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A SEQUENTIALLY REJECTIVE TEST PROCEDURE

‘We present a refinement of Holm’s (1979) simple multiple test procedure of
the sequentially rejective type. This paper is centred on the use of degree
two upper bounds for unions of events, while retaining the key property (1)
below. In particular, an adaptive procedure is proposed.

1. THE SETTING

Consider the simple hypotheses Hy, Ha,...,H, in a multiple test problem,
where the respective test statistics X1,...,X, are univariate, with X; having
continuous distribution function F; when its hypothesis H; is true. Suppose also
that each test is upper tail. The sequel is concerned with a simple sequentially
rejective multiple test procedure following ideas in Holm (1979). In particular we
require that the following property hold: If the set {H;,i € I} is the set of true
hypotheses (where I may be any non-null proper subset of {1,... ,n}), then

(1) P(H;,i € I, are accepted) > 1 -«

for pre-specifed size of test .

We focus on the random variable R; = 1 — F;(X;), i« = 1,...,n, and the
corresponding ordered sequence R:, < Rg, < ... < Ry,. Denote the hypotheses
corresponding to the ordered values by Hy,, i = 1,--- ,n. If H; is true, R; =
11— Fy(X;) is the p-value of the test for H;, and is well-known to have uniform

distribution on [0, 1].

2. THE “BONFERRONI” ADJUSTMENT

When I = {1,... ,n}, that is when all H;,i=1,... ,n are assumed true, then
for given «,
n n ‘
P(R:, < a/n) = P( U{Ri < a/n}) < Z P(R; < a/n) =nao/n=a.
i=1 i=1
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We have used Boole’s (first Bonferroni) inequality, and then the uniformity
of distribution of R; under H;. Thus the compound hypothesis that all H;,
i=1,...,n, are true may be accepted at o level of testing if R,, > a/n, and
rejected if Ry, < a/n. This is a well-known procedure, though often formulated
in terms of X,;’s rather than R;’s.

3. THE SIMPLE SEQUENTIALLY REJECTIVE PROCEDURE

The preceding approach has been refined by Holm (1979) to produce a sub-
set, possibly null, of the hypotheses {H;,%? = 1,... ,n} to be rejected (with the
complement, possibly null, to be accepted), the procedure satisfying requirement
(1) for arbitrary fixed I. This procedure consists in examining if R;, < a/n;
if this inequality is not satisfied, H;, ¢ = 1,... ,n, are all accepted (as above).
Otherwise the corresponding hypothesis Hy, is rejected and discarded along with
its test statistic X;,, and the process is restarted with the remaining (n — 1) test
statistics and hypotheses. Thus one now examines whether R;, < a/(n — 1);
if the inequality is not satisfied accept Hy,,...,H;,. Otherwise further dis-
card H;, and its test statistic X;,. Continue in this way. To summarize, if
Ry < a/n,Ry, < af(n—1),... ,R,_, < a/(n—p+2), then at step p the
remaining hypotheses are Hy,,... , H;, and the inequality next to be checked is
Ry, < a/(n —p+1). The process may at most run until a decision is made on
the basis of whether R; < « or not.

The argument for justifying (1), given by Holm (1979) is as follows, (where m
is the number of elements in I, and H;, ¢ € I, recall, are the hypotheses being
assumed true): firstly, ’

@) ﬂ {Ri > %} = {Every vhypothesis H; with R; > % is accepted’}
2 i€l

= {H;,i € I, are accepted}.

Next, since H;,i € I, are assumed true

(3) P(Q{Ri>—;—})=l—P(g{Ri§%}>Zl—a

by Boole’s inequality as before. Thus (1) holds.

4. AN EXTENDED SEQUENTIALLY REJECTIVE PROCEDURE

The essence of our extension is to use degree two inequalities; these are sharper
than Boole’s, in that probabilities of joint events are utilized. The use of such
inequalities in such settings is not new (see the survey: Seneta, 1993) although
the application has not been widespread, because one needs to be able to calculate
the probabilities of joint events.

The theme of this paper is to replace o/ (n—p+1) by A(p) = a/(n—p+1)+8(p),
p=1,... ,n—1 in the procedure of §3 above where 3(p) > 0, while retaining the
property (1).
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With o, R1, R, -+ , Rn asin §1,0 < a < 1, V(p) any fixed subset {vi, -+ ,vp}
of p elements of {1,2,--- ,n}, and II(V (p)) the set of all permutations of the set
Vip), forp=1,2,--- ,n

1 : n—p+1
@ )= (n—p+1) V(nmp1) {H(V&lgﬂ)) { z; 151??—1})(%”5)} }

with
T ]

n—p+1’ n—p+1
where the probabilities are calculated under the assumption that all H;, 1 =
1,--- ,n, are true. We shall always interpret Z%:z as zero, so here B(n) = 0.

