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Summary

We consider the problem of approximating the
stationary distribution of a positive-recurrent Markov
chain with infinite transition matrix P, by stationary
distributions computed from {(n xn) stochastic matrices
formed by augmenting the entries of the (nxn) northwest
corner truncations of P, as n=» . A mmﬁm%wwwmmﬁwom to

quasi-stationary distributions is also considered.
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DISTRIBUTION.

26th May, 1986.



INTRODUCTION

We are concerned throughout with approximating the
stationary distribution 7 of an infinite positive-recurrent
Markov chain ob the positive integers N, with transition
matrix P, through the finite northwest corner truncations of 7.
Let ﬁwvm denote the truncation of size n. It is aesthetically
pleasing to try to approximate the stationary distribution
mo= ﬁﬁww by a sequence of stationary medﬁwwc&woummhwvmWswp.

~

We consider Abvﬁ owﬁmwmm&m%oamﬁ5“Admdooﬁmmﬁwoﬁmﬁﬂwx Aﬁvw

where Aﬂum 2 Aﬂvw elementwise, and ask for what kinds of F and

what sequences mhwvwwﬂwu is it true that (my™ T (By

convergence of probability vectors we mean CONvergence in mw

which is equivalent to elementwise (see Wolf (1975), Lemma 1)).

In this paper, we prove that for a Markov matrix P or an

~

upper-Hessenberg P any sequence ﬁﬁbvmwwww will dos; that certain

—~

methods of constructing Anvw work for all P; and that for

lower-Hessenberg P we must be somewhat careful in generalizing
these. The motivating papers in the investigation of this
problem are Seneta (1980) and Wolf (1980) Section 5, although

earlier papers by both authors play a role.

We also consider in Section § the problem of approximating
the guasi-stationary distribution (Seneta (1881), Ch. 7) of an
infinite non-negative irreducible R-positive matrix T whose
left R-invariant vector is summable, and the special case when

T is stochastic and positive-recurrent.

Returning to our basic context of positive-recurrent P,

with (n ¥ n) northwest corner Truncation vamv and (nxn)
(k) MAWV mﬁwu
i3 2 (n)7i3 2 (n)7Ti]

~

Aﬁvw where mwum > mmku let L

denote the last-exit probabilities from state i to state 3, and

stochastic



[

(2}, (z), Aﬂuw..nmv the corresponding generating

is (n)"i3 i
functions, lz] < 1. (See Seneta, 1981, Chapters 5 and 6 for

amplification on these and the following introductory remarks.)

Note that

{(1.1) m./w. = L..{1)

and similarly if Ow is any essential class of indices (states)

of mﬁvm

(1.2) (35 (75 F (mybig (D) i,iecC_

where (37T F ﬁnﬂvﬁww is the corresponding stationary distribution
of Amvm. Finally recall that as n =+ «

(1.3)

qunpu + hwumwu.

(n}
In consequence of these relations, last exit generating

functions will play a centrol role in our discussion.
N

GENERAL AUGMENTATION FOR SPECTAL MATRICES

Lemma 2.1. Let ﬁﬁvm be any (n xn) stochastic
matrix with mﬁvm Z ﬁﬁvmu and suppose for all sufficiently large n,

msz has a unique essential class oﬂu which contains, for all

such n, a fixed pair of indices i,3. Let ()7 then denote the
unique stationary distribution of Awuw. Then as n » «
™ @ T T3/
P £ i <
Proof: Since ﬁﬁvﬂ ﬁwvw
< L. . i P i,9).
ﬁmvwwwﬁwv Amuhpumpv if n max(i,3)



Now for n so large that i,3 ¢ C_» from (1.2)

~

(i = T " T Y by D
So
I < ] . ..
(2.1 nbvrwumwv mbvmu\nmvﬁw Q\Amvruwﬁwv
But WW% AbvaMAHV = hwuﬁmu = mw\jw = H\ruwﬁwv = www w\msuruwnwv
using (1.1) and (1.3)
S WW% nﬁvﬂu\ﬁmvﬂw exists and equals ﬁmxﬂw. =
This result leaves open the general question of convergence
of ()™ to 7 for a positive-recurrent P, which as we shall see

necessarily
from Section 3., does bow\wow& under the conditions of the lemma.

