On the other hand, as in the proof of Lemma we have

1L ifae Dysy, )\O(y)
= H vie, where o, =1¢ -1 ifa€ ®(y)\P(ysyy)
acd} 0  otherwise.

V(ySSOK)
v(y)

The result now follows from the fact that if @ € @} then a € ®(ys,,)\®(y) if and only if
yla € O(syy ), and a € O(y)\P(ys,, ) if and only if y 1o € —P (s ). O
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3.4 J-straightening

Given a positively J-folded alcove path p € P, (w,v) (with v € WY) we define the .J-straightened
alcove path ps to be the path obtained by straightening all bounces of p (note that the folds are
not straightened). More formally, let p = (vg,v1,...,vs,v0) and suppose that the bounces
occur at indices 1 < k1 < ko < --- < k. < ¢, and that they occur on the hyperplanes
Hg, v,,...,Hg, ,, with p1,...,53 € <I>JJr and vy,...,v,. € {0,1}. Write p = po - p1-p2-- P,
where po = (vo, .., Vk;—1);s Pj = (Vkj» -+ -5 Vkyyy—1) for 1< j <r —1, and p, = (vg,, . . ., Ve, v40).
Then p; is the path po - (5,31,1/1]71) : (5,31,1/1 5,6’2,1/2]72) T (551,111 T Sﬁr,urpr)~

Example 3.15. The path in Figure [8] is the J-straightening of the positively J-folded alcove
path in Figure [6]

S
&

&

Figure 8: J-straightening of the path in Figure@

NHON
AN,

/-
S
—/

E

In Figure [§| the J-straightening p; turned out to be positively folded. The following propo-
sition shows that this is no coincidence.

Proposition 3.16. Let w € W and let 17 be any expression for w (not necessarily reduced). Let
v €W’ and let p € Py(w,v). The J-straightening map p — py is a bijection from P;(0,v) to
the set {p' € P(w,v) | p' has no folds on hyperplanes He y, with o € ®F and k € Z}.

Proof. Consider the effect of straightening a bounce. Let a € <I>}r be the linear root associated
to the wall on which the bounce occurs. A later positive fold that occurs on a S-wall (necessarily
with 8 € ®F\®;) now occurs on a s,/3 wall. Since 8 ¢ ®; and s, € W; we have 5,8 € T\,
(as so permutes the set ®;) and hence this reflected fold remains a positive fold (see (1.2))),
and it does not occur on a hyperplane H, ; with v € ®; (a “®j-wall”). This shows that py is
positively folded, with no folds occurring on ® j-walls.

A similar argument shows that one may apply the reverse procedure, starting with a posi-
tively folded alcove path p’ € P(w,v) with no folds on ® j-walls and forcing the bounces on the
® j-walls. These operations are mutually inverse procedures, hence the result. ]

We now give some more precise information on the J-straightening relating to the v-mass.
If p is a positively folded alcove path, for each o — kd € ®T we define

Ca (P) = #(crossings in p that occur on the hyperplane Hy ).

Note that in the non-reduced case, if 2ac € ® then caq 2k(p) = ca k-
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Given a J-parameter system v = (Vo)aco, we define
Vaiks =Vo fa€®jand k €Z, (3.3)

and we set voips = 1 if a+ k0 ¢ ®5+ 7Z0.

Proposition 3.17. Let p be a positively J-folded alcove path (not necessarily of reduced type)
and let v = (Vo )aca, be a J-parameter system. Then

Qiv(p) = Qpy) H VZCZIZ((SP.I)

a—ksed+
where Q(+) is as in Proposition (note that the product has finitely many terms # 1).

Proof. First, note that under the bijection p — p; the types of the folds are preserved (that is,
i-folds in p are mapped to i-folds in p;) because the J-affine Weyl group Wf}‘ﬁ is type preserving.
This shows that

H (q; — qi—l)fi(p) — H (q; — qi—l)fi(m) = Q(py).

1e{0}ur 1e{0}ur

Thus it remains to show that if p € P(w, v) then

H vba(®) = H Vza_,fz%m),

acd™ a—kscd+

which in turn follows from the fact that each crossing of a ®; + Zd wall in the J-straightened
path py corresponds to a bounce on a wall of A; in the path p, and from the definition of
J-straightening if p; has a crossing on Hgj with 8 € ®; then there is v € Wj‘ff with vHpg
equal to the wall H, , of A; on which the corresponding bounce occurred. ]

4 The H-modules M Jv

In this section we construct finite dimensional H-modules (mgv, Mjy) (Theorem , and de-
velop a combinatorial formula for the matrix entries of 7, (T},) in terms of positively J-folded
alcove paths (Theorems and . We prove that these modules are irreducible (Corol-
lary and realise them as induced representations from 1-dimensional representations of
Levi subalgebras (Theorem . In fact we will show that all representations of H that are in-
duced from 1-dimensional representations of Levi subalgebras arise from our construction (after
specialising certain “variables” appropriately, see Remark .

Our H-modules are inspired by the modules constructed by Lusztig [25, Lemma 4.7] and
Deodhar [6, Corollary 2.3], however note that those modules are infinite dimensional when
applied to our setting. To motivate the general philosophy of Theorem [4.1] recall Lusztig’s
periodic Hecke module M = @ 4., RA (with R as in Section [1.6) with basis indexed by the

(classical) alcoves and H-action given by (see [25, §3.2])

ws; Ag if wAy~ |+ ws; Ao

ws;Ag + (q; — qi_l)on if wAyT|” ws; Ag

(on)'Tz:{

for i € {0} UI. The idea behind Theorem {4.1}is to adapt this action to create a J-analogue that
also incorporates the action of the translation group T; on A; to create a finite dimensional
H-module. We shall be able to achieve this goal for each subset J C I and each J-parameter
system v, thus constructing many “combinatorial” finite dimensional H-modules.
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4.1 Construction of the module M;,

Let {¢; | i € I} be a family of commuting invertible indeterminates, and for A\ € P let (* =
[Lic; ¢ if A= 3"craiwi. For J C I, let Z; denote the ideal of the Laurent polynomial ring

R[{¢t! | i € I}] generated by the elements ¢% —1forjeJ. Let
() =C¢"+7Z; and write R[¢s] = R[{¢ i€ I}]/Z;.

Thus the ring R[] consists of elements of the form

> an;

AEP

with only finitely many nonzero terms, where a) € R. We note that C} =1for all y € Q, and
thus ¢} = 3" for all A € P.

The following theorem introduces the main objects of study in this paper. Recall that by
we extend the definition of v, to voygs for all a4+ kd € &), and that ag = —p + 6.

Theorem 4.1. Let J C I and let v be a J-parameter system. Let M, be a module over the
ring R[¢y] with basis By, = {m, | u € W'}, and fori € {0} UI and o € X define

{Yt(usi)ng(usi) if u — us; positive and us; € W’
m, - T; = Cyt(usi)ng(usi) + (q; — q;l)mu if w — us; is negative and us; € WY
Vaa; V2ua,; My if us; ¢ W (hence ua; € @7+ 76)
t
m, T, =(; (ua)meJ(ua).

This extends to a right action ofﬁ on the module My, .
Before proving Theorem we give some lemmas and auxiliary results.

Lemma 4.2. Let w,v € W. Then
(1) 67 (wv) = 0707 (w)v).
(2) 05(wv) = 0,;(w)8,(07 (w)v)
(3) wt(wv) = wt(w) + 05 (w)wt (8 (w)v).

Proof. We have
wy = twt(w)OJ(w)Q‘](w)v
= tut(w) 07 (W)t (wy) 07 (07 (w)v)87 (67 (w)v)
= Lyt(w) 10, (w)wi (6 (w)0) 07 (W) 05 (67 (w)v)07 (87 (w)v)
and hence (1), (2), and (3). O
Lemma 4.3. Let w € W and i € {0} UI. Let u =67 (w). Then

V(GJ(w)) wt(ws;)—wt(w) _ 1 if us; € W
vy =
v(07(ws;)) v if us; ¢ WY,

Zaivguai
where € € {—1,1} is the sign of the crossing w — ws;.

Proof. The expression on the left hand side of the equation is invariant under replacing w with
tyw for any A € P, and the sign of the crossing w — ws; is the same as the sign of the crossing
tyw — tyws;. Therefore we can assume without loss of generality that w € W.

25



So w = yu € Wy with y = 0;(w) and u = 0”7 (w). Suppose first that i € I. If us; € W’ then
us; € W7 and so 67 (ws;) = us;, and hence 6;(ws;) = y, and the result follows. If us; ¢ W’ then
us; = sju for a unique j € J, and so ;(ws;) = ys;j. If w — ws; is positive then £(ws;) = £(w)—1
(as w € Wp) and so £(ys;) = £(y) — 1, and if w — ws; is negative then ¢(ys;) = £(y) + 1. Thus

V(GJ (w)) th(wsi)fvvt(w) _ V(y) — Ve VS
- —c — VYo V2
V(G](’UJS,’)) V(y)vaj Vgaj J !

as required.
Suppose now that i = 0. If usy € W’ then up¥ € P, and so by Corollary we have
07(uso) = yupv. Thus 0;7(wsg) = yyuev and so

V(QJ(U))) th(wsi)fwt(w) _ V(y) Vyugov
V(GJ (wsi)) V(?/Yugov)

)

and since ug¥ € P) the result follows by Lemma
If usg € W’ then up” € ®;. We have wt(wsg) = we", and wsp = typv yusy = tyupv (Ysup)u
and so 67(wsg) = ysu, (as sup € Wy). Thus

V(QJ(,LU)) th(wsi)—wt(w) _ V(y) Vyutpv
v(05(ws;)) V(ysuga) .

Since usg ¢ W/ we have uag € ®; + Z5. Thus up € ®; (since ag = —p + ). Hence by
Lemma we have up = ¢k for some K € K(J). Moreover w — wsq is positive if and only if
yup € ®Fif and only if yox € @'}. The result now follows from Lemma O

Lemma 4.4. Let w € W and i € {0} UI. Write u =67 (w), and suppose that us; € W’. Then
w — ws; 1S a positive crossing if and only if u — wus; is a positive crossing.

Proof. Since us; € WY/ we have ua; ¢ ®; + Z5. Suppose that w — ws; is positive, and so
wa; = —a+ ks € —0F + Z§ (recall (L.2)). Write w = tyyu with A = wt(w), y = 0,(w), and
u = 67 (w). Then ua; = y~_y(way;) =y t_\(—a+ kd) € —y~La + Z6. Since y~ta ¢ ®; and
y € Wy we have o ¢ ®;. Then y~la is necessarily a positive (linear) root, and so u — us; is

positive.

Conversely, suppose that v — us; is positive. So ucq; = —3 + ké with § € T, and since
us; € W’ we have 8 ¢ ®;. Then wa; = ty\yua; = t\(—yB + ké) € —yB + 74, and since 3 ¢ ®;
we have y > 0, hence the result. ]

The following proposition is the key to proving Theorem Define a linear map wy, :
H — M, by linearly extending the definition

@ (Xw) = (vC) " (0, (w) " mg

for w € W. (To motivate this definition, note that if we assume for the moment that the
proposed action given in Theorem is indeed an action, then w, (X)) = m, - X,).