Forp=1,2,--- ,n let
o
( Alp) = ——— .
(5) () —— + B(p)

The test procedure is now analogous to that described in 83 with A(p) defined
by (5), beginning with a check of whether R < A(1). The general step p: if
hypotheses Hy,, -+ ,H;,_, have all been discarded, the inequality next to check
is

R:, < A(p).

Note that A(p) > a/(n —p+1). Thus the test procedure is more powerful
than Holm’s, at the cost of obtaining the B(p)’s, providing A(p), p=1,2,---,m,
is strictly increasing.

This last requirement is automatically satisfied if one uses a generally smaller
but simpler value of 3(p) viz.

n—p a a
_n=P wplrR<—% R <—m].
77,—;:)-i-11in<1§l (2’n—p+1’ J—n—p+1>

To see this note that then, for p=1,2,---,n,

o 1 o o'
Ay — 2 (i1 VYmwP({Ri<—— Ri<—
(®) n—p+1+< n—p—{-l)lzné? (z“n——p%—l’ ”—n—p+1)

soforp=1,2,--- ,n—1

o 1 o Q
Ap+1)> = 41— wP(Ri<—2 Ri<——
b+ )_n—p+<1 n——p)rin<l§1 ( “n-p+1 J_71—104—1)

and

A(p+1) - Alp)
> -1 - 1 a—minP (Ri ———a-———, R; < —L>]
n—-p n—p+1 i<J n—p+1 n—p+1

1 1 o
= [n—p_n—pﬂ] [OL“P(RiSn—pH)}

>0,

IA
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since

a (6} o
PR < = <2 =12 ,n—1.
( —n—p+1> nepri-z2 T

Several more powerful variants of Holm’s procedure (e.g. Simes’, Hochberg’s,
Hommel’s) are referenced in a paper of Wright (1992); for an earlier monographic
discussion, especially of Holm’s procedure, see Hochberg and Tamhane (1987).
These variants, like Holm’s procedure, have the positive feature of being based
on probabilities of single events (degree 1; ours involves probabilities of intersec-
tions and so is of degree 2); but also the feature that property (1) has not been
theoretically verified. We now show that our modification satisfies (1).

We first note Hunter’s (1976) inequality, in the non-graph-theoretic form ob-
tained by Margaritescu (1986; for a simple iterative proof see Seneta, 1988), for
any set of events Ay, Ag,- -+, Ak

k k
(6) P (U A,-) < ‘Z P(A;) — mlz%xz 15?2351P (Ai N As>

where I is the set of all permutations of the subscript set {1,2,--- ,k}.

Theorem. If the set {H;,i € I} is the set of true hypotheses (where I may be
any non-null subset of {1,--- ,n}) then P(H;,i € I are accepted) > 1— o for any
prespecified size of test a, providing Alp), p=1,2,--- ,n is strictly increasing,

where B(p) is defined by (4).

Proof. Let n be the cardinality of the set of hypotheses I being assumed true,
and put a(m) = mA(n—m+1) =a+mfn-m+ 1). Then

ﬂ {Ri > 9(7;21} = {Every hypothesis H; with R; > as:)

iel

is accepted}

= {H;,i € I, are accepted }

since A(p) is non-decreasing with p (by Lemma 1).

Now
P (ﬂ{R,- > 9%@}> =1-P (U {Ri < 2%?})

i€l

o1 e (e < 2)
3=l

m
, .
+max {;  Joax p (wz,ws)}

with ) a(m)>

y Al
m

pl(wiaws) =P <Rwi S
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by (6), writing I = {w1, w2, - , Wy }. Since B(n —m + 1) > 0 and since A(n —
m+1)=alm)/m<1

P<H{Rz’>%@}> Zl—iP(RwiS%m—)>

iel

Since I is a possible V(m) and since the hypotheses in I are being assumed true,

P (ﬂ{.& > 9‘%}) > 1 —ma(m)/m+mB(n—m+1)

i€l
=1—a-mpBn—m+1)+mpn-—m+1)
=1-a.

O
A parallel argument goes through with the modified value of 3. This is needed
in §5.

A simple algorithm for determining a permutation of indices {1,2,--- ,k} of
events Ai,- -+ , Ay which maximizes
k
—~ 15?2?-1‘3 (Ai ﬂA’)
=

is that of Jarnik (1930; see Seneta, 1993, for connection to work of Hunter, and
of Stoline, 1983). Put r;; = P(AiN4;) #i=1-" k. Initially let C = ¢ (the
empty set), U = {1,--- ,k}. Take any subscript 4o from U and place it in C, so
now C = {io},U = {1,2,-+- ,k} — {i0}. Then
1. Find the largest r;; fori € C, j € U, and denote a corresponding pair of
(3,5) by (",57) |
9. Redefine U and C by setting U =U — {j*},C =C+ {7*}. U # ¢ go
to 1; otherwise stop.