However, it does hold if the infinite matrix P has special

structure.

Definition 2.1 A stochastic matrix P = ﬁwwww is said to be a

~.
Markov matrix 1f the elements of at least one column are bounded
away from zero i.e. there exists a uo and an € > 0 such that

D.,: > £, all 1 . o
._.PHWO >
Such a matrix has single essential c¢lass, which is positive-

recurrent, aperiodic, and contains w@.

Theorem 2.1 Let P be a Markov matrix and for each n & N, let

3 : i i i P> .
(n) be an (n xn) stochastic matrix satisfying (n) nwvm

Then for all n sufficiently large mmuw has a unique stationary

distribution T and T =» T a8 n - ©
{n) (n)

—~ —~ ~

~

Proof: Advm is a Markov matrix for all n sufficiently large to
take in the column (say u@lﬂwv uniformly bounded from 0 in P.
The rest of the proof is precisely ag in Seneta (1980), 82 or

Seneta (1981), Theorem 7.3, where the unnecessary assumption is

vm to form P, o

made that the column uo is augmented in (n)?

{n



} is said to be

Definition 2.2 A stochastic matrix P = mwwm
upper-Hessenberg if p.. = 0 1f 1 > j + 1. o
13

Since any Markov chain governed by such a P in passing from

a state 1 to a state ], where 1 > j, must pass through every
intermediate state, it follows that

(k) (k3

mwu = Awumwu ,nz21>3, and k g IN.

Therefore for such 1.3

(2.2) L..(z) = (z), iz| <€ 1.
]

(n)"is
In the sequel the blanket assumption that P is positive-recurrent

is to be understood.

Theorem 2.2 Suppose P is upper-Hessenberg and for each n € IN

. 2 “ - _- J.V .
let um be an nxn stochastlc matrix satisfiying Amvm = nﬁum.

(n

~

Then Amvm has unique stationary distribution ()T and ()T T

as n o+ ®

Proof: Since P is irreducible, all entries on its subdiagonal

are positive, i.e. p >0, ¥V i ¢ IN. Hence j = 1 with respect

i+1,1
to mwum for all je{2,...,n}. So ﬁwvm.wmm just one essential class,
Owg say, and 1 € ob.
Note that wa os = N sgince any index j communicates with 1

for large encugh n.

Take 1 = 1 in (2.1) and sum over j to obtain

- . < L% . = &£ Lk . .
ite M3 sk T m™ T " T st Yty
ot m . - m o -
But mmuhpumpu ﬁwuﬁpu any } n, so by dominated convergence
and (1.3}
lim I L,.(1) = ¥ L,.(1
=/ 1/7 by (1.1).



Also, from (2.2),

T =
umn M\Aﬁutupnpu M\nﬁurwmﬁpu + wmo p\ruumpv
n .oon
F#1
- umm H\WMHAHV by (1.3)
= H\ﬁw by (1.1) again.
Thus
(2.3) M\hmvﬂp - H\ﬁp as n = o«

Since wmﬂb for large enough n, we can use (2.3) together with

Lemma 2.1 to show

b @™ MM
()™ 7y Ty 7, <"
as n -+ o« ]

—

A version of this theorem (where Vm is formed from Aﬁvm

{n

by augmenting only the last column of Aduw but leading to a

stronger conclusion) was proved by Golub and Seneta (1874)(see

. ~(k) _ (k)_ ,(k)
Seneta (1981), Lemma 7.3). Indeed, then nbumﬁu = Asumﬁu = mbu“
< 7 . S £ 3 € n. imi i
1 j < n, so nﬁvﬂu\mwvﬂs ﬁu\ﬁﬁu 1 3 n (Similar notions

appiy to the generalized renewal matrix treated in the same sources.)