Proposition 4.5. Fori € {0} U and o € ¥ we have
wyy(hTl;) =wyy(h) - T; and wyy(hly) =wyy(h) Ty

for all h € H (with m - T; and m - Ty, as in the statement of Theorem forme My, ).
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Proof. By linearity it is sufficient to prove that @, (XwT;) = wjv(Xw) - T; and @y (XwT,) =
wiy(Xy) Ty for allw € W, i € {0} U1, and o € 3. Consider the second formula. Let p € P be
such that t,w € W’. Then 6(t,w) = 6(w) and so by Corollary and Lemma we have

V(05 (w)) = V(0 (tw)) = V(Yut(t)) = V) = )
Since t,wo € W/ (as 0 Ag = Ap) we similarly have v(6,(wo)) = vA+WHwo) and it follows that
VWt(wU)V(HJ(ZUO'))_l =v H= th(w)v(QJ(w))_l.
Using this formula, along with the definition of @, , we have
T (XuTs) = @0 (Xue) = (vCr) V(05 (w0) " Mgy (40
= G ) (0 () g

and so @y (XywTy) = wiy(Xw) - Ty as required.

We now prove the first formula, @, (XT;) = @y (Xy) - T;. Write u = 07 (w). Since T; =
T[l +(q; — q;l) we have X, T; = Xys, if w — ws; is positive, and X, T; = Xy, + (q; — q;l)Xw
if w — ws; is negative. Thus, since 87 (ws;) = 67 (us;) (by Lemma we have

(VCJ)Wt(wSi)V(QJ(WSi))_1m9J(uSi) ife=1

) = {(v@)W“wSi)v(eJ(wsi))-lmwusn T (@ — a7 )OC) (G (w) tmy e = -1

where € € {—1,1} is the sign of the crossing w — ws;.
We now compute w,;,(Xy) - T;. There are various cases to consider.

Case 1: Suppose that © — us; is positive and us; € W”. Then
@iv(Xw) - T = (V)" (0, (w)) " tmy, - T; = (v¢y) W™ }Vt(us")v(ﬁJ(w))_lng(usi)

By Lemmawe have that w — ws; is necessarily positive. By Lemma (with v = s;) we have
wt(ws;) = wt(w) + 0 7(w)wt(us;), and since §;(w) € Wy we have wt(ws;) = wt(w) +wt(us;) +~
for some v € Q. Since ¢ =1 it follows that w(Xw) - T; = @ (XwT;) if and only if

VN (0, (w)Th = vy (0, (ws;)) T,

and the result follows from Lemma 4.3l

Case 2: Suppose that u — us; is negative and us; € W7. Then Lemma gives that w — ws;
is also negative. We compute

Dn(Xu) - Ti = (vC7) " @y (05(w)) 'm,, - T}
= (v¢r) " (0, (w) L[ mgs e, + (6 — a5 Hmy].

The same analysis as in Case 1 deals with the (; factors, and the result again follows from
Lemma [£.3]

Case 3: Suppose that us; ¢ W/, and so 67 (us;) = u. Then we have
wJ,v(Xw) TG = (VCJ)Wt(w)V(gJ(w))_lvuaiVQuaimu-
Since 07 (us;) = u, the calculation of @, (X,T;) from above gives

(VCr) ™ sy (0 (ws;)) " my ife=1

Xl = {[(VCJ)W“M”VWJ(W&‘))_1 + (i — a5 (V)OO (w) T my,  if e= -1,
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where, as before, € is the sign of the crossing w — ws;. Thus if € = 1 then w;,(Xy) - T; =
wv(XwT;) if and only if

(VC)™ (0.1 (w)) ™ VaaVaua; = (vC) v (0 (wsi)) !

Recall that wt(ws;) = wt(w) + 6 (w)wt(us;). Moreover, since us; ¢ W/ we have ua; € ® 5+ 76,

and hence wt(us;) € Q;. Thus (}Vt(wsi) = C}Vt(w), and the result follows from Lemma
Finally, if € = —1 then w;,(Xy) - T3 = wjy(XT;) if and only if

N0 () VaaVaua; = [V, (wsi) T (0 = g v (6, (w) ]

Rearranging, and noting that vy, Vaua, —qi—l—qi_1 = v;iivgjai, we have @ (Xy)- T = @iy (XwT;)
if and only if

VN0, () Vg, Vo, = V(O (wsi) ™
and the result again follows from Lemma O
We now give the proof of Theorem 4.1}
Proof of Theorem [{.1 It is sufficient to check that the relations (for ¢,j € {0} U I, 0,0’ € X)
T =TTy, TP =1+ (qi—aq; VT, ToTi = To0)Ts, ToTe = Too

are respected by the proposed action (with m;; terms on either side in the first relation). For
example, to verify that the braid relation is respected one use Proposition repeatedly to get

D XTI T ) = (- (g - T) - Ty) - T3) - - -)

for all w € W, and note that w (X LT - -+ ) = w iy (X T3TiT; - - - ). The remaining relations
follow in the same way. O

Corollary 4.6. The map wj, : H— My, satisfies
wy(hh') =@y (k) - B for all h,h € H.

Proof. This is immediate from Theorem O

4.2 The multiplicative character 7,

The J-Levi subalgebra of H is the subalgebra L£; generated by the elements T}, j € J, and X A
A € P. By construction of the module M, it is clear that R[(;Jm, is stable under the action
of £, and thus we may define a map v, : L; — R[(;] by

m,-h=1v;,(h)m. forhe L.
Recall the definition of 7, and y, from Definition

Proposition 4.7. We have the following.
(1) The map Yy 15 a multiplicative character (a 1-dimensional representation) of L.
(2) Yyu(T}) = Va,;vaa; € {4y, —qj_l} forall j € J.
(3) (T, ) =v(y) for ally € W.
(4) quV(XA) =V} for all X € P.
(5) 1 20; ¢ D then p(X* ) = ¥(Ty)2.
av7/2 -1
(6) If @y is not reduced then (X/?T1) € {q0, —qy ' }-
(7) Pyu(Ty,) =V for all X € P,
(8) Yyu(Xr) =C) for all X € PV,
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Proof. (1) follows from Corollary and (2), (3) and (4) follow directly from the definition
of the action. For (5) and (6), if 2a;; ¢ ®; then the Bernstein-Lusztig relation gives T; X7 =
X7 T; + (q; — q; )X, and so T ' X% = X* "% T}, from which it follows that (X®) =
Y(T;)2. If @ is not reduced then the Bernstein-Lusztig relation gives T, 1 X% = X W= T, 4
(9o —vqal)Xw"_O‘wQ, and it follows that @Z)(XO‘TVL/QTn_l) satisfies a quadratic relation, giving
Y(Xn 2T € {qo, —qg '} as required.

To prove (7) and (8), since 17, (X*) = v*(} it is sufficient to prove that v, (7y,) = v*, and
since ¥ (Ty,) = v(y,) this follows from Lemma (with y = e). O

We also record the following fact.

Lemma 4.8. Let K € K(J) and let o € q)} be a long root of @i (with all roots long if Pk is
simply laced). Then ¢J’\,(X0‘VTS;1) = Vq4.

Proof. Since a € ®; we have (¢ = 1, and so by Proposition (3) and (4) we have

\Y%

zﬂJ,v(XvOévTig_al) = v V(3a>_17

and the result follows from Lemma [B.13] O

4.3 The J-affine Hecke algebra

Recall the definition of W2 and its Coxeter generators {si1jed aff1 from Section H For
K e K(J) and j € J let

Tj=T; and Tj, = X¥KT, .

Let H?ﬁ be the subalgebra of H generated by {T]' | j € J*}. By the general theory of Section
(in particular ([1.7)) the algebra 7—[3& is an affine Hecke algebra of type Wjﬁ, and

nyt = [ HE
KeK(J)

with each H&}? an affine Hecke algebra of irreducible type Wf‘(ﬁ.

Since sy, € Wy for K € K(J) the algebra H3T is a subalgebra of the Levi subalgebra L.
Thus if v = (Vo)aca, is a J-parameter system then 1, restricted to ”Hf}ﬁ, gives a 1-dimensional
representation of 7—[3&. By definition we have 1 Jy\,(T;) = Vq,Vaq; for all j € J. The following
corollary allows us to compute v, (Tg, ) for K € K(J).

Corollary 4.9. For K € K(J) we have ¥5y(Tj,. ) = Vi = Vg Vo -
Proof. This follows from Lemma [4.§ and the fact that vo,, = 1. O

4.4 The path formula for 7;,(T,)

We write (77, My,) for the representation of H in Theorem In this section we prove the
path formula (Theorem 4.12) for the representations (7, My,). We will need the following
simple lemma.

Lemma 4.10. If a wall H contains panels of type i and j then q; = q;.

Proof. Let v,w € W be such that vAy Nwvs;Ag and wAg N ws;Ag are panels of H (of types i, j
respectively). Applying v~! we may assume that v = e (as W acts in a type preserving way),
and replacing w with ws; if necessary we may assume that eAg and wAy lie in the same halfspace
determined by H (equivalently, {(ws;) = ¢(w) + 1). Then ws; = s;w (because these elements
lie on the same side of all walls), and so s; and s; are conjugate in . Hence q; = q;. ]
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The following theorem is a preliminary step to proving the path formula, and gives a J-
analogue of Proposition [I.6]

Theorem 4.11. Foru e W’ and w € W we have

wJ,v(XuTw) = Z QJ,v(p)wJ,v(Xend(p))a

p€7>J ('LD‘,'U,)
where W is any reduced expression for w.

Proof. We argue by induction on ¢(w), with the case ¢(w) = 0 true by definition of the action
m,, - T,. Suppose that ¢(wsj) = £(w) + 1. Then by the induction hypothesis

wJ,v(XuTwsk) = wJ,v(XuTw) Ty = Z QJ,v(p)wJ,v(Xend(p)Tk)'
pEPJ (wvu)

Let p € Py(w,u) and write v = end(p). There are 4 cases to consider.

Case 1: If vAg~ |7 wspAg with vs, € WY then wv(XoTk) = wiy(Xys,). Writing pek for
the path obtained from p by appending a positive si-crossing we have Q,(p) = Qv (pek ) and
vsy, = end(pe; ), and so

QJ,v(p)wJ,v(Xka) = QJ,V(pe,;:)wj,V(Xend(pezr))'
Case 2: If vAy |~ vspAg with vsy € WY then using T = kal + (qx — q,;l) gives
QJ,v(p)wJ,v(Xka) = QJ,v(peg)wJ,v(Xend(pe;)) + QJ,V(pfk‘)wJ,v(Xend(pfk))a

where pe,. denotes the path obtained from p by appending a negative sj-crossing and p f denotes
the path obtained from p by appending an sg-fold.

Case 3: IfvAg ~|T vspAg with vsy, ¢ W then by Lemmathe panel vAgNwvsiAg is contained
in Hy, 1 for some K € K(J). Then vs = sy,,10, and since sg,c 1 =ty Sp,c We have

v
= — — X?¥
Xka — Xvsk — Xt@}v(szv =X KXS¢KU'

We claim that X, o = Ts;;XU. To see this, let ¥ be a path of reduced type from e to v,

and consider the reflected path s, (7) (a path joining sy, to sy, v). Since v € W’ no reduced
path from e to v crosses any hyperplanes parallel to any wall H, with o € ®%, and since
P54, ) C <I>}2 C <I>} it follows that each positive (respectively negative) crossing in ¢ is mapped
to a positive (respectively negative) crossing in sy, (). Thus X, o = X, _X,, and since
Spi € Wo we have X, = TS::}K’ and hence the claim.

