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Unimodal and top-heavy behaviours also appear in partitions



The Top-Heavy Conjecture

Top-Heavy Conjecture (Dowling and Wilson, 1974) (for
vector spaces). Let V be a vector space and E a finite set of
vectors which span V .

For i ≤ dim(V ), let

bi = ♯

{
i-dimensional subspaces of V

which are spanned by vectors of E

}
.

Then

bi ≤ bn−i , for all i ≤ dim(V )

2
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The Top-Heavy Conjecture: An example

Let V = R3 and

E =


10
0

 ,

00
0

 ,

00
1

 ,

11
1

 .

Then we have b0 = 1, b1 = 4, b2 = 6, and b3 = 1.

Note
1 = b0 ≤ b3 = 1,

and
4 = b1 ≤ b2 = 6.



The Top-Heavy Conjecture: An example

Let V = R3 and

E =


10
0

 ,

00
0

 ,

00
1

 ,

11
1

 .

Then we have b0 = 1, b1 = 4, b2 = 6, and b3 = 1.

Note
1 = b0 ≤ b3 = 1,

and
4 = b1 ≤ b2 = 6.



The Top-Heavy Conjecture: An example

Let V = R3 and

E =


10
0

 ,

00
0

 ,

00
1

 ,

11
1

 .

Then we have b0 = 1, b1 = 4, b2 = 6, and b3 = 1.

Note
1 = b0 ≤ b3 = 1,

and
4 = b1 ≤ b2 = 6.



The Top-Heavy Conjecture

A matroid is a structure that generalizes the notion of linear
independent sets.

It borrows and abstracts notions from graph
theory, linear algebra, and number theory.

Top-Heavy Conjecture (Dowling and Wilson, 1974). Let M
be matroid. For i ≤ rank(M), let bi be the number of elements of
M of rank i . Then

bi ≤ bn−i , for all i ≤ rank(V )

2
.

This was recently proved (Braden, Huh, Matherine, Proudfood,
and Wang, 2020).
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The affine Weyl group

Let V be a m-dimensional Euclidean vector space with inner
product (−,−).

A root system Φ is a spanning set of vectors of V with good
properties, the two main ones are:

▶ The only scalar multiples of a root α ∈ Φ that belong to Φ
are α itself and −α.

▶ For every root α ∈ Φ, the set Φ is closed under reflection sα
through the hyperplane perpendicular to α.
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The affine Weyl group

Let α ∈ Φ ⊂ V be a root.

We define the dual root α∨ ∈ V ∗ of α
by

⟨α∨, λ⟩ = 2(α, λ)

(α, α)
,

for every λ ∈ V .

By following simple rules on the root system one can choose a
subset Φ+ of positive roots of Φ.

We define the dominant chamber C+ of V by

C+ = {v ∈ V | ⟨α∨, v⟩ > 0 for every α ∈ Φ+}.
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The affine Weyl group

Let us denote by Aff(V ) the group of all rigid motions on V .

The
Weyl group Wf associated with Φ is the subgroup of Aff(V )
generated by all the sα where α ∈ Φ.

The affine Weyl group W associated with Φ is the subgroup of
Aff(V ) generated by all sα,d for α ∈ Φ and d ∈ Z, where

sα,d(µ) = µ− ⟨α∨, µ⟩α+ dα

is the reflection with respect to the affine hyperplane Hα,d given by

Hα∨,m = {v ∈ V | ⟨α∨, v⟩ = m}.
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The affine Weyl group

Equivalently, the affine Weyl group W associated with Φ is the
semidirect product Wf ⋉ ZΦ.

The elements of W will be
represented by pairs (λ,w) where λ ∈ ZΦ and w ∈ Wf .The group
multiplication is given by

(λ,w) · (λ′,w ′) = (λ+ wλ′,w · w ′).

The group ZΦ is a lattice and its called the root lattice.
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Let us see the root system from before

In this case the finite Weyl group

Wf = ⟨sα, sβ : s2α = s2β = id, (sαsβ)
3 = id⟩

is isomorphic to the symmetric group S3 = Sym({1, 2, 3})
consisting of 6 elements.
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The affine Weyl group

Consider A the set of alcoves of V with respect to W

, which is the
set of connected components of

V
∖⋃

{Hα∨ , d : α ∈ Φ and d ∈ Z} .

Let A+ ∈ A be the fundamental alcove: The unique alcove
contained in C+ whose closure contains the origin. There is a
bijection

W → A
w 7→ wA+.
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Towards unimodality

Let us define a length function ℓ : W → N. Given by:

ℓ(w) = ♯

{
Hyperplanes separating the alcove wA+

from the alcove A+

}
.

An alcove A is called dominant if it is contained in C+

Let us consider fW = Wf \W the set of minimal length right
Wf -coset representatives of W . The set of dominant alcoves is in
bijection with fW .

There is also a partial order in W called the Bruhat order, it is
generated by the relation

tx < x

where t is a reflection with respect to an hyperplane in W , and the
alcoves txA+ and A+ lie in the same side of such hyperplane.
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Towards unimodality

The Poincaré polynomial of an interval [id,w ] ⊂ fW is given by

P([id,w ]) =
∑
y≤w

qℓ(y) =
∑

fiq
i .

An open question is. Are the Poincaré polynomials for the
intervals [id,w ] ⊂ fW unimodal?

A similar question for the whole group W is false in type A. A
counterexample comes from an element in the associated Schubert
variety X = Gr4(C12), where the corresponding Betti numbers
b2i = fi (which count the number of cells of dimension 2i in X ) are

1,1,2,3,5,6,9,11,15,17,21,23,27,28,31,30,31,27,24,18,14,8,5,2,1.
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The Poincare polynomial for the dominant lattice interval [0, 2ρ].
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The Poincare polynomial for the interval [id, (2ρ, id)] ⊂ fW .
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The Poincare polynomial for the interval [id, (2ρ, id)] ⊂ fW .



The End

Thank you!