3. LINEAR AUGMENTATION FOR GENERAL MATRICES

Consider the method, which we shall call linear augmentation,
of constructing a stochastic (nxn) matrix hwvw 2 mﬁvm suggested
in Seneta (1980):

P =

(3.1

(n) T S T ol !

where ()& is a probability n-vector, and nnuw is an n-vector of

i's.

Seneta (1980); (1981) Section 7.2, showed that mﬁvw thus
formed has unigue essential class, and correspondingly unique

stationary distribution given by

S py7t

v . - - \d .t
m Yt T ot ot




i3]

Let be the n-vector with unity in the i-th position,

nwvmw

zeros elsewhere, 1 € i € n.

Theorem 3.1 For fixed i 2 1, and n 2 i, let ﬁwum be formed from

(i.e. by increasing

mbum by linear augmentatlon using ()% Abvmw

the elements of its i-th column only), and let )T be the unique

-~

stationary distribution of ( P. Then as n + « (™ T T

n)

Proof: Tor n 2 i, let Dw denote the unique essential class of

indices corresponding to mnvw. Then M,modu otherwise Oﬁ would be
an essential class of the infinite matrix P, contradicting its

assumed irreducibility.

Let e W (3 # 1i). For sufficiently large n, again by

irreducibility of P, 3 mod. Then by (1.2)

~

iy

(3.3) ﬁbuﬁu\mwudH (13.

But, since Aﬁvw differs from ﬁﬁvﬁ only in the i-th column

k) (k) .
Abumwu ES ﬁﬁvmwu whence:
ASVWMQAHV = ﬁﬁVWHumMu.

By (12.3) and (3.3), as n > =

(3.4 ™ ™t T

(c.f. Lemma 2.1). TFor j mnﬁu mmvﬁun 0. Hence

u.oMo . .}.Wo..
321 vaju\nmvﬁw _ uuwﬁu\ﬁw

\Amuﬁw 3

e 33

(3.8%) 1 = 1/%.
1

1 ™ "

by dominated convergence. Hence for fixed 3N, by (3.4) and (3.5)

™ 7 ST Ty Ty

ag n - «®



Equation (3.4%) was proved by Seneta (1967)(1968) in a
different guise; see Seneta (19880). Theorem 3.1 was proved by
Wolf (1975), Satz 3, essentially by the above augment; see also
Wolf (1980), Section 5, and Allen, Anderssen and Seneta (1977).
.%wm theorem is included here for completeness, central importance,
and focus on the role of last-exit probabilities. The result can

be extended as follows: we omit the proof for brevity.

§ o. = 1

oo
Theorem 3.2 Let o = ﬁawww be aprobability vector with uww 5

for some fixed finite N, and let () consist of the first n entries

of a, n » N. Let hwum be formed by linear augmentation of nbvw

- ~
using (ny%> D > N. Then (3T T a8 n = = , where (r)" is the
unique stationary distribution of P. o

(n>
That arbitrary linear augmentation is not always successful,
and the need to restrict the manner of growth of the probability

vector (ny® @8 n =~ ®,is demonstrated by the following example,

~

where ()% 7 ASUMﬁ (so augmentation of Aduﬁ to form ¢ P occurs

n)
only in the last column).

EXAMPLE: Consider a stochastic renewal matrix

9, Py L
Qs ] Py g . ..
(3.6) p = |9 0 0 pg

where 0 < p, < 1 v ielN. P is clearly irreducible. Define

ma = 1 and mu = 3

It's easy to see that P positive-recurrent is equivalent

o -
to sig a@a: < = (e.g. Seneta (1981), Section 5.6).



In this case, the stationary equations yield m,oF p\uwm muu
ﬁu = muim ™ j & W.
Fix N 2 3 and define
Dy = (35/3+1)° if 3 =1o0r 3 = 2,3,...,N-1 (mod N)
1 - (1739 if 3 = 0 (mod N)
) m
(-1 3 if § =1 (mod N) but j # 1.
((3-1)7 - 1) (3+1)
Then for j 2 1
ay = (1/5+1)2 if 3 20 (mod N)
(32-1y /5" if 3 = 0 (mod M)

so P is positive recurrent.