‘ Thus X, 1 = X‘prTS;; Xy, and since pg is long in @ Lemma and Proposition
gives

QJ,v(p)wJ,v(Xka) = QJ,V p) (XQOKT X )

(
= Qu(P) sy (XK )WJV(X)
- QJV(

(

)

p)VsOKwJV( Xu)

= QJ,V p )wJ,v (Xend(

);

Pbog)

where pb_, - denotes the path obtained from p by appending a negative bounce on the wall H .1
(note also that vy, = vy, Vag, to calculate Qy(pby, ))-
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Case 4: IfvAg ™|~ vspAg with vsy ¢ W then by Lemmathe panel vAgNwvsiAg is contained
in Hy, o for some j € J. Using the formula T} = Tk_1 + (ar — qgl) we have

wJ,v(Xka:) = wJ,v(Xvsk) + (qk: - q,;l)w‘],V(Xv).
Since vsg = s;v we have @, (X, Tk) = Wy (Xs;0) + (A — q,;l)WJN(XU). Similar arguments to
Case 3 shows that Xsjo = TsleU, and hence

@ (XoTi) = (W (1) +ak — ay ey (Xo).

By Lemmad.10]we have g = q7, and s0 ¢, (T, ) +qr —a = o (T; ) a5 —a; " = o (T)).
If either @ ; is reduced, or ®; is not reduced and j # n, then ¢ 5, (T};) = vq ;- 1f @ is not reduced
and j = n then ¥;,(T,) = Va,V2a,. In all cases we have Q;,(p)Y v (Tj) = QJN(pb;fj) where
pbgj denotes the path obtained from p by appending a positive bounce on the wall Hy, 9. Thus
we have

QJ,v(p)wJ,v(Xka) = QJ,v(p)wJ,V(CTj)wJ,V(X’U) = QJ,V(pb;rj)waV(Xend(pbz{j))‘
Hence the result. O

We now prove the path formula for the matrix entries of 7, (T},) with respect to the basis
By = {m, | u € W’} of M;,. A version of this formula for more general bases will be given
in Theorem .14l

Theorem 4.12. Let w € W. The matriz entries of myv(Tw) with respect to the basis B, are
[TrJ,V(T’LU)]Uﬂ) = Z QJ,v(p)C}Vt(p) fOT’ u,v € WJ,
{peP,(Wu) |67 (p)=v}
where W is any choice of reduced expression for w.
Proof. Writing A\ = wt(p) we have, by Corollary and (1.6)),
_ 3y A=l 1

Xend(p) =X Ty)TlTaJ(P)_I'

Then by Theorem and Proposition [4.7

wJ,v(Xu) Ty = Z QJ,v(p)wJ,V(XWt(p)T_}l T9_‘]1(p)71)

PEP(F,u) Ywrtr)
= Z QJ,V (p)w.],v (XWt(p)Till )wJ,v (Tgll(p)—l)
PEP (1) Tt @)
wt _
= Z QJ,V (p)CJ (p)wJ,v(ngl(p)—1),
pEP s (lU,u)
completing the proof since @, (T, e_Jl(p)_l ) = myJ(p)- O

4.5 Changing fundamental domains

It will be useful to have a more general version of Theorem adapted to other choices of
basis (for example, see Section @

Proposition 4.13. IfF is a fundamental domain for the action of Ty on WY then
BrF = {’WJN(XU) | u € F}

is a basis of My,.
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Proof. By construction of the module M, the result holds for the fundamental domain F = W*.
Now let F be an arbitrary fundamental domain. For u € F define o/ € W7 and X\ € PY) by
u =7y (s0o X =wt(u) and v’ = 67 (u)). Thus by Proposition 4.7| we have

@n(Xu) = @iy (X X)) = me - Xr, Xy = (- Xy = (G (Xu),
and hence the result. O

Note that By,s = Bj,. A version of Theorem for arbitrary fundamental domains is
given below. Recall the definition of wt(p, F) and 6(p, F) from (3.1)).

Theorem 4.14. Let F be a fundamental domain for the action of T; on W”. With_respect to
the basis Bf of My, from Proposz'tz’on the matriz entries of wyy(Ty), with w € W, are

[T a3 (Tw)uw = Z QJ,V(p)Cyt(p’F) for u,v € F,
{pE’PJ(’LI)‘,U) I e(va):v}
where W is any choice of reduced expression for w.

Proof. Using the fact that F is a fundamental domain, define functions g : F — W and h :
F — P) by the equation u = Th(u)g(u) for u € F. Then, as in the proof of Proposition m

we have wj, (X,) = Cﬁ(u)w Jv(Xg()), and by changing basis from the fundamental domain w
case (proved in Theorem |4.12)) we have

[7TJ,V (Tw)]u,v = Z QJ,V (p)Cyt(p)Jrh(U)ih(v)‘
{peP,(@,g(w)) [0(p,W)=g(v)}
Using Lemma [3.5] and Lemma it follows that

Wt (T (w) P)—h(v
[WJ,V(Tw)]u,v = Z QJN(Th(u) 'p)CJ (Th(u)P)—h(v)
{peP(d,9(u) |6(p,W7T)=g(v)}

= Z Q‘Lv(p)c}vt(l’)*h(v)’

{peP;(@,u) | 6(p,F)=v}

and the result follows since wt(p, F) = wt(p) — h(v) if 0(p,F) = v. O

4.6 Intertwiners and irreducibility

For i € I define intertwiners U; € H by

(1-X")T; — (q; —q; 1) if 20, ¢ @
U=4q01- X_O‘X)Tn — (qn — q;l + (g0 — qal)X_o‘X/Q) if ® =BC,, and i = n and qg # qn
(1 — X%/, — (qn — q;%) if & =BC, and ¢ =n and q9 = q,

The terminology comes from the fact that these elements “intertwine” the weight spaces of H-
modules (see Proposition [4.17(1)). A direct calculation, using the Bernstein-Lusztig relation,
gives

U? = q?(1 — q; 2X % )(1 — q; 2X ) if 20, ¢ P, (4.1)
while if & = BC,, and ¢ = n then if qg # g, we have
U2 =q2(1— g9 a, ' X /2)(1 + qog, ' X /) (1 — g5 a,, ' X*/2) (1 + qoq,, ' X /2)

and if qo = q,, then U2 = q2(1 — q;QX’O‘X/Q)(l — q;QXO‘X/Q),
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The elements U; satisfy the braid relations (see [34, Proposition 2.14], however note that we
have normalised these elements so that they are elements of the Hecke algebra), and hence for
w € Wy we may define

Uy =U; - U,

whenever w = s;, ---s;, is a reduced expression. From the Bernstein-Lusztig relation we have
U; X* = X*U;, and hence we have the very useful relation

UyX* = X¥ U, for all w e Wy and \ € P.

Lemma 4.15. If o € ®\®; then w‘],\,(Xav) ¢ R.

Proof. Let a € ®. If R 3 17, (X*") = (¢ then ¢§ " = 1. Thus (")’ = 0, and so a¥ € Vy,
and so a € @ . ]

Proposition 4.16. The module M, has basis {ww y(Uy) | u € W7}.

Proof. Let u = s;, ---s;, € Wy be a reduced expression. From the Bernstein-Lusztig relation we
have

Uy = (1— X 0T, (1 — X )T}, - (1 — X~%)T;, + lower terms
=(1-X o (1 —X "1 1v2) (1= Xﬁs"l"'sifflaive)Tu + lower terms

[ H 1-X ]T + lower terms,
aed(u)

where on each line “lower terms” denotes a linear combination of terms p,(X)T, with v < u
(in Bruhat order). Since T;, = X, + (terms X, with v < u) and @, (X,) = m,, for u € W we
have

wiv(Uy) = [ H (1-— wJ,V(Xav)_l)] m,, + lower terms.

acd(u)

For v € WY we have ®;(u) = () (by Lemma, and so by Lemma the coefficient

[ a=wsx—)

a€®(u)
does not vanish, and the result follows. O
The following proposition gives the decomposition of M, into weight spaces.

Proposition 4.17. Let J C I and let v be a J-parameter system. For u € Wy let
M, ={me My, | m-X*=1;,(X""Ym for all \ € P}.

(1) If u,us; € W then the map U, : M, — M,s, with Uz(m) =m - U; is bijective.
(2) Foru e W7 we have My, = {rw(Uy) | 7 € R[(;]}, and

M, = P M.

ucWwJ

Proof. (1) For u € Wy let 2z, : P — R[(,] be the map 2 = 1, (X*"). Then 2z, = 2%}, where we
write z = 2., and M, = {m € M}, | m - X* = z)m for all A € P}. For any u € Wy and i € I,
if m € M, then

(m-U)X* = (m- X*MU; = 25 m - U;) = z), (m - U;),
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and so m - U; € My, It follows that there are operators U; : M, — M,s, and U; : My, = My,
given by U;(m) = m - U;. Thus Uf : My, — M,. If 2c; ¢ ® then by 1) we have

U2(m) = m-U? = q?(1 — q; 2274 )(1 — q; 22" )m

and so if 24 #* qzﬁ then the operators Ul : My, — My, and Ul : My, — M, are bijective. If ® is
not reduced and i = n then the same result holds for U, provided z%n/2 £ (qoan)™1, —(qalqn)il
(with the —(qg 'q,)™" case omitted if qo = q,).

Suppose now that u € W7 and i € I with us; € W”7. Then ua; ¢ ®;, and thus Lemma
gives zue/ ¢ R (and also Zuom /2 ¢ R in the non reduced case) and so by the previous paragraph
U; : M, — M, is bijective, proving (1).

(2) Tt is clear that {rwy,(U,) | r € R[¢s]} € M, for each u € W, and thus by Propo-
sition the spaces My, u € WY, span Mj,. Thus to prove (2) it is sufficient to show
that if uy,us € W’ with M,, = M,, then u; = us. To see this, M,, = M,, implies that
PYru(XMA) = 47, (X"2A) for all A € P. Replacing A by uy '\ we have wJ,V(X"”‘;l)‘*)‘) =1 for
all A € P. Thus (ujuy 'A—\)? =0 for all A € P, and so ujuy 'A € A+ Vj for all A € P. Applying
this to A = a¥ € @Y it follows that uju, 'a¥ € ®Y for all o¥ € ®Y, and hence uju; ' € Wy. So
uyp € Wiyus, forcing u; = us (as ui,us € W7). O

Corollary 4.18. Let J C I and let v be a J-parameter system. The representation (77, Myy)
18 irreducible.

Proof. Let N be a nonzero H-invariant submodule of M Jv- Since N is invariant under the
action of the elements X*, \ € P, it follows from Proposition M(Q) that N N M, # () for some
u € WY, Since M, is 1-dimensional we have M, C N. But then Proposition M(l), along with
ﬁ—invariance, forces N = M. O

4.7 Generic induced representations

In this subsection we realise the combinatorial modules M, introduced in Theorem @ as
induced representations from 1-dimensional representations of a Levi subalgebra. Let v, be
as in Section and let s, be a generator of the 1-dimensional £; module R[(;];, affording
the character 1;,. That is,

fJ’V -h = ¢J7V(h)§J7V for all h € £J.

