
NOTES ON THE BERNSTEIN PRESENTATION OF THE HECKE ALGEBRA

GASTON BURRULL, SUPERVISOR: GEORDIE WILLIAMSON

ABSTRACT. These notes are based on my talk titled “The Bernstein presentation
of the Hecke algebra" given in the Informal Friday Seminar organised by Anna
Romanov.

Let G ⊃ B ⊃ T be a split semi-simple simply-connected complex algebraic
group. Let HW be the Hecke algebra associated to the (finite) Weyl group W :=

NG(T )/T of G. In this notes I introduce the affine Hecke algebra H, this algebra
was first introduced by J. Bernstein, and is isomorphic to the Iwahori-Hecke alge-
bra of a split p-adic group with connected center. It contains HW as a subalgebra
and a large complementary corresponding to “translation part". I will show how
the above isomorphism look like in the case of G = SL(2,C).

1. MOTIVATION

1.1. The puzzle. Two different geometric incarnations of the affine Hecke alge-
bra. Let (R,P ) be a reduced semi-simple simply-connected root datum, where P
is the character lattice. Let GZ ⊃ BZ ⊃ TZ be the split Chevalley group scheme
over Z associated to (R,P ). For any field k, the extension of scalars produces an
algebraic groupGk ⊃ Bk ⊃ Tk over k which is split semi-simple simply-connected
and has the same root data (R,P ). Let G := GC be the associated algebraic group
over C. The subgroup B := BC is a Borel subgroup of G, i.e., a maximal solvable
subgroup, and T := TC is a maximal torus; for example, G = SL(n,C), the set of
n× n matrices with determinant 1, B the subset of G of upper triangular matrices
and T the subset of B of diagonal matrices.

Let Waff := W n P be the affine Weyl group associated to (R,P ), where W is
the (finite) Weyl group W := NG(T )/T of G. The positive roots R+ of R are the
non-trivial weight spaces for the T -action on the Lie algebra of B.

Iwahori and Matsumoto introduced in [IM65] the affine Hecke algebra as the
convolution algebra of some bi-invariant complex-valued functions on the p-adic
points on GZ. More specifically, let p be a prime number, Qp be the corresponding
field of p-adic numbers with ring of integers Zp and residue field Fp. Let GZ(Qp)
be the set of p-adic points of GZ. Consider the standard diagram

Qp ←−↩ Zp � Zp/p · Zp = Fp.

It induces the new diagram

GZ(Qp)←−↩ GZ(Zp) � GZ(Fp).

Let I be an Iwahori subgroup of GZ(Qp), i.e., the inclusion into GZ(Qp) of the
inverse image of BZ(Fp) via the projection above.

Denote by C[I\GZ(Qp)/I]c the vector space of all I-bi-invariant complex-valued
functions on GZ(Qp) with compact support. This set of functions has a natural
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algebra structure given by convolution of functions on GZ(Qp). Iwahori and Mat-
sumoto in [IM65] gave a presentation of this algebra in terms of generators and
relations. For this purpose they first defined the “abstract" Hecke algebra Haff as a
q-analogue of the group algebra of Waff , where q is an indeterminate. Specialising
at q = p it gives an algebra isomorphism between Haff and C[I\GZ(Qp)/I]c.

Later, Bernstein (in an unpublished work 1) gave a completely different pre-
sentation of the affine Hecke algebra. Firstly, he realised that the group algebra of
Waff—the affine Weyl group defined above—can be described (as a module) as the
tensor product of Z[P ] (the “translation part") and HW (the “finite part"), where
HW is the Hecke algebra associated to W . He defined an algebra H such presenta-
tion is a q-analogue of the description above. By the work of Kazhdan and Lusztig
[KL87, Theorem 3.5], and Chriss and Ginzburg [CG97, Theorem 7.2.5], we have an
isomorphism between H and the LG × C∗-equivariant K-group of the Steinberg
variety Z.