Notice that

(nJ

P is irrveducible for all

conditions of Lemma 2.1 are satisfied.

n £IN, and that the

. o LI t o .
The stationary M@cmrpeﬁm ()T muvm ﬁwum give
B ng? n-1 .
(myT1 = m\ﬁumo mu + iMMIQu since
(n)"1 mulm J = 1,...,n-1
ms = a.
(n) 13 - 3-1 5=
(n)"1 4.
]
%n-1
But for n = 0 (mod N), ——= = 1
%n
Hence (™ # m, as n > a
LOWER-HESSENBERG P,
Definition 4.1 A steochastic matrix P = W@HWW is said to be
lower-Hessenberg if wwu =0, 3 i+ 1. =
Such matrices satisfy a property dual to (2.2). Specially,

(k)

£

i3 0 Tig

tTo state

denote the first-passage probabilities from

Js

then

£ 40
i3

- ()

(n) i3

, 1 <« j € n, whence



n < . . <
(4.1 wwwANu Abumwuﬁmuu |z | 1, i < 3 < n.

We should also note the properties dual to (1.1) and (1.3)

for positive-recurrent P (Seneta (1981), Chapter §): as n - «

(4.2) F..(1) 4 F_.(1) = 1.
1] 13

(n)

Although there is an obvious duality betwsen upper - and
lower - Hessenberg P, property (2.2} of the former is far more
pertinent to our problem than property (4.1) of the latter,
because it links the left Perron-Frobenius structure of the
truncations with that of the infinite matrix. The Example of
Section 3 shows how difficulties may arise with positive-recurrent
lower-Hesgsenberg P, in contrast to Theorem 2.2 for such upper-

Hessenberg P,

If, however,as suggested by the Example and Theorem 3.1

Em%m@cwdmﬁwmﬁ¢Wmmm@mmmom mnﬁuwwst Um mowmﬁ%codmawwwwﬁmmﬁ

o0

augmentation (3.1) using a sequence %ASVQWSup which is more "stable"
than the sequence Aﬁwvw3wU then the desired convergence of the

corresponding stationary distributions obtains for lower-Hessenberg P.
We need additicnal notaticon. Define mbvw = AAUVGWMVHUQ eN by

-1 .
TAQVH - P Y55 i3 e{l,,n)

13
b.. =
(n)71] yo , otherwise.

i < ‘s o},
(According to Seneta (1980), O szvyu < o)

of £ define

for any element 4

[
3
~~
w
—

B(B)

1
LT
~~
o]
p—g

(n)

Then B e hﬁmmu and

(n?

byl = sup 5 by ()P



Theorem 4.1 Suppose that P is lower-Hessenberg and let
ﬁnﬁ w be a tight seguence of probability vectors with

Hd. —
umw mbvgm =1 Vneg N, If ()" is defined by (3.1) for each

n € N, then T+ 7 as n = « ,
(n)~

~

B( o)
In other words (n) mwuguz > T as n + «©

VBl @ -

We first prove an auxiliary lemma.
lemma .1 Assume P is lower-Hessenberg. Let i, elN and 6 > .
Then there exists a constant C = omwmvmu 2 1 such that for any

probabiliity vector 8 with mw > §
- J

Aefce vass,

Proof: TFor m > ig, | (yBl = (B33, ﬁuw» (P13
n n
and | (yBOBL =4I 1L By (n)Pig
i
> 98 mm ﬂmu Hm ?

so it is sufficient to find C 2 1 such that

381 (m)Pi3
= £ C v n & 1 1 €1 <€n .