Let M), = IndZ, (¢5y) = (RIC/Jy) @2, H.
Proposition 4.19. The module M/, has basis {5, @ Xy, | u € W7},
Proof. Since {X,, | w € W} is a basis of H the set {&1v®@ Xy | w e W} spans M, Ifwe W

then by 1) we have X, = X)‘Tu__l1 where A = wt(w) and u = (w). Write u = ujus € W, W.

Since X /\Tu_,ll € L we have
1

gJ,v ® Xy = gj,v & XAT;iTu_;l = zﬁJ,v(AXV\Tu_;H)(f{],v & Xug)-

Thus M}, is spanned by {£;, ® Xy | u € W71, and these elements are linearly independent
because {X’\Tv__llTu__l1 |Ae P, ve Wy, ue W} is a basis of H. O

The following theorem shows that (m,, M, ) is isomorphic to the representation (', M’ ),
and moreover identifies bases of each module giving an isomorphism of matrix representations.
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Theorem 4.20. We have My, = M}’V. Moreover
[Ty (P)]uw = [Trva(h)]um for all h € H and w,v e W,

where My, and M}’V are endowed with the bases {m, | v € W’} and {&v®@ Xy |ue W
respectively.

Proof. We will show that the action of T (i € {0} U 1) and T, (0 € ¥) on M}, with respect to
the basis {£7, ® X, | u € W’} agrees with the action from Theorem The analysis is easy
for the cases T; with ¢ € I and T, with ¢ € ¥, and so we focus on the action of Tj.

Case 1: Suppose that uAg ~ |t usgAg with usg € WY. Then X, Ty = Xusy, and since usg € W
Corollary gives usg = 7,07 (uwg) where \ = wt(usg) = up". Then

(fJ,v ® Xu) : TO = gJ,v ® Xuso va & XT VXQJ (uso) 7pJv( Tw v)(f],v & Xe-f(uso)))

and Proposition (8) gives (£7y ® Xy,) -To = Cj}“pv (v ® X (uso)), and hence the result in this
case.

Case 2: Suppose that uAg+|~ usgAg with usg € W/. Since Ty = Ty ' + (qo — q, ') we have

(gJ,v ® XU) : TO = (fJ,v X Xuso) + (qO - qal)(fJ,v X Xu)
= (4% (€23 ® Xps(usey) + (G0 — d D (Egy @ Xo),

and hence the result in this case.

Case 3: If uAg ~|T uspAg with usg ¢ WY then, exactly as in Case 3 of the proof of Theorem
we have
Vo —
X Ty = XPRT, 0 X,

for some K € IC(J). Since ¢k is long in @5 Lemma gives
(gJ,v X Xu) : TO = gJ,v X XCP%TS;LX va(XSOKT )(éJv & X ) - VaV2a<£J,v ® Xu)7

as required.

Case 4: If uAg T|~ usgAg with usg ¢ W/ then by Lemma the panel uAgNusgAg is contained
in Hy; o for some j € J. Thus this case is impossible, as uag = —up+0 # +a; forany i € I. [0

Remark 4.21. If J = () then v is vacuous, and (776 v Mé ,) is the principal series representation
of H with central character ¢={(s.

[43

Remark 4.22. Up to specialising the “variables” (; and extending scalars, all representations
of H induced from 1-dimensional representations of a Levi subalgebra can be realised by the
construction in Theorem Let us briefly explain this. Let ¢ : £; — R’ be a one dimensional
representation of £ over an integral domain R’ containing R. For a € ®; let

Y(Ty) if o € Wya; with j € J and a € @9 N P
Vo = { Y(X/2)p(T,)~1  if & not reduced and o € Wy(20,)
Y(X /2 "1y(T,)2  if @ is not reduced and o € W,

and define z : P — R’ by 2 = v (X?), with v* as in . It is not difficult to see that v is
a J-parameter system and that z7 =1 for all v € Q.

After extending the ring R’ to a ring R” if necessary one can choose a specialisation (; —

€ R” such that ¢} + 2 for all A € P. Then, by Theorem the combinatorial module

M Jv constructed in Theorem . 1| specialises to Ind () (after extending scalars if necessary).
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5 Bounded representations

Let L : W — N be a positive weight function on W. That is, L(w) > 0 for w € W\{e} and
L(uv) = L(u) + L(v) whenever ¢(uv) = ¢(u) + ¢(v). Let q be an invertible indeterminate,
and specialise q; = qL() for i € {0} U I. Without loss of generality we may assume that
ged(L(sp), ..., L(sp)) = 1, and thus the ring R specialises to Z[q,q~!], and one can consider
the associated weighted Hecke algebras H(L) and H (L) over the ring Z[q,q~!]. In this context
a J-parameter system becomes a weighted J-parameter system, where each occurrence of q; in
Definition (with j € {0} U J) is replaced by qZ(%).

It is convenient to make the following convention throughout this section (by the natural
symmetry present in BC,, this convention does not result in a loss of generality).

Convention 5.1. If @ is of type BC,, we assume that L(s,) > L(so).

5.1 Boundedness

In [I7, 18] the first and third authors introduced the notion of a balanced system of cell repre-
sentations, inspired by the work of Geck [12) [13] in the finite case, and we used this notion to
prove Lusztig’s Conjectures P1-P15 for rank 3 affine Coxeter systems with arbitrary positive
weight function L. A key part of this concept was the property of boundedness of a matrix
representation. We recall this theory here.

Every nonzero rational function f(q) = a(q)/b(q) in q can be written under the form f(q) =
qVa'(q71) /¥ (q71) with N € Z and with a/(q~!) and b'(q~!) polynomials in q~! with nonzero
constant term. The integer IV in this expression is unique, and we shall call it the degree of the
rational function f(q), written deg f(q) = N. For example, deg((q>+1)(q3>+1)/(q"—q+1)) = —2,
and if f(q) is a polynomial then deg f(q) agrees with the usual degree. We set deg(0) = —oc.

By a matriz representation of (L) we shall mean a triple (7, M, B) where M is a right H(L)-
module over an Z[q, q~!]-polynomial ring S, and B is a basis of M. We write (for h € (L) and
u,v € B)

n(h,B) and [7(h,B)]uw

for the matrix of m(h) with respect to the basis B, and the (u,v)" entry of 7(h,B). When the
basis B is clear from context we omit it from the notation.

Definition 5.2. A matrix representation (w,M,B) is called bounded if deg([m(Ty,B)luw) is
bounded from above for all u,v € B and all w € W. In this case we call the integer

ay g = max{deg([7(Ty, B)luy) | u,v € B, w € W} (5.1)
the bound of the matrix representation.

Definition 5.3. If (7, M, B) is a bounded matrix representation with bound a, psg then the
cell recognised by (mw, M, B) is the set

I'rvp={we w | deg([7(Tw, B)]u,v) = ax ag for some u,v € B}.
If w € I'z a7, the leading matriz of w is defined by
¢r,M,B(W) = 8Pq-1-9 (q*a”vaBTr(Tw, B)),
where sp,-1_¢ is specialisation at qgt=0.

The notion of leading matrices comes from the work of Geck [12} 13], and played a crucial
role in [I7, [I8]. We will not discuss leading matrices further in this work, until the final example
in Section [Bl

36



Remark 5.4. If a finite dimensional representation (7, M,B) is bounded then (w, M,B’) is
bounded for all bases B’ of M, because the (finite) change of basis matrix has a bound on the
degrees of its entries. Thus we may talk of a “bounded (finite dimensional) representation”
without specifying the basis. However we note that both the value of the bound, and the
cell recognised, are highly dependent on the particular basis. In this paper we will study the
matrix representations (m sy, My, BF) where Bf is the basis from Proposition associated to
a fundamental domain F. These bases appear to have some remarkable and beautiful properties
(see Conjectures and . We note that the basis from Proposition while easier to
work with in many respects, does not appear to have the same remarkable properties.

Let F and F’ be fundamental domains for the action T; on W”. By Remark (g, My, BE)
is bounded if and only if (7, My, Bf/) is bounded. However the connection is much stronger,
as the following proposition shows.

Proposition 5.5. Let F and F' be fundamental domains for the action of T; on WY such that
the associated matrix representations are bounded. Then the matrixz representations have the
same bound, and recognise the same cell.

Proof. Define g : F — W+ and h : F — P) by the equation u = Thw)g(u) for u € F (as in the

proof of Theorem [4.14)). Then w;,(X,) = (g(u)mg(u), showing that the change of basis matrix
from Bf to B, = Byys is a monomial matrix with entries independent of q. It follows that the
matrix representations with respect to the bases BF and B ;, have the same bound and recognise
the same elements, hence the result. ]

Thus if (7y, M) is bounded we write ajy = ax, a8 and I'yy = Tr ) a8 (for any
choice of fundamental domain F for the action of T; on WY).

Example 5.6. The concept of boundedness is already interesting and delicate for 1-dimensional
representations (note that the particular choice of basis is irrelevant in the 1-dimensional case).
Let v = 11 be a 1-dimensional representation of a weighted affine Hecke algebra 7—~£(L) We
claim that 7y, is bounded if and only if degzr,(X“#) < 0 for all i € I. To see this, if w € W
then w € Wyt \Wy for some A € Pt. Then w = umyv with u,v € Wy and m, the minimal
length element of Wyt \Wy, and £(w) = £(u) + £(m)y) + ¢(v). Moreover, ty = myw) for some
wy € Wy with K(t,\) = E(mA) + K(UJ)\). Thus 7T[7V(Tw) = W],V(TU)TI'LV(X)‘)?T[,V(TwA)_17[']7\,(Tv),
and the claim follows since u,v,w) are in the finite group Wy (Theorem below generalises
this argument to higher dimensional representations).
For example, consider the Gy case with weight function L(so) = L(s2) = b and L(s;) = a.

b b a
o—o$
0 2 1

Let m = 11, be the 1-dimensional representation of 7—~[(L) with vo, = 7(T1) = q% and v,, =
7(Ty) = n(Ty) = —q°. Since t,, = 0212012121 and t,, = 021212 we have 7(X“!) = 4a — 6b
and m(X“2) = 2a — 4b, and hence 7 is bounded if and only if a/b < 3/2. Moreover, we claim
that if a/b < 3/2 then the bound a = ay, of 7 and the cell I' = I';, recognised by 7 are as
follows:

(1) ifa/b<1thena=aand I' = {1} (recall 1 = s;);
(2) ifa/b=1thena=a=3a—2band I' = {1,121,12121};
(3) if 1 <a/b<3/2then a=3a—2band I" = {12121};
(4) if a/b=3/2 then a = 3a — 2b and T’ = {(12121) - (02121)* | k > 0}.
We will prove (3) and (4), with the proofs of (1) and (2) being similar. Thus suppose that
1 < a/b < 3/2. Since degm(T12121) = 3a — 2b we have a > 3a — 2b. Let w € T, and so
degm(Ty) = a. Let Dr(w) denote the left descent set of w. If s € Dr(w) then w = sw; with
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l(swy) = L(w1) + 1 and hence degm(Ty,) = a — degn(T). If s = sg or s = so then we have
degm(Ty,) = a+b > a, a contradiction. Thus Dr,(w) = {s1}. Since s; ¢ I' (asa > 3a—2b > a)
we have w; # e, and hence Dp(wy) = {s2} (for if sy € Dr(w1) then so € Dr(w)). Write
w = s15owg with £(w) = (wz) + 2. Since s1s2 ¢ I' we have wy # e. Note that sg ¢ Dr(ws), for
otherwise w = s1s2sows with £(w) = £(wy) + 3, giving degm(T,y) =a+2b—a>a+b/2 > a.
Thus Dy (wy) = {s1} and so w = syses1ws with ¢(w) = £(ws) + 3. Since s1s2s1 ¢ T' we have
wg # e and hence Dy (ws) = {s2} (for if sg € Dp(ws) then sy € Dp(w2)). So w = s18281 82wy
with £(w) = £(wy) + 4. Since s1s25152 ¢ I' we have wy # e.