Summarising, we have the following diagram

(1.1)

Haff H

C[I\GZ(Qp)/I]c K
LG×C∗(Z),

Bernstein isomorphism

q=p

???

where the isomorphism in blue on the left side is due to Iwahori and Matsumoto,
the brown isomorphism on the top is due to Bernstein and the purple isomorphism
on the right is due to Kazhdan and Lusztig, and Chriss and Ginzburg. The top part
of the diagram is the algebraic part of the story. The bottom part is the mystery,
we have in both sides different geometric realisations. On the one hand, we have a
convolution algebra of some complex-valued functions on an algebraic group, on
the other hand, we have formal linear combinations of classes of vector bundles
over a variety Z modulo the relation [E ⊕ F ] = [E] + [F ]. Surprisingly, and for no
apparent reason, both sides coincide.

2. THE AFFINE HECKE ALGEBRA OF (R,P )

2.1. Let us fix an abstract torus T . Let P := Homalg(T,C∗) be the weight lattice
and let P∨ := Homalg(C∗, T ) be the coweight lattice. Let a ∈ P∨ and α ∈ P .
The composition α ◦ a is an algebraic map from C∗ to itselt, hence of the form
z 7→ zn(α,a) for some n(α, a) ∈ Z. This gives us a perfect pairing

〈 , 〉 : P × P∨ → Z
(α, a) 7→ n(α, a).

Definition 2.1. R ⊂ P is a reduced root system if there is a finite set R∨ ⊂ P∨ and a
bijection R↔ R∨, α↔ α∨, such that:

• 〈α, α∨〉 = 2 for any α ∈ R.
• For any α ∈ R, the map sα : P → P (resp. sα∨ : P∨ → P∨) given by
sα(x) = x− 〈x, α∨〉α (resp. sα∨(y) = y− 〈α, y〉α∨) preserves R ⊂ P (resp.
R∨ ⊂ P∨).

• If α ∈ R then cα ∈ R if and only if c = ±1.

1This construction first appeared in [Lus83] and with greater amount of detail in [Lus89].
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We call (R,P ) a simply-connected root system if R∨ generates P∨.

Remark 2.2. If G is a semi-simple simply-connected (in the topological sense) alge-
braic group over C then ZR∨ = P∨.

2.2. Let W be the Weyl group of (R,P ), i.e., the group generated by all sα. We
can fix a set S of elements of W called simple reflections such that (W,S) is a
Coxeter system. This choice also fixes a set ∆ ⊂ R of simple roots. Let q be an
indeterminate. Let L := Z[q±] be the ring of Laurent polynomials with integer
coefficients over Z. The Hecke algebra of W is the L-module spanned by {Tw | w ∈
W} such that

T 2
s = (q − 1)Ts + q for all s ∈ S,

TyTw = Tyw for all `(yw) = `(y) + `(w).

The Weyl group W naturally acts on P . The weight lattice acts on itself via trans-
lations. Let Q = ZR ⊂ P . Then we can define W̃ := W n Q and the affine Weyl
group Waff := W n P , the group operation is given by

(w, λ) · (v, µ) = (wv, v−1(λ) + µ).

One can prove there is a set S̃ such that (W̃ , S̃) is a Coxeter system. It has a length
function ` : W̃ → Z≥0. However, Waff is not in general a Coxeter group.

Let R+ be the set of positive roots as in the first section. We define the real
vector spaces PR := P ⊗Z R and P∨R := P∨ ⊗Z R with pairing 〈 , 〉R induced by
the perfect pairing 〈 , 〉 from before. Note that Waff acts via isometries on PR.
For each α ∈ R+ and m ∈ Z, we can define the hyperplane

Hα,m := {λ ∈ PR | 〈α∨, λ〉R = m}.

The fundamental alcove A+ of PR is the set

{λ ∈ PR | 0 ≤ 〈α∨, λ〉R ≤ 1}.

We can extend the definition of ` to Waff by:

` : Waff → Z≥0,

x 7→ ]

{
Hα,m separating the interior
of x(A+) from the one of A+

}
.

Let Ω := `−1(0) be the set of length zero elements of Waff . It follows immediately
from the definition that any element of Ω preservesA+, and hence acts on its walls.
This action induces an action of Ω into S̃ and hence on W̃ , see [IM65]. We have
that Waff = Ω n W̃ .