Ou

o}
}..J
uM:j 143

1 hmv w

We use the notation of Seneta (1968); (1981), Chapter &

in defining

mbvowwﬁmu = cofactor of (1,7)th element of ﬁﬁmvw - Abvmu
and
(A1) = Aol = oy P)
Seneta (1981), Chapter 6 showed
(1)
e .M e » .
ﬁﬁ.wu ﬁ.J.u Puﬁu.v mm_.v 1f u u_.m i

mwv ii



foud
[

A dual argument gives

: van.wmpv
b4 F.o.(1) = 220+ s 3 # 1,
(n)" 13 Asuouuhmu
Hence
(mPig ® () Cy1 LY (D)
Awurwumwv Abvowwmmv\ﬁmubﬁpu i # 3
nmuowyﬁpv\ﬁwvbﬁwu i=1
11 ~
1 + .% L..(1»
J21 (n)7ig C.. (1)
R - £1 { Abm ii
n,i n ()i i (1)]
umwo \
» A HJ.
The first factor S 1 + umm Amuhwumwv
J#L
< .2 .
1+ L L) by (1.3)
J£1
= p\ﬁw by (1.1} .
(n)%1 1) (G (1)
The second factor = .
%1 P (Cii
070 4]
ﬁwvwwawmpu
= PGS by (4.3) and (4.4)
(n) wow
- nwxﬂwo by (1.3) and (4.2)
as n - «©
It follows that for i < H@ (i.e. finitely many i) there
exists a constant C' 2 1 such that
(n)C11 Y T
— < ¢! P— Y n 2 Ho.
(n) Powohmu iy



For i » i, and n 2 i,

0
ﬁwvowwhpv = L. L (1)/F, (1) by (4.1)
i M it Tt
= (b 1 (D) by (4.2)
<
<Ly () by (1.3)
0
i
= = by (1.1)
0
C..(1) T,
So (n) i3 < Cr = Y n2 i, and 1 € 41
mCi i (1) 5 0
070 0
o .
Take C = 5 and the lemma is proved.
i
¢}
Proof of Theorem 4.1
Step 1
Consider a subsequence ﬁ ww H.om ﬁﬁsv w such that

mz yO converges to a ﬁ%owwuwwpﬁ% vector, o say, as k + «.

We will prove
Amwumﬁﬁs )%

(3.5) + ¥ as 1n + «©.

| () ® | -

Let € > 0 be arbitrary. Since a is a probability vector

for some i, & N, w. > 0.
0 1
0
Let & = a. /2.
i
-0
Then because o + o we can find X, so large that
mdwve < 1
0. » & ¥V k2K, .
ﬁbwv i, 1
Now use Lemma 4.1 to find C 2 1 such that
}(n )"
£ C v k2 K such that n, 2 i

=mdwumﬁ u: 1 k ¢



The sequence ﬁh ol w ig tight, being convergent to a
probability vector, so there exists N so large that N 2 Mc and
(4.6) T a. < v ke N.

FEN+1 nﬁwv ] 602
Qu j SN
Define: & by o, =
(02 (0)73 0 505N
Next, since (n o -+ o, there exists %N so large that
K~ by
(4.7) ¥ | o - ool | € == vV k > K
124 Aﬁwu 3 3 mOm 2
s¢ when k 2 xm
! | = .3, R
o - af = LI M. = Qi +* L o
mwwve (0>~ 1=1 Amwu 3 3 FEN+1 ﬂwwv 3
< lmw + :mw by (4.6) and (4.7)
5C 6C
i.e.
) _
- : > .
(4.8) mﬁnwum oyl € €/3C7 for k > K,

Now consider

Aawvmnﬁnxumu

- T =
n| for k max (K ,K, ,K5)

B( o) ~
=ﬁ5wv (my )~ |
where xw is so large that :ww 2 w@.
By the A- inegquality, this is < T, ottty ot
(n )% ¥ B @)
where t, = I 57 - TGS I
HCSPRANCHPEAN EE RS NN D hag
= (2, )% (0 )%’ (n B ()Y =
t, = -
2 h o Blo® ) 1 mPloy
(n, 2Bl (0r%
and &w = | - ol

| (n B ®) -



2

o)
. ”_;__ (0 BCOE | 7 | n 2B ()" N s ol
1 | <n, wﬁﬁm %) | (n, )" Ceoy®d / (my )™ (=
B - B B
P2 | = 1 a P a2 | Lt ¥
| () (n )% | =ﬁmxvm (P (-
| (a0 Blipy® - (n, )8 ) | (055
m . A u m«
=mswvwhhnwvmu= | ()% |
| (n,)B] | (P _ __
- - ~ - Q
=Aw ) Aﬁnwv@u= RESENTIEN 0~ (o -
<c.c.—5=e/3 for k> max (K, ,K,,Kg) by (4.8)
3¢

and construction of C.