There are two cases. Suppose that a/b < 3/2. Then Dr(ws) = {s1} (for if s9 € Dr(w4) then
w = s152818280wy5 With £(w) = £(w5)+5, but then deg 7(T,;) = a+3b—2a > a, a contradiction).
Thus w = s152515281w5 with £(w) = f(ws) + 5. If ws # e then either sy € Dy (ws), which forces
s9 € Dr(w), or so € Dr(ws), which forces sy € Dr(wy), in both cases a contradiction. Thus
ws = e and so a = 3a — 2b and I" = {12121}, proving (3).

On the other hand, suppose that a/b = 3/2. We have either s; € Dr(w4) or sg € Dr(w4).
In the latter case, we have w = s1s2515250wf with deg W(Twé) = a, and hence w} € I'. Hence
the above analysis gives s € DL(wg), and since s; and sy commute we have s; € D (wy). So
s1 € Dp(wy) in all cases, and so we have w = s152518251w5 with £(w) = (ws) + 5. If ws # e
then Dr(ws) = {so} (for if so € Dr(ws) then sy € Dr(w)), and similar arguments to the above
give w = $15281828150525152510 with £(w) = 10 + v. Iterating the argument proves (4).

Example 5.7. If J = () then (my,, My, By,) = (7, M,B) is the principal series representation
(see Theorem [£.20). By [I7, Lemma 6.2] we have deg Q(p) < L(wp) for all positively folded
paths p of reduced type, and hence by Theorem (m, M, B) is bounded with bound L(wy).

For each A € P let W) be the stabiliser of X in W and let wy be the longest element of W).
Let Py C P denote the set of A € P for which Wy = Wy and L(w)) = L(wp). By an analysis
similar to that in [I7, Theorem 6.6] it can be shown that the set of elements of W that are
recognised by (7, M,B) is T' = {w € 1% | w = wy - wy - wy, wy,ws € W, A € Py}, where the
notation v - v means {(uv) = ¢(u) + £(v) (recall Conventions and are in force, and we
further assume that L(s,) > L(sp) for the above statement, and so in particular for the BC,
case {wy | A € Po} = {wp}).

Remark 5.8. A main motivation for our path formula in Theorem[4.14]is to give a combinatorial
approach to studying bounded representations. Indeed positively J-folded alcove paths are
very useful in studying boundedness (see, for example, Theorems and and the work
in [I7, I8]), however before proceeding we briefly discuss some complications and subtleties in
the theory. .

Let u,v € WY and let & be a reduced expression for w € W. If there is N > 0 such
that deg Q;y(p) < N for all p € Py(w,u) with §7/(p) = v then by Theorem we have
deg[miv(Tw)lup < N, showing that boundedness of paths leads directly to boundedness of
matrix entries. It is important to note that the reverse direction is more subtle, as this fact
significantly complicates the theory.

For example, let ® be of type Az with J = {1} and let v be the J-parameter system with
Vo, = —q L. Let Wy = 323123 (a reduced expression for the longest element of W;). The paths
p € Pj(Wo,e) with 67(p) = e, along with their respective v-masses, are as follows (where i
denotes a fold, i denotes a bounce and we omit the s’s to lighten the notation):

AAAAAA

p1 = 323123 po = 323123 p3 = 323123 pa = 323123 ps = 323123,

with Qsv(p1) = —q 1 (q—q7 )5, Quv(p2) = (a—q )% Quv(ps) = —qa a—q71)3, Qv(ps) =
—q *(a—q")?, and Q. (ps) = (a—q ). Note that deg Qs (p1) = deg Qs (p2) = 4. However
by Theorem 4.12| we have

5
[T‘-J,V(TWO)]Q,G = Z QJ,v(pi) = q_4(q - q—1)2’
=1
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which has degree —2. Note that the leading terms have cancelled. The combinatorics of this
cancellation of leading terms in matrix coefficients appears to be rather delicate. In [I7, [I8] the
authors were able to deal with this phenomena in affine rank 3 Hecke algebras, as the cancella-
tions are rather rare and tame in that low dimension case. Understanding these cancellations in
arbitrary rank would lead to a significant advance in understanding boundedness, with implica-
tions to Kazhdan-Lusztig theory (as illustrated by the discussion in the following sections, and in
the work [17, [18]). For example, in Section [6| we are able to sufficiently control the cancellations
that occur in the A,, case with J = {1,2,...,n — 1}.

5.2 Classification of bounded modules M,

In this section we classify the weighted J-parameter systems for which (7, M) is bounded
(c.f. Remark. Recall from Section that the J-affine Hecke algebra is a subalgebra of L,
and hence 1), restricts to a 1-dimensional representation of ’Hf}ﬂ (see Corollary .

Theorem 5.9. Let v be a weighted J-parameter system. The following are equivalent.
(1) The representation (my, My) is bounded.
2) We have degv* < 0 for all A € PT.
We have degv¥i <0 for all j € J.
We have degv®* <0 for all A € P+ and all uw € W7.
The associated 1-dimensional representation vy, of H?H(L) s bounded.
There is a uniform bound deg Qj(p) < N for all positively J-folded alcove paths of reduced

type.

w

ot

N N N SN
=) W~
— — — — ~—

Proof. (1)==(2). Suppose that (7, M) is bounded. Since m, - XN = 1/1J7V(X)‘)me = v)‘g’]\me
we have [m7,(X*)]ee = v*(} and so degv® < 0 for all A € Pt (for if not the degree of
[Tiv(Tiny)]ee = [7TJ7V(XN)\>]676 is unbounded for N € N).

(2)==(3) is trivial.

(3)=(4). Since v*¥i =1 for i € I\J we have

Vu)\ _ H V(u)\,aj>w]-.

jeJ

If u € W’ then u™'a € @7 for all @ € 7, and hence (ul,a) = (\,u"'a) > 0 for all A € P,
we W’ and a € <I>‘}. Thus deg v** < 0.

(4)=(1). For A € P* let m, denote the unique minimal length element of Wyt\Wy. Write
tn = myw)y where wy € Wy and £(ty) = £(m)y)+£4(w)y). Each w € W can be written as w = UMAV
with u,v € Wy and A € PT, and moreover ¢(w) = £(u) + £(my) + ¢(v). Thus

Ty =TT\ Ty = T,Ty, Ty, T, = T.X T, T,

Let B{],v = {&y ® Uy, | u € W’} denote the basis of M, from Proposition and write
my (h) = 75y (h,B],). We have 7 (Ty) = Ff]’v(Tu)ﬂ'f]’\,(X)‘)WZI’V(TJAI)T(JJ’V(TU). Since u,v,wy
are in the finite group Wy there is a global bound on the degree of the entries of the first, third,
and fourth matrices in this product. Moreover, since U, X* = X" U, the matrix wf]’v(X ) is
diagonal with entries v, (X ud) = vuAgyA for v € W, and hence by assumption the degree of
the entries of this matrix is bounded for A € P*. Thus the degree of the entries of 7 u(Tw) is
bounded. Hence the result (c.f. Remark [5.4).

(3)<=(5). We have established the equivalence of (1) and (3). Applying this to the case
J = I we see that a 1-dimensional representation vy , of 7—~[(L) is bounded if and only if deg v*i <
0 for all ¢ € I. Applying this to the case of the weighted J-affine Hecke algebra we see that v,
is a bounded 1-dimensional representation of this algebra if and only if degv*i < 0 for all j € J,
hence the result.
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(1)<=(6). Theorem shows that (6) implies (1). The reverse implication is complicated
by the cancellations discussed in Remark and we argue as follows. Suppose that (1) holds.
Let p be a positively J-folded path of reduced type, and let p; be the associated J-straightening.
Since py is positively folded a well known result (see [23, Lemma 7.7] or [I7, Lemma 6.2]) gives
f(py) < €(wp), where f(py) denotes the number of folds in p ;. Decompose py as po-f1-p1-fo----
fx - Pk, where po,...,pg are straight (ie, no folds) and fi,..., fi are the folds (so k < ¢(wp)).
Consider the path p;. Let x,y € Wf}‘ﬂ such that p; starts in xA; and ends in y.A;. It is not
difficult to see, using Proposition that the contribution of p; to Q. (p) is wJ,V(T;_ly),
where 7!, denotes the standard basis of H&T (see Section . We have already seen that (1)
implies (5), and hence there is a bound deg ), (7%) < N’ for all w € W3, Thus

deg Qsv(p) < Y L(si)fi(p) + (L(wo) + )N’
1e{0}url

(with the first sum coming from the folds) hence (6). O

Remark 5.10. On extending scalars to C and specialising q — ¢ and (; — z; for i € I'\J with
g > 1 and z; € C with |z| = 1, Casselman’s criteria for temperedness (see [32, Lemma 2.20])
along with the equivalence of (1) and (2) in Theorem shows that (7, My,) is bounded if
and only if the specialised representation is tempered.

By Theorem determining boundedness of (7, M, ) is equivalent to determining bound-
edness of the associated 1-dimensional representation 1, of ”Hf}ﬁ. The latter is a much simpler
task. Since it suffices to consider each irreducible component of H2% it is sufficient to determine
the bounded 1-dimensional representations of an affine Hecke algebra ﬁ(L) with irreducible
root system ®. Since @ is irreducible the degrees of freedom in choosing a weighted I-parameter
system is equal to the number of root lengths in ®. If & is simply laced then v, = v for all
a € ¢ and we write b = L(s;) for any ¢ € I. If ® is reduced with two distinct root lengths we
write vgy = v, for any short root «, and vi, = v, for any long root o, and we write a = L(s;) is
aj is short, and b = L(s;) if a; is long. Then vg, € {q%, —q~} and vj, € {q°, —q~*}.