The final C, taking the initial ¢ and j*’s added in sequence, is an optimizing
permutation.

To implement the algorithm in our setting, that is, to calculate B(p), p =
1,2,--+ ,n—1, we need to have available the values, when Hy, Ha,- -+ , Hp are all
assumed true

P(R‘isa/(n_p+1)7 sta/(n_p-*_l))’ 7:<j7

that is: n(n — 1)2/2 in all, generally speaking.
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5. ERROR RATE AND POWER

We have constructed S(p) in (4) in accordance with Hunter’s inequality (6),
and this has been used in the proof above, since it is at least as sharp as the degree
2 inequalities of Sobel-Uppuluri-Galambos, and of Kounias (see Seneta, 1988).

In the case of exchangeable events A, Ag,--- , A, all 3 inequalities degenerate
to
(UA)<kP Ap) - —1)P(A1ﬂA2>.
To fix ideas in this Section assume, when all of Hy, Hs,--- , H, are true, that
X1,X2,...,X, are exchangeable. Then from (4) forp=1,2,--- ,n
n—p a o
= —P B {— Ry { —
he) n—p+1 ( 1S n—p+1 2“n—j@—i—l)
n—p o (n—pla
< PlR = .
“n—-p+1 ( 1S —p+1> (n—p+1)2

The quantity

(n—p) 1 ( 1 )
= 1-—
(n—p+1)2 n-p+1 n—p+1
increases withp = 1,2, ..+ ,n—1 obtaining its maximum valueof 1/4 at p = n—1.
Thus forp=1,2,--- ,n—1

(n—pla _«
e < —,
Alp) < (n—p+1)2 ~ 4
In the extreme case that the exchangeable test statistics (given Hy,--- , H,)
are in fact independent (or nearly), the increase in power due to our modified
procedure will be minute, since

2 2 2
n—p a (n-pa o
=—"P lp(pc—2 || = 22PY &
Ale) n—p+1[ ( l_n—p—!—l)] (n—p+1)3 ~ 8
which is 0.0003125 at a = 0.05.
As in the parallel confidence interval setting (Stoline, 1983), the degree 2

correction will be of most use in the case of tight correlation. A significant
improvement over Holm’s procedure may thus be expected only when the pairwise

correlation of the X;’s is close to unity (assuming Hi, H,,- -, H, are true) in
which case ( )
_ (n—pl
ﬁ(p) - (n—p+ 1)2
for each p = 1,2,--- ,n approximately, and we explore this (other extreme) case

further in a simple example with n = 3.
Suppose Z ~ N(0,1), and X3 = py + Z, Xo = pup + Z, X3 = p3 + Z, where
M1 2 p2 2 p3>0,and p;, =EX;, i=1,2,3, with H; : p; = 0,1 =1,2,3. Here -
a 2a ba 3a

AN =T+T = A=,

A(3) =
= ()=,
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and R1 S Rz S R3.

P{H;,i=1,2,3 accepted |H;,i =1,2;3 true} = P (Rl > _55‘_3‘_) =1~ %2

under our modified procedure, and 1 — «/3 under Holm’s original procedure,
with error rate of 5a/9 being substantially closer to the nominal rate o than
‘@/3. Hence the modified test is less conservative. Clearly the same argument
holds if we take I = {1} or {1,2} or {1 3} since Hy = Hz,H3

Let us now suppose H; s = pdi = 1,2,3 where p? > pd > pd > 0, and
consider

P {Hi,’i = 1,2, rejected |H;,i = 1,2, true}

=P {Rl < 50/9, Ry < 3a/4|H;,i=1,2, true}

=PJX; >3 1_?3 , Xy > @7t 1—§§

9 4
P{Zz@ (1—5—;"-)—p2,22@—1<1—?’4ﬁ>—ug}
=P{Z_>_max(<I) (1—%)-,;2, <I>“1<1—%°‘)—yg)}

and taking o = 0.05

) P{Z > max(1.915 — 2, 1.780 — ug)}.
With Holm’s procedure we get

P(Z > max(®7 (1 - —) pl, @ (1~ g-) —113))

8
© = P(Z > max(2.128 — u?,1.960 — pu3)).

Let us now take in (7) and (8), for simplicity p9 = 1.915 and p3 = 1.780. Then
(7) evaluates to 0.5 while (8) evaluates to P(Z > max(0.213,0.180)) = 0.416. The
improvement in power is then (0.5 — 0.416)/0.416~ 20%.

Of course the values u{ = 1.915 and pJ = 1.780 are quite far from the 0 value
specified by H; and Hs. For p? close to 0 (and hence ug and pd close to 0 ), the
evaluations of (7) and (8) will approach the above error rates 5a:/9 and a/3.