Similarly
| (n®]
£, S s Lo - ool
| (o> (0% ) k"
£ C - MWM for k = meﬁWH %mquv
£ /3.

Finally by Theorem 3.2, since (oy® has only finitely many

there exists xx so large that Cq

compenents,

Nnon-zero
P
k %x.
. If kx 2 wam%wu%muxmuxrv
Qv
Aww ASW B
x wn a2y mx = £
=mmw (n, A
(4.5) is established.

Since £ > 0 was arbitrary,



Step 2

It remains toc prove tThat

B(
B(

(% |

= 0.
NI

a := lim sup | (n)
110 = (n)

Let ﬁwwwwww be a subsequence of N such that

(n umﬁhuwvmv

. X
a = lim | -] .
- 8( o) ~
k+ =mbxv nuwvz |
. © . . o .roo
Since ﬁnﬁumwsup is tight, we can find a subsequence ﬂswmumuw
of {n_}, =, such that o converges to a probability vector
k k=1 mﬁW =
£
as £ » = .
By (&.5)
(n, 1B(n, ¥
g e
a = lim | BT ri l= o. =
Lo =A5W ) nww = v
L )

5. APPROXIMATING THE QUASI-STATIORARY DISTRIBUTION

We censider only those infinite non-negative R-recurrent T
each of whose truncations are irreducible, and denote the
Perron-Frobenius eigenvalue of Asvﬂ by H\ﬁmvm and corresponding
left probability eigenvector by (n) - We denote by T oa left

R-invariant vector (unique to consitant multiples).

In this section the notation L will be

350 (ylise Fig Fis

used with reference to the matrix T and its truncations.

Note the following generalizations of (1.1) to (1.3)

(5.4) L..(R) = 1./71.

ii 3704
(5.2) P B T T s
{5.33 LRy 4+ LLL(RY as n t o= .

ﬁmvhwu i3



Also

R+ R as n 4+ = ., (Sge Seneta (1881) Ch.6.)

(5.4 (n)

Using (5.2) and {(5.4), we obtain

{(5.5) Aﬁvb%uﬁwu < ﬁwuau\AnvaH m H\mbkuwﬁwv.

Applying (5.1) and (5.3) we deduce in analogy *to Lemma 2.1

(5.8) msvau\ﬁwvaw - AM\MH as n =+ =

Suppose now that T is irreducible R-positive and its left

R~-invariant vector T can be, and is, probability-normed, so that

[ !

'1 = 1. It is then called the quasi~stationary distribution of

T (Seneta and Vere-Jones (1966)). Suppose T = ﬁﬁHuw is also

C@@m6|mmmmmsvmﬁmw.m. ﬁwu noquu+p.ﬁﬁmmwnﬁwmomOMmm.Mv
= .. < 2 1 ' j
we have hwuﬁmv mmuﬁpwmmvu lz] <R, n=>1i >3, and we may argue

from (5.5) as in the proof of Theorem 2.2 to deduce that ()t > T

as n +» =

Results on convergence of finite gquasi-stationary distributions
(n) = to 1T are also of interest when T = P is stochastic and positive
recurrent, thereby providing another means of approximating its
unique staticnary distribution vector T (Seneta, 1981, Section 7.3).
Notice that, at least formally, this method is a particular instance
of linear augmentation (3.1) of ﬁwumu for if we take m% T I
it is readily seen from (3.2) that T T oyt This has been
noted by Seneta (1984); and Keilson and Ramaswamy (1984) who
consider a continuous-time context. The random walk analogue of

their birth-death process results is covered by the above extension

of Thecorem 2.2.
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We are able to establish the following new result, whose

somewhat lengthy proof we omit.

Theorem 5.1 Let T be a stochastic positive-recurrent renewal

matrix of form (3.6). Then (n)I 7 © where 7 is its stationary

~

distribution. o
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