Proposition 5.11. The bounded 1-dimensional representations Ofﬁ(L) are the maps 11 where
vV = (Vo)aca iS5 a weighted I-parameter system appearing in the list below.
(1) If ® is simply laced then vo = —q~° for all o € ®.
(2) If ® is reduced and not simply laced then the possible values of (Vsn,Vio) are as follows,
with the stated constraints on a,b:

(Vsh7 V]O) Bn Cn F4 GQ

q % —q?) a,b>1 a,b>1 a,b>1 a,b>1
(9%, —q7%) a/b<n—-1 |a/b<1/(n—1)|a/b<6/5|a/b<3/2
(—a7%q%) [[a/b>2(n—1)]a/b>2/(n—1)|a/b>5/3] a/b>2

(3) If ® is of type BC,, then the possible values of (Vay,Va, Vo, s V2a, ) are as follows, with the
stated constraints on a = L(sy), b= L(s1), and ¢ = L(so) (and Convention[5.1] in force):

1 n n n

(ch s Voo, V20, s V2au ) BCn

<_q7b7_qia7_qic) CL,b,C Z 1
(_q_ba_q_aaqc) a,b,c 2 1

@, —q%—q° |a/bte/b>2mn—1)
@, —q “q°) | a/b—c/b>2(n—1)

(—a%q%—q°) || a/b—c/b<n-1
(—97".9%,9°) a/b+c/b<n—1
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Proof. By Theorem it is sufficient to determine the weighted I-parameter systems v with
degv* < 0 for all A € P, and this in turn is equivalent to deg v < 0 for all i € I. Write p = pr
and p' = p} (see Section . If ® is simply laced then v, = v is constant for all o € ®, and
hence v = v{@i:22) for all 4 € I. Since v € {g®, —q~*} and (w;,2p) > 0 the result follows in this
case.

Suppose now that ® is reduced with two distinct root lengths. Then v¥i =
Thus if (Ven,vie) = (9% —q7?) we require a/b < (w;,2p)/{w;i,2p') for all 1 <
(Vshs Vio) = (—q™%,q%) we require a/b > (w;, 2p)/(w;, 2p) for all 1 < i < n.

The result now follows by considering each case. If ® is of type B,, then in Bourbaki con-
ventions [3] we have 2p = 2(n — 1)e; +2(n — 2)ea + -+ 2e,—1 and 2p' = e; +ea + - + €y,
Since w; = €1 + -+ + €; we have (w;,2p') =i and (w;,2p) = i(2n —i — 1) for 1 < i < n. Thus
if (Ven,Vio) = (9% —q7?) we have a/b < 2n —i—1forall 1 <i <n, and so a/b < n —1. If
(Vshs Vio) = (—q™%,q®) then a/b > 2n —i — 1 for all 1 <i < n, and so a/b > 2(n — 1).

The remaining reduced cases are similar. In type C, we have 2p = 2(eq + -+ + ¢€,), 20’ =
2(n—1)e1 +2(n—2)ea+ -+ 261, w; =e1+---+e for 1 <i<n,and w, = 2(e1+- - +ey).
In type F4 we have 2p' = 5ej +ea+e3+eq, 2p = 6ey +4es +2e3, wy = €1+ €2, wy = 2e1 + €3+ €3,
w3 = 3e1 + ez +eg +eyq, and wy = 2e1. In type Gy we have 2p' = —egy +e3, 2p = —e1 — eg + 2e3,
w] = —eg +e3, and wy = %(—el — e9 + 2e3).

Finally, consider the BC,, case. We have

<wi72pl> (w’i72p>
Vsh Vo .
1 < n, and if

(Ne1+-ten)

A V()\,Q(n—l)el+2(n—2)62+~~-+26n,1)V()\,el+~~-+en)
= o

2
v aq QAn V2

Since w; = e + -+ + ¢; we require deg(vg(?n_i_l)vénv%gn) < O0forall 1 <4 < n, and the
result follows by considering the possibilities vo, € {q% —q7°}, Va,V2a, € {da, —q~?}, and
Vaa, € {9% —q7°}. O

Example 5.12. Combining Theorem [5.9|and Proposition [5.11] gives a very explicit classification
of the bounded modules M ,. For example, in type F4 the bounded representations are listed
below. We encode the representations by the Dynkin diagram of type F4 in which the nodes j € J
are encircled. An encircled node j is white if 15, (7}) = —q~%3) and black if Yiu(Ty) = ql(ss),
Let L(s;) = a if o is short and L(s;) = b if «; is long (thus L(s;) = L(s2) = b and L(s3) =
L(s4) = a). In some cases there are constraints on a/b for the representation to be bounded,
and these constraints are indicated under the diagram.

0—0>0—0 | O—0o>0—0 | 0300 0—0>0)—o0 | o—0>0—0) | OC—=0—0

000 | 0—000) | D0 | @0 | o0 | OO0

0500 | @020 | =00 | C—==0—"29 | C—=®° | Do
a/b<2 a/b>4

@00 | o099 | (8O0 | @00 | (00 | O
a/b>1 a/b<1/2 a/b>2 a/b<1 a/b>5/3 a/b<6/5

5.3 The bound a;,

In this section we use the path formula (Theorem 4.12)) to give an upper bound for the bound a
for the representations associated to the simplest weighted J-parameter system v = (Vo )aca,

given by
Vo, = —q Llss) whenever j € J with 2a; ¢ ®;
Vo, Voa, = —q_L(S") if ®; is not reduced
Voa, = —q_L(SO) if ®; is not reduced.
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With Convention [5.1]in force we have the following result.
Theorem 5.13. The bound of (7, Mg, Byg) satisfies ajq < L(wg).
Proof. By Theorem we have, for w € W and u,v € By,

deg[ﬂ'J,\?(Tw)]u,v < max{deg QJ,\?(p) ‘ pE PJ(U_); u) with Hj(p) = U}? (52)
and by Proposition we have
Qssp) =9y ] V;i"z((;p") (5.3)
a—ksed+

for all positively J-folded paths p. It is well known that deg Q(p') < L(wg) for all positively
folded alcove paths p’ (see |23, Lemma 7.7] or [I7, Lemma 6.2]). Since the second term in ([5.3))
has degree bounded above by 0 we have deg Q;(p) < L(wo). O

5.4 Conjectures

The precise value of the bound aj, appears to be a very subtle statistic, and we conjecture
(based on the analysis in [I7], 18] and the examples below) that it is intimately connected to
Lusztig’s a-function [26], Macdonald’s c-function [27], and Opdam’s Plancherel Theorem [32].
Again Convention is assumed to be in force. Firstly, we believe that the upper bound L(wg)
for ajg given in Theorem applies more generally.

Conjecture 5.14. If (75y, My, By) is bounded then the bound aj, satisfies aj, < L(wg) with
equality if and only if J = (.

In fact, we shall state a considerably stronger conjecture giving a formula for a;,. For a € ®
we define q, € Z[q,q '] as follows. If @ is reduced, let

da = ") if & € Woay,

and if ® is not reduced let

qL(si) if @« € Wypay; with i £ n
Qo = qL(Sn)_L(SO) lf o € Woan
qL(s0) if o is long.

Conjecture 5.15. If (7, Mjy,B ) is bounded then the bound aj, is given by

Y

1 Ay /oV

1 /
ajy = L(wp) — B deg H

-1 -2 aV
ace L~ Aq ada Ve

where []' indicates that any factors in the numerator or denominator that are 0 are omitted.

We make the following conjecture, linking bounded representations to Lusztig’s a function
(see [26] for the definition of the a-function). In particular, note that Conjecture combined
with Conjecture [5.15| give a conjectural formula for the value of Lusztig’s a-function at elements
w € W that are recognised by some bounded representation (7, Mjy,By).

Conjecture 5.16. Let I';, be the cell recognised by the bounded representation (v, Mjy,By).
Then
(1) Lusztig’s a-function satisfies a(w) = ajy for allw eIy, NW.
(2) The setT';y NW is contained in a two sided Kazhdan-Lusztig cell of the weighted Coxeter
group (W, L).

Remark 5.17. It is not necessarily true that I'j, equals a two sided Kazhdan-Lusztig cell. For
example, in Example (2) and (4) the set I, is strictly contained in a two sided cell (see [17,
Figure 2] for the cell decomposition of Gg).
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Example 5.18. Consider the case ® = F4, with notation as in Example - Writing r = a/b,
the conjectural bounds a, (from Conjecture [5.15) E ) for a selection of the bounded representations
of F4 are as follows:

(1) c==®—o a, = 2a+ 2b,5a,6a — b, 11a — 7b for r € (0,2/3],[2/3,1],[1,6/5],[6/5, 2].
(2) == a; =4a+ 12b for r € [4,0).
(3) @00 a, = —2a+ 11b,a + 6b,2a + 3b for r € [1,5/3],[5/3, 3], [3, 00).
(4) o—=%—® a, = 6a + 4b,9a + 3b for r € (0,1/3],[1/3,1/2].
(5) o—=%o a, =4a+ 12b,6a + 4b for r € [2,4], [4, c0).

(6) o—@0o a, = 3a+ 6b,11a + 2b for r € (0,1/2],[1/2,1].

(7) &==0—29 a, = —2a+ 11b,—a + 9b,6b for r € [5/3,2],[2, 3], [3, c0).

(8) G===—® a, = 3a,5a — b, 11a — 7b for r € (0,1/2],[1/2,1],[1,6/5)].

Thus Conjecture predicts the existence of elements of the affine Weyl group of type F, with
the above a-function values in the respective parameter ranges.

Proposition 5.19. Conjecture implies Conjecture [5.14)

Proof. We have

—1 _1 v

G Ny AN . .
-2

aed 1 _qa/QQa 2yot €¢+ (1 _qa/gqa % )(1 _qa/QQa v av)

Suppose that o € &g N Py (that is, a/2,2a ¢ ). Then q, = q* for some a > 0, and writing

ve’ = g* for some k € Z gives

_ _av
(1 B qa/12 )(1 - qa/2 ) _ (1 o qk)(l . q’k)
(1 - q;/lgq(Z vaY )(1 — qa/2q—2v—a\/) (1 _ qk—2a>(1 _ qk—2a)

Recalling the convention that any factors that are identically 0 are removed, it follows that

(1= ag jpv® ) (1 —ag Jv ") {|ky it0< |k <2a
deg ) =

(1= ag)p8ave) (1 = ag jpda v’ 2 if 2a < |k|.

If @ ¢ &N P (this only occurs in the non-reduced case) then we pair the four terms in the
product related to o and «/2 (if « € ®;) or 2« (if @ € $p). We may thus assume that o € P
(and so daj2 =1, da = qL(sn)=L(s0) and qoq = qL(SO)), and the four terms combine to give

(L)) =g ) gt )
(1- qEQVQV)(l - qu\/,av)(l — o q2aVaV/2)(1 —da'q o? —av/2)
(1—ve)(1—v)
- (1 + qc—ava\//2)(1 + qc—av—aV/Q)(l _ q—a—cvaV/Q)(l _ q—a—cv—aV/Q)’

a =

where a = L(s,) and ¢ = L(sp). Recall that by Convention we have a — ¢ > 0. Writing
ve' = q%* for some k € Z then

2| k| ifo0<|k|<a-—c
degCo = k| +a—c fa—c<|k|<a+c
2a if 2a < |k|.
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In summary, once the terms in the product are suitably grouped together we may write the
product as Haeq,g’C’a where deg C, > 0 with deg C,, = 0 if and only if v®’ = 1. Thus

1 ;1= q_l ve’
2
L(wg) — §deg H - _10‘/ —— < L(wyp)
acd - qa/ZqO‘ \4
with equality if and only if v =1foralaec @g , which in turn forces J = (). O

Theorem 5.20. Conjectures[5.15 and [5.1¢ hold in the following cases.
(1) All weighted affine Hecke algebras in the case J = ().
(2) All weighted affine Hecke algebras of dimension 1 or 2 (rank 2 or 3).