2.3. Iwahori-Matsumoto’s world. The affine Hecke algebra Haff of (R,P ) is the
L-module with basis {Tw | w ∈Waff}with multiplication given by

T 2
s = (q − 1)Ts + q for all s ∈ S̃,(2.1)

Ty · Tw = Tyw for all `(yw) = `(y) + `(w).

Remark 2.3. Note the second relation implies

TσTρ = Tσρ for all σ, ρ ∈ Ω.
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In particular, we have L[Ω] ↪−→ Haff as a L-subalgebra. Let HW̃ be the subalgebra
of Haff generated by {Tw | w ∈ W̃}, we have Haff

∼= L[Ω]⊗LHW̃ as left L-modules
(Caution: this map is not an isomorphism of L-algebras.)

2.4. Bernstein’s idea. Let P+ ⊂ P be the set of dominant weights. Let R(T ) be
the representation ring of the torus. We know that R(T ) = Z[P ]. We want

(2.2) Z[P ] ↪−→ Haff .

Inside Waff we have translations tλ : P → P such that tλ(µ) = µ + λ. Hence, we
have the associated elements Ttλ in Haff . The thing to consider is that the equality

Ttλ · Ttµ 6= Ttλtµ

only holds when `(tλ) + `(tµ) = `(tµtλ). This happens for example if we consider
only translations associated to dominant weights. To solve this problem, for a
general weight λ ∈ P , we can write λ = µ − µ′ with µ, µ′ ∈ P+. We can send
λ to the element Ttµ · T−1

t′µ
. Note that this element is well defined no matter the

choice of µ and µ′. To see this, let λ = µ − µ′ = ρ − ρ′ with µ, µ′, ρ, ρ′ ∈ P+. Then
ρ′+µ = ρ+µ′ and Ttρ′+µ = Ttρ′ ·Ttµ = Ttρ ·Ttµ′ . This implies Ttµ = T−1

tρ′
·Ttρ ·Ttµ′

and hence

Ttµ · T−1
tµ′

= T−1
t′ρ
· Ttρ

= T−1
tρ′
· Ttρ · Ttρ′ · T

−1
tρ′

= T−1
tρ′
· Ttρ+ρ′ · T

−1
t′ρ

= T−1
tρ′
· Ttρ′ · Ttρ · T

−1
tρ′

= Ttρ · T−1
t′ρ
.

This new family of elements together with their relations with Ts with s ∈ S, gives
the ingredients for the Bernstein presentation.

2.5. Bernstein’s world. The affine Hecke algebra H of (R,P ) is the free L-module
with basis {eλ · Tw | w ∈W,λ ∈ P} and with multiplication given by

T 2
s = (q − 1)Ts + q for all s ∈ S,

eλ · eµ = eλ+µ for all λ, µ ∈ P,

Tsα · esα(λ) − eλTsα = (1− q)e
λ − esα(λ)

1− e−α
for all λ ∈ P, α ∈ ∆.

The following theorem states the isomorphism given in the top part of the diagram
(1.1).

Theorem 2.4 (Bernstein). We have the following isomorphism of Z[q±1]-algebras

H ∼= Haff .

Now we have the inclusion (2.2) as desired, just define it as λ 7→ eλ. We also
haveHW ↪−→ H, whereHW is the Hecke algebra associate to the (finite) Weyl group
W . Furthermore, we have the following proposition.

Proposition 2.5. We have the following isomorphism of Z[q±1]-modules

H ∼= R(T )⊗Z[q,q−1] HW .
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Remark 2.6. The above isomorphism is not an isomorphism of Z[q±1]-algebras.

This gives a construction of the algebra analogue to the construction as a semidi-
rect product of the affine Weyl group, i.e., Waff = W n P , where P represents the
“translation part" and W represents the “finite part".

Proposition 2.7. Consider R(T ) ⊂ Z[Waff ] via the natural inclusion. Let R(T )W be the
subset of R(T ) of W -invariant elements. Then R(T )W [q, q−1] is the center of H.

2.6. Example on SL(2,C). Let G = SL(2,C). Let us fix the following choice of
maximal torus

T =

{(
λ 0
0 λ−1

)}
.

The weight lattice is P = Homalg(T,C∗) ∼= Z via the map((
z 0
0 z−1

)
7→ zn

)
7→ n.