The above example is simplistic for easy illustration; a “natural” area of ap-
plication of the exchangeable case is that where X; =T;,1 =1,--- ,n, and under
the null hypotheses H;, i = 1,--- ,n, {T1,T2, -+ ,Tp} have a multivariate ¢ dis-
tribution with v degrees of freedom and common pairwise correlation parameter
p, as in Dunnett’s tests (Hochberg and Tamhane, 1987; Seneta, 1993).

Below we display for n = 3, v = 16, p = 0.5, 0.7, 0.9, 1 and a = 0.05, the
values of A(p), p=1,2, when X; =T;,4=1,2,3. .
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al/(n—p+1) o 0.5 0.7 0.9 1
0.017 A1) 0.019 0.020 0.023 0.028
0.025 A(2) 0.028 0.030 0.033 0.037

The values in the last column are 5a:/9 and 3a/4. Clearly, the power gain over
Holm’s procedure will not be great at the value p = 0.5, a standard value in Dun-
nett’s test, but with high values of p, there is confirmation that the adjustment
by B(p) is worth using.

6. AN ADAPTIVE VARIANT

As noted in §4, the modification of Holm’s procedure retains its essential struc-
ture and properties. The increase in power is (in general) at the cost of consid-
erable calculation of (4) for each p, and the checking of strict monotonicity of
A(p). Each B(p) is not random.

We now present an adaptive variant where calculation at each step is substan-
tially less, being determined by the joint outcome of all test statistics in the ex-
periment, until the procedure stops. Using the ordered p-values Ry, i=1,---,m,
observed, define the index sets K(-) by K@) = {tp,tps1, - s tafr,p =12, ;1
(random sets for p > 2), and write '

a
v(p) = max E P(Ri < —
: —p+1
IEK® e kp)— 1) noRT

8

R; < ;'L_-_—_pTi:IIHs’S € K(p), true)

for 1 <p <n-—1, withy(n) =0.

The procedure is as follows. At Step 1: If Ry, < a/n, reject H,, and go to
Step 2. If R;, > a/n, check whether Rs, > o/(n—1) or Ry, > (a+7(1))/n and
if so accept Hy,, Hy,,- -+, Hy, and stop; otherwise reject Hy, and Hy, and go t0
Step 3. At Stepp,p=1,2,---,n—1,if reached, check if Ry, < af(n—p+ 1),
and if so reject Hy, and go to Step p+ 1. IfR, >af(n—p+ 1), check whether
Ri,,, > a/(n—p) or Ry, > (a+7(p))/(n—p+1), and if so accept Hy,,--+,Hi,
and stop; otherwise reject Hy,, Hy,,, and go on to Step (p+2),ifp<n-—2,0r
stop if p=n—1. If Step n is reached, check if R, < o, and if so reject Hy,;
otherwise accept Hy,.

To show that (1) holds

Lemma. Define

T=REr Z P<R’igg—,R:j<ngj,7;EI, true)
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where I and m are as in Section 1. At m = 1,7 = 0. Notice that v < a. Then

m{Ri > a;fy} C {H;,i € I, are all accepted}.
i€l ‘

Proof. For any fixed realization (sample point) of the experiment within

ﬂ{Rz > s 7}7

m
i€l

if the R;,i € I, are in fact the largest m values R;;,, i =n—m+1,---,n, then
I=K(n—-m+1), and v = y(n —m+ 1), so H;, ¢ € I, will all be accepted
according to the procedure, by at most the (n — m <+ 1)th step. If the R;,i € I,
are not the largest m values, then they are among the m + k largest, for some
k,1<k<n-—m. Since for anyi €I

a+'y> a

i > m T~ m+k

then at worst at the (n — (m + k) + 1)th step, H;,i € I, will be accepted.
To prove that (1) holds, we follow the pattern of proof of the earlier theorem,
beginning with

P (H;,i € I,are accepted|H;,s € I, are true)

2P (ﬂ {Ri > a:zv}lﬂi,i eI, are true)

i€l

(by the Lemma)
=1 _P<URi < .O.[_-’__’Y,Z' c I,|Hi,i € 1, are true)
iel m ’

>1- ZP (Rz- < 9—:-77|H¢,i € I,are true)
i€l

o+ 7y a+'y|
m m

e
IA

H;,1 €1, are true>

(9)




402

EUGENE SENETA AND TUHAO CHEN

by the uniformity of distribution of each R;, 7 € I, since (¢ +v)/m < 1; so the
left hand side is equal to :

O

l-(a+y)+v=1—a

Needless to say, y(p) and v could have been defined in terms of Hunter’s
Tnequality (6) to give a sharper result with a little more calculation at each step
in general, with coincidence for exchangeable events.

10.
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