Proof. (1) follows from Example and [16, Theorem 4.6], which shows that the set I" from
Example is the lowest two sided Kazhdan-Lusztig cell of (W, L), and it is well known that
a(w) = L(wyp) for all elements of this cell.

(2) The cases ® € {A1,BCy, Az} are easy exercises and are omitted (see [23] Figure 1] and [26],
§7] for the decomposition of Az, A1, and BC; into cells). Conjecture for ® € {C9,BCy, Go}
follows from the results of [I7, [I8]. Thus it only remains to verify Conjecture in the cases
P e {CQ, BCo,, GQ}

Consider the case ® = Gg. The case J = () is covered by (1). Suppose that J = {1}. The
only bounded representation with J = {1} has v,, = —q~%, where we use the conventions of
Example [5.6| (L(s1) = a and L(s2) = L(so) = b). Thus we have v = q72% and v*2 = —q°.
Since ¥ = £{ay, o + 3ay, 20y + 3oy, oy, af + oy, 0y + 2a3 } we have

e (1—a2)(1 ~q)(1 + a1+ )
L—q, haa v’ (1= )(1+q75)2(1 = q 2)2(1+q*2)2(1 + q )

aced

Thus, since L(wg) = 3a + 3b, we have

1 _aV
1 r 1 —=qg v 3b ifa—2b<0

L(wp) — ideg H _10‘/ = .
acd L7 g pba"V a+b ifa—2b>0.

By [17, Theorem 7.10] these are equal to the bound of the induced representation (3, con-
firming the Conjecture [5.15|in this case.

The case J = {2} is similar (using again the values of the bounds from [I7, Theorem 7.10])
and we omit the details.

Consider now ® = Gg and J = I = {1,2}. By Proposition there are three bounded
I-parameter systems. The case (Va,, Va,) = (—q7% —q?) is clearly bounded by 0 and recognises
the trivial Kazhdan-Lusztig cell {e}. Consider the case (Va,,Va,) = (9% —q~?) (which is bounded
if and only if a/b < 3/2). We have v®i = q2* and v*3 = q~2, and hence

1—q Lve’

1—‘[/ M

acd 1- q;/12qa2vaV
(1 . q2a)(1 - q—2a+6b)(1 _ q4a—6b)(1 - q_2b)(1 o q2b)(1 o q2a—2b)(1 . q—2a+4b)
(1—q*)(1 —q )1 — q 00F6b) (1 — q=4)(1 — g2+~ )

(with the convention on removing zero products if required). It follows that

L=, v B {3(1 —2b if1<a/b<3/2

1 /
L(wg) — = de
(wo) 2 ng a ifa/b<1,

— g Llq72pav
acd qa/gqa v
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agreeing with the bounds given in Example[5.6] Moreover, the cell recognised by this representa-
tion is given in Example and by [I7, Figure 2] these cells are contained in Kazhdan-Lusztig
cells for the relevant parameter values.

The case (Vay,Va,) = (—q7%,q?) is similar, and we omit the details. Moreover, the analysis
for the cases ® = Cy and BCjy is similar, using [I8, Theorems 6.15, 6.21, 6.22], and we again
omit the calculations. O

Remark 5.21. We provide some comments on the origin of Conjecture [5.15] Recall that for
a finite dimensional weighted Hecke algebra H( the “canonical trace” Tr(>_ a,T,) = ae on Hy
decomposes as a sum of irreducible characters as Tr = > myx, where the elements m) are
rational functions in q known as the “generic degrees” of Hy (see [14, Chapter 11]). There is a
connection between the generic degrees and Lusztig’s a-function, stated roughly that if w is in
the cell “corresponding” to A then degm)y = 2a(w) (see [13)]).

In the affine case, the decomposition of the canonical trace takes the form of an integral over
tempered representations of the affine Hecke algebra, and the generic degrees are replaced by
the “Plancherel measure”. The Macdonald c-function is (see Macdonald [27])

1- q;/lzq;QXiav

o(X) = H S ——
acdt 1_qOé/QX o

By Opdam’s work [32, Theorem 3.25] the reciprocal of the term )7, (q*/™0)e(X)e(X 1)) (where
the prime indicates that any factors that are 0 on evaluation by 15, are to be omitted) appears as
the mass of the character x s, of 7, in the Plancherel formula for H(L) (once the parameters q
and (; are specialised appropriately and scalars are extended, see [17), §9.4] for further discussion).
Thus since

aV

1— q;/lQV

1 /
L(wp) — §deg H n

1 " RN
1 -2 oV §deg¢J,v <q2L( O)C(X)C<X 1))
acd _qOé/Qqa v

our conjecture can be seen as an affine analogue of the finite dimensional situation, giving
conjectural connections between Kazhdan-Lusztig Theory and Opdam’s Plancherel Theorem.

6 The case ® =A, with J={1,2,...,n—1}

In this section we illustrate the theory in the case ® = A, with J = {1,2,...,n — 1}. We will
apply Theorem to prove Conjectures and in this case.

The only J-parameter system for which 7, is bounded is v = (—q~1)ace, (see Theorem [5.9
and Proposition, and so the symbol v will be suppressed in the notation. Thus, for example,
we shall write 7; = 7, and @w; = w .

We have R[(;] = R[¢] where ¢ = (4', since ¢§" = (' for 1 < i < n. Since y,, =
W23 . n-1}W{1,2,..n—1} = S1° " Sp—1 We have

Twr = tw Yo = (808nSn—1--520)(51 - Sp—1) = So0,

where ¢ € ¥ is given by os;0~! = 5,41 (with indices read cyclically modulo n + 1, and so in
particular s,41 = sg; recall the definition of > from Section .

The following choice of fundamental domain leads to a matrix representation with very
symmetric matrices.

45



Lemma 6.1. The set ¥ is a fundamental domain for the action of Ty on WY,

Proof. We have w = {€, 8n,SnSn—1y---,8nSn—1---8251}, and for 1 <1i < n we compute
TenSnSn—1+"" Sn_it1 =0,
hence the result 0
Fix the following order on the basis:

(s (Xg-1), @y (Xg-2), ..., @) (Xg—n), s (Xg-n-1)). (6.1)

For 1 <i<n+1 we have w;(X,—i) - Tow = @wj(Xe) - Ty—i(u)Xo—i, and it follows that
(75 (Tw)lij = (7 (Toi(w))Int1,0-i¢s) for 1 <d,j <n+1. (6.2)
Corollary 6.2. The matrices for w;(T;), 0 <1i < n, with respect to the ordered basis are

—q i 0 0

0 -1 -1
q—d 0 ¢
0 0 0
71(T;) = -1 _C —1 71(To) = 0 _q_lln—l 0
0 ¢ d-—g 0 ¢ 0 0
0 0 0 e
where | is the k x k identity matrix.
Proof. This follows directly from Theorem [4.14 O

Definition 6.3. Recall that W is the non-extended affine Weyl group. Let
I'' = {w € W\{e} | w has a unique reduced expression}.

By [2, Chapter 12] for any Coxeter group (W, S) with weight function L = ¢ (equal param-
eters) the set I'y forms a two-sided Kazhdan-Lusztig cell, and the right cells in T’y are the sets
{weT| Dp(w) = s} for s € S (with Dy, the left descent set). In type A,, the elements of Ty are
precisely the nontrivial elements with a reduced expression with no subwords s;s; with m;; = 2
or s;s;s; with m;; = 3 (by Tits’ solution to the Word Problem).

Remark 6.4. For irreducible affine Coxeter groups W the set Iy is infinite if and only if W is
of type A, or C,, (see [2, Proposition 12.1.14]). We expect that the techniques of this section
could be applied to the C,, case, with the relevant set in that case being J = {2,3,...,n}.

If x € I'y then the unique reduced expression of z is of the form s;8;418;42- -+ Or §;8;-18;_2 - -
for some 0 < i < n (recall the indices are read cyclically). The final generator that appears in
the reduced expression will be important to keep track of, and so we denote

T

T; ¢ = SiSi+1Si+2° " 5j
Lo

xi,j,ﬁ = 8;8i—15;—2 """ 85§

where ( = E(mj i) = E(xf ;¢) (note that many cycles are allowed in these expressions, and that

there is a compatibility condition between i, j, ¢, however this condition will not play a role).
Sometimes either the length or the final generator will not be important to keep track of, and

in this case we will abbreviate xj o to a;zT jor xj, and similarly for xf e Thus, for example, a;é
represents a word of the form s5s4535251508,5n—1 -+ With no constraint on the length or final

generator.
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Lemma 6.5. Let © € I'y and let p be a positively J-folded alcove path of type x. Then

deg Q;(p) < 1 with equality if and only if p has exactly one fold and no bounces. Moreover

if 1 <i<n+1 then the paths p of type x € Iy starting at o~ with deg Q;(p) = 1 are the paths

(1) p=(0G—-1)i(e +1)(i +2)---nl2---, where the first step is a fold and all remaining steps
are crossings, and

(2) p=(i—1)(i—2)---210n(j + 1)j for some j, where the final step is a fold and all other
steps are crossings.

Proof. We argue by induction on the length of the path, with the result clear for paths of
length 1. It is sufficient to consider paths starting at e, because starting at o—* for some i is
equivalent to starting e and performing a cyclic shift of the generators of the expression x. Thus
we consider paths of :UlT and xj starting at e for each choice of 0 <7 < n.

In the following analysis we start with a straight path p = iyig--- (we omit the s’s to lighten
the notation) and construct from it a positively J-folded path, starting from left to right and
deciding if the steps are folds, bounces, or crossings. We will use the following coding to represent
a partially positively J-folded alcove path: i (or V) for a fold (hence degree contribution +1
to Q(p)), i (or i¥) for a bounce (hence degree contribution —1 to Q(p)), and i for a crossing
(hence zero degree contribution). Parts of the path that are grey are understood to remain
“straight”, and are yet to be determined. For example, given that p starts at e, the expression
p =n(n—1)"n101234 represents a path where the first 5 steps have been positively .J-folded (a
crossing, followed by a fold, a crossing, a bounce, and a crossing), and the remaining 4 steps have
not yet been determined. An expression like [123]" indicates that all three steps are bounces.

Consider first paths p of type x = xj starting at e. If i = 0 then p = 012--- consists entirely
of positive crossings staying in A, and hence is positively J-folded with deg Q ;(p) = 0.

If i = n then either p =n012--- or p=n012---. In the first case the remainder of the path
consists entirely of positive crossings staying in Ay, and so deg Q;(p) = 1 and the path is as
in case (1) of the statement of the lemma. We must show that in the second case the degree is
bounded by 0. In the second case the next n — 1 steps are forced bounces and the following step
is a positive crossing, giving p = n[012---(n — 2)]¥(n — 1)n01---. The remainder of the path
is a path p’ of type xlfl starting at s,. Note that 7,5, = spos, = o, and so by the action of
T, on paths (see Lemma [3.10) the path 7, - p’ starts at o and deg Q;(p') = deg Qs (7, -p') < 1
(by the induction hypothesis). Since Q;(p) = (—q~1)"1Q,(p') we have deg Q;(p) <2—n <0
as required.