We can identify the set R = {±α}with the subset {±2} ⊂ Z. Let

P∨ = Homalg(C∗, T ) ∼= Z

be the coweight lattice. We can identify the set R∨ with the subset {±1} ⊂ Z. In
particular, (R,P ) is simply-connected. The finite Weyl group W is isomorphic to
Z/2Z and is generated by the reflection s such that s(λ) = −λ, for all λ ∈ P , i.e.,
the reflection around 0. Let u be the reflection around 1 and σ be the reflection
around 1/2—even though 1/2 is not part of P , σ is a well defined involution on
P—and W̃ is the Universal Coxeter group of rank 2 in generators s, u. The group
Ω ∼= Z/2Z is generated by σ, and Waff = W nP = Ωn W̃ is generated by {s, u, σ}.

The (Iwahori-Matsumoto) affine Hecke algebra Haff of (R,P ) is the L-algebra
with basis {Ts, Tu, Tσ} and with multiplication given by

T 2
s = (q − 1)Ts + q(2.3)

T 2
u = (q − 1)Tu + q(2.4)

T 2
σ = 1.(2.5)

The affine Hecke algebra H of (R,P ) is the freeL-algebra with basis {Ts, eα/2, e−α/2}
and multiplication given by

T 2
s = (q − 1)Ts + q,

eα/2 · e−α/2 = 1,

Ts · e−α/2 − e−α/2Ts = (1− q)e−α/2.

We can deduce from this the very useful formula

(2.6) Ts · e−λ − eλTs = (1− q)e
λ − e−λ

1− e−α
for all λ ∈ P.
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We can compute explicitly the isomorphism given in 2.4 after extending scalars
(we need the square root of q.) It is given by

φ : Haff ⊗ Z[q±1/2]→ H⊗ Z[q±1/2]

Ts 7→ Ts

Tu 7→ qeα · T−1
s

Tσ 7→ q1/2eα/2 · T−1
s .

We going to prove that this is in fact an algebra isomorphism. For this is enough
to prove the relations (2.3), (2.4) and (2.5) in the image. The first one is immediate.
For the second one, we use the fact that T−1

s = q−1(Ts − (q − 1)), then

φ(Tu)2 = eα(Ts − (q − 1))eα(Ts − (q − 1))

= eαTse
αTs − (q − 1)eαTse

α − (q − 1)e2αTs + (q − 1)2e2α.(2.7)

Now we use Equation (2.6) (with λ = −α) to compute eαTseα:

eαTse
α = eα

(
e−αTs + (1− q)e

−α − eα

1− e−α

)
= eα

(
e−αTs + (q − 1)(eα + 1)

)
= Ts + (q − 1)e2α + (q − 1)eα.(2.8)

Furthermore,

eαTse
αTs = T 2

s + (q − 1)e2αTs + (q − 1)eαTs

= q + (q − 1)Ts + (q − 1)e2αTs + (q − 1)eαTs.(2.9)

Replacing (2.8) and (2.9) in (2.7)—and after cancelations—we get

φ(Tu)2 = q + (q − 1)eαTs − (q − 1)2eα

= q + (q − 1)eα (Ts − (q − 1))

= q + (q − 1)qeαT−1
s

= q + (q − 1)φ(Tu).

For the third one,

φ(Tσ)2 = q−1eα/2(Ts − (q − 1))eα/2(Ts − (q − 1))

= q−1eα/2Tse
α/2Ts − q−1(q − 1)eα/2Tse

α/2 − q−1(q − 1)eαTs + q−1(q − 1)2eα.

(2.10)

Now we use Equation (2.6) (with λ = −α/2) to compute eα/2Tseα/2:

eα/2Tse
α/2 = eα/2

(
e−α/2Ts + (1− q)e

−α/2 − eα/2

1− e−α

)
= eα/2

(
e−α/2Ts + (q − 1)eα/2

)
= Ts + (q − 1)eα.(2.11)

Furthermore,

eα/2Tse
α/2Ts = T 2

s + (q − 1)eαTs

= q + (q − 1)Ts + (q − 1)eαTs.(2.12)
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Replacing (2.11) and (2.12) in (2.10)—and after cancelations—we get φ(Tσ)2 = 1.
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