If i € J then the first n — i steps are forced bounces, and so p = [i -+ (n —1)]Yn012---. The
remainder of the path is a path p’ of type n012--- starting at e, and by the ¢ = n case in the
previous paragraph we have deg Q;(p) <i—n+1<0.

Now consider paths p of type x = mf starting at e. If i = 0 then p = 0n(n — 1) ---. The next
n— 1 steps are necessarily bounces, giving p = 0[n(n—1)---2]¥10n(n — 1)---. The remainder of
the path is a path p’ of type x% starting at sg. Since T;llso = ¢! the path Tojll -p starts at o~ !
and by induction deg Q(p') = deg Q;(7;' - p') < 1. Then deg Q;(p) = —n+ 1 +deg Qs(p') <
2—n<0.

If i = nthen p=n(n—1)(n—2)--- has each step negative and stays in .A;. Thus we either
have no folds, and so p =n(n —1)(n —2)--- has deg Q;(p) = 0, or we fold at some step. Thus
suppose that p = n(n—1)---(j+1)j(j — 1)---10n(n — 1)--- (possibly with multiple cycles
before the fold). Either the path terminates immediately after the fold (and so deg Q ;(p) = 1 and
p is as in case (2) of the statement of the lemma), or there is a sequence of forced bounces. In fact
the following n—1 steps (or up to the end of the path, whichever is first) are forced to be bounces.
To see this, one checks that spsp—1---sjp1a € @7 for a € {aj_1,..., 01,9, an,...,aj4+1}. Thus

p=nn—1)G+1j[(G-110n(n—1)- G+~ 1)

The remainder of the path is a path p’ of type xj starting at s, - - - 541, and since Tﬁl_jsn Ce Syl =
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0" 7 we use Lemma and the induction hypothesis to give
deg Qs(p) =1 —n—i—degQJ(Tgl_j p)<2-n<0.

Finally, if i € J then p = [i(s — 1)---1]V0n(n —1)--- and we return to the i = 0 case,
concluding the proof. O

Let Mat,,11(Z[q!]) denote the ring of (n +1) x (n + 1) matrices with entries in Z[q~!]. For
1<i,j <n+1let E;; be the (n+ 1) x (n + 1) matrix with 1 in the (7, j)-th place, and zeros
elsewhere.

Corollary 6.6. We have

my (T )€ A Eiy1 i1 + Matyg(Z[a 1)
2,7,€

(T, ) € ¢ Eivyjin + Matn 1 (Z[g ™)
95

Proof. This follows from Theorem and Lemma and the fact that in (1) of Lemma
we have wt(p, ¥)” = (£(p) — 1)@y, and in (2) we have wt(p, ¥)/ = (—£(p) + 1)@,. O

Lemma 6.7. Let 0 < 4,5 < n with m;; € {2,3} and let w;; be the longest element of the
parabolic subgroup (s, sj). Let y € I U {e} and suppose that {(w;jy) = £(w;;) + €(y). Then

(1) WJ(TWijy) € Mat,,11(Z[q™1]), and

(2) if deg[m(Tw;;y)lka = 0 then k € {i + 1,7+ 1}.

Proof. By it is sufficient to prove the result for k = n + 1. That is, we must show that
if 0 < 4,5 < n with my; € {2,3}, and if y € I U {e} with £(w;y) = €(w;;) + £(y), then
deg[m(Tw;jy)lnt10 <0 for all 1 <1 <n+ 1, and if deg[m;(Tw,,y)]ns1, = 0 then either i = n or
j = n. By Theorem we have

T (Tw)lns1s = Y Qs (p)¢yt®™
p

where the sum is over paths p € P(w;;y,e) with §(p,X) = oL, To fix notation, we will choose
the reduced expression w;; = s;5; or w;; = s;5j5; with j < 4. It will turn out to be sufficient to
bound the degree of Q;(p) for each path p € P;(w;;y, e) with the exception of case (4) below,
where cancellations come into play (meaning that the path-by-path degree is higher than the
degree of the associated matrix entry, and more care is required). In the analysis below we adopt
the same coding as in the proof of Lemma [6.5

Let p € Py(wi;y, e). Suppose first that m;; = 3.

(1) Suppose that 1 < j < i <n —1. Then p = ijiy. The remaining path is of type y € I',
and hence has degree bounded by 1 by Lemma and hence deg Q;(p) < —2.

(2) Suppose that (j,i) = (0,1). Then p = 101y. Let s, be the first generator in the unique
reduced expression for y, and write y = s,3’. Since w;;y is reduced we have r ¢ {0,1}.
If r # 2 or r # n then p = 1017y and deg Q;(p) < —1 by Lemma If r = 2 then
p = 1012y and either i/ = 34--- or v/ = 10---. In the first case all remaining steps are
positive crossings staying in A, and so p = 10123~ -- and deg Q;(p) = —1. In the second
case we must have p = 10121 -+ and deg Q;(p) < —1 by Lemma . The case r = 0 is
similar.

(3) Suppose that (j,i) = (0,n). Then either p = 07y or p = A0Hy. In the first case
Lemma gives deg Q;(p) < 0, and so consider the second case. Let s, be the first
generator in the unique reduced expression for y, and write y = s,4’. Since w;;y is reduced
we have r ¢ {0,n}. If 2 <7 < n—1 then s,ar = o € ®; and so sps, ¢ Ay, giving
p = n0nRFy and so again deg Q;(p) < 0. If r = 1 then p = A0A1Y. Either ¢/ = 234 ..
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or y' =0n(n—1)---. In the first case all remaining steps are positive crossings staying in
Ay, and so p = n0n1234--- with deg Q;(p) = 0. In the second case since sps159 ¢ Ay we
have p = 20n10n(n — 1)--- and Lemma (6.5 gives deg Q;(p) < 0 as required.

(4) Suppose that (j,i) = (n — 1,n). The possibilities are p = n(n — 1)ny, p = A(n — 1)Vay,
p="n(n—1)"ny, or p=~n(n—1)"Ay. In the first case Lemmal6.5] gives deg Q;(p) < 0. In
the second case, with y = s,y as above, since r ¢ {n,n — 1} the next step is forced to be a
bounce, giving p = n(n — 1)V7nry’ with deg Q;(p) < 0. Thus consider the third and fourth
cases. Note that the initial segments (n — 1) and 7(n — 1)VA both end at e. Thus for
each p’ € P;(y,e) we have a pair of paths p1, p2 € Pj(wp—1,Y,€) given by appending each
initial segment to the beginning of p’. Then

Qs(p1) + Quslp2) = (@—a Q@) —qa(a—q Q) = (@' +q9)Qs ().

By Lemma we have deg Q;(p') < 1, and so the combined contribution to the matrix
entry [ (Tw,_, ny)ln+1, (Where o=0 = 0(p/, X)) has degree at most 0, as required.

Now suppose that m;; = 2.

(5) Suppose that 1 < j < i < n—1. Then p = ijy, and by Lemmawe have deg Q;(p) < —1.

(6) Suppose that j = 0 and 1 < i < n — 1. Then p = i0y. Let s, be the first generator
in the unique reduced expression for y. Then r # 0,7 (as w;y is reduced). If r €
{1,2,...,n}\{1,i} then writing y = s,/ we have p = 107/, and as in the previous case
the degree is bounded by —1. So suppose that = 1. Then p = :01y/. Either ¢/ = 234 ...
or v = 0n(n—1)---. In the first case all remaining steps are positive crossings staying
in Az, and so we have p = 0123 -- with deg Q;(p) = —1. In the second case, since
5480, € @7, we have p = 1010n(n — 1)---. By Lemmathe degree contribution of the
remainder of the path is bounded by 1, hence deg Q ;(p) < —1.

(7) Suppose that i = n. Then j € J\{n — 1} (because the cases j = 0,n — 1 are impossible as
mi; = 2). Thus sq,a; € ®; and so p = fjy or p = mjy. In the second case Lemma
gives deg Qs(p) < 0 as required. Thus consider the first case. As before, let s, be the
first generator in the unique reduced expression for y, and write y = s,¢'. Since w;jy
is reduced we have r ¢ {j,n}. If r € J then p = 7jiy/, and so again deg Q;(p) < 0.
If r = 0 then o/ = 123--- or y = n(n —1)(n—2)--- and so p = 750123 or p =
nj0n(n —1)(n —2)---. In the first case the remainder of the path consists of positive
crossings staying in Az, and hence deg Q;(p) = 0. In the second case we have sys,, ¢ Aj
and hence p = 7j0n(n — 1)(n — 2)---, and again by Lemma we have deg Q ;(p) < 0.

Hence the result. O

Corollary 6.8. Letz €Iy andy € I''U{e} and 0 < i < j < n. Let w;; be the longest element of
Wij = (si,s;), and suppose that £(xw;;y) = €(z)+L(wij)+L(y). Then ;(Ty) € Mat,11(Z[q™ ).

Proof. We have

71 (Towijy) = T3 (Te)w i (Twiy)-
Let s, be the last generator in the unique reduced expression for x. By Corollary we have
75(Ty) € qC%Ek i1 + Maty1(Z[q™ 1)) for some 1 < k < n+ 1 and a € Z. Moreover, by
Lemma [6.7| 77 (T, ) satisfies

n+1

71 (Twiy) € > (fiBiy1i+ 9iFj410) + a Matni1(Z[q 1)),
=1

for some f;,g; € Z[¢, (Y. Since £(aw;jy) = €(z) + €(y) + £(w;;) we have r # i, 7, and hence
77 (Te) ™1 (Twyyy) € Matyy1(Z[q™1]) as required. O
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Corollary 6.9. If w € W\I'y then degn(Ty,) < 0.

Proof. The result is clear if w = e. If w # e choose any reduced expression for w, and write this
expression in the form w = y1wiyawWays « - * Y WinYm+1 where yi € Ty U {e} and wy, is either of
the form sts with mg = 3 or st with mg = 2. We have

T (Tw) =TJ (Ty1W1y2)7TJ(TW2)7TJ (Ty3W3y4) R

and applying Lemma (1) and Corollary to see that each matrix is in Mat,1(Z[q™}]),
hence the result. O

The following theorem shows, in particular, that Conjectures [5.15 and hold for the case
®=A, and J ={1,2,...,n — 1}. Recall the definition of leading matrices from Definition

Theorem 6.10. Let ® = A, and J = {1,2,...,n —1}. Let F be any fundamental domain for
the action of T; on WY, and let 1 = (my, My, BE).

(1) The matriz representation Il is bounded with bound arp = 1.

(2) We have I'y = {wo | w €Ty, 0 € L}.

(3) The leading matrices {c(w) | w € TuNW} form a basis of the Z-module Mat,, +1(Z[¢,(Y]).

Proof. Corollaries and show for w € W the degree of the matrix entries of 7;(T,) is
bounded by 1, and that this bound is attained in the matrix 7;(T},) if and only if w € I'y. Since
77(T,) is a monomial matrix with entries in Z[¢, ('] both (1) and (2) follow. The statement
(3) follows from Corollary O
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