University of Sydney, School of Mathematics and Statistics,
Research Report 99-9, March,1999.
A STEPWISE REJECTIVE TEST PROCEDURE WITH
STRONG CONTROL OF FAMILYWISE ERROR RATE
By T. CHEN' and E.SENETA

Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. and
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

SUMMARY
In Holm’s stepwise rejective procedure the critical values are replaced adaptively
by larger ones using a degree 2 inequality in place of Boole’s. The refinement retains
strong control of familywise error rate. There is a cost in calculational simplicity; but
a substantial improvement in actual error rate, according to simulations.
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1. INTRODUCTION

We consider the multiple test problem where there are n hypotheses Hy, Hy, -+, H,,,
and corresponding p-values Ry,---, R, , assuming the test statistics Xy,---, X, are

from a continuous distribution. Suppose that in a multiple test procedure the property
P(Hg, sel , are accepted|Hy, sel, true) > 1 — o (1)

holds, for prespecified size of test (familywise error rate) o , where [ is any non-null
subset of {1,2,---n} , and thus contains m items, 1 < m < n. Then the procedure
is said to control strongly the familywise error rate (Hochberg and Tamhane, 1987, pp.
3, 7).

Let Ry, R(z), -, R, be the ordered p-values, and Hyy, H),- -, H(,) the corre-
sponding hypotheses. The ‘Bonferroni’ multiple test procedure rejects the composite
hypothesis {Hqy, Hiay, -, Hy} if Ruy < of/n . and accepts it otherwise. This pro-
cedure was refined by Holm (1979) as follows. Examine whether Ry < a/n ; if not,

accept Hyy,1 = 1,---n as with Bonferroni; if so, reject H(;y and examine whether
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Ry < af(n —1). If the inequality is not satisfied accept H(),---, H(,) ; otherwise
reject Hg) . Continue in this way. To summarize: if Ry < af(n—1+1), 1 <5 -1,
then at step j the remaining hypotheses are Hy;),-- -, H,) and the inequality next to
check is Ri;y < a/(n —j4 1) . The process may run at most until a decision is made
on the basis of whether R(,) < a or not. Holm showed that his procedure strongly
controls the familywise error rate. Inasmuch as it essentially depends on Boole’s (first
Bonferroni) inequality, which is a degree 1 bound (e.g. Seneta, 1988), Holm’s procedure
retains an elegant simplicity.

There have been a number of improvements on the Bonferroni-Holm degree 1 pro-
cedures, all of which are aimed at increasing power while retaining a simple structure of
critical points (such as a/(n — j 4 1) above). Hochberg’s (1988) and Hommel’s (1988)
(1989) procedures both strongly control the familywise error rate providing each Simes
(1986) test of Hy = {H;, iel} is a level a-test. Recently Sarkar (1998) has shown, that
the Simes property holds if the random vector (Xi,---,X,) is from an MT P, distri-
bution. This class includes the central multivariate ¢ with the associated correlation
matrix having a common and non-negative correlation. Since they are based on the
Simes procedure, the step-up procedures of Hochberg/Hommel, now validated in the
MT' Py situation, are more powerful than Holm’s (1979) procedure.

In Section 6 of Seneta and Chen (1997), a degree 2 step-down procedure is proposed
which retains familywise control of error rate. This procedure is adaptive in that
calculation at each step is determined by the joint outcome of all pairs of statistics in
the experiment involved until the procedure stops. In view of the continuing interest in
a general procedure with familywise control of error rate, we present here a substantial
refinement of this procedure, in a form which resembles Holm’s. Specifically, the values
af(n—j+1),7 > 1, arereplaced by larger ones, thus increasing the power. We present,
using simulation, a crude power comparison with the Bonferroni/Holm procedure and
with the Hochberg procedure in the setting of multivariate ¢ . A more extensive
comparison with Hochberg/Hommel, is indicated, but outside our present intention of
presenting briefly the streamlined procedure. By comparison with Bonferroni/Holm
and Hochberg/Hommel, there is a loss of computational simplicity. The first step
in particular requires the calculation of n(n — 1)/2 two dimensional probabilities (in

specific situations such as Dunnett’s test, fewer two dimensional probabilities need to



be computed) ; and our procedure may be useful only if n is small. It may, however,
be possible to obtain approximations to two dimensional probabilities by bootstrapping
in specific situations (these are being investigated), thus eliminating a need to know
two dimensional distributions.
PROCEDURE CS

Write for the moment R(;y = Ry, , so t; is a random variable from the set {1,2,---,n}.
Using the ordered p-values Ry, i = 1,---,n observed, define the index sets K(-) by
K(p) ={tpstpt1, - stnt, p=1,2,---,n (these are random sets for p > 2) and write

o) «

~v(p) = max(jeK(p PR —— R < ———
)= maGeR () 5P e S

|Hs, selK(p),true)

(2)
for 1 <p <n-—1, with y(n) = 0. These may be calculated for successive p as far as
required in what follows.

Step 1 :
. o o+ ~(1
Ry < mm(n_ T nFY( )) ?

If yes, reject Hyy and go to Step 2. If no, accept H(yy, Hg),- -+, H,y and stop.
Continue in this way. If the i-th step is reached:

Step ¢ :
o a+ali)

n—1 n—1-+1

)?

Ry < min(

If yes, reject H;y and go to Step ¢ +1 . If no, accept H;y, Hiiyyy, -+, H(,y and stop.
If the n-th Step is reached:

Step n :

If yes, reject H,) and stop . If no, accept H,) and stop. (Note that since y(n) = 0,

a+%n—U>

Step n is consistent with the others. Also, at the (n—1)" step, min (a, 5

—1
oz—l—’y(Qn) ,since y(n — 1) < g) O
The procedure is therefore an adaptive one, and the v(p)'s for 2 < p < n —1 are

random variables.



2. STRONG CONTROL OF FAMILYWISE ERROR RATE
A key feature of the proof of the theorem is the use of the inequality (from which
(2) derives) of Kounias (1968)

P(L_JIAZ) S ;P(AZ)—HIELX(] — 1,,]€)§P(AZHA]),

a second-degree inequality.

LEMMA. Let [, of fizred size m , be as in Section 1. Define
y=max(l) Y P(R < g, R; < g|[‘15,5d,tn1e),
m m

jel—{i}
where v =0 when m=1. Then

N {Ri > min <M L)} C {H,, sel ,are all accepted}.

9
il m m—1

Proof. For any fixed realization (sample point) of the experiment within

Q{RZ» > min (%ﬁ%” (3)
if the R;,iel, are in fact the largest m values R;),1 = n —m + 1,---,n , then
I=Kn—m+1),and y =~vy(n—m+1),so H;,iel , will be accepted by the procedure,
by at most the (n —m + 1) Step.

If the R;,iel, are not the largest m values, then the smallest value of R;,iel , is
Rn—my1-k) for some k, 1 <k <n —m, and on account of (3) either
(@) Riu—mi1-k) > (a+7)/m; or (b) Ri—myi—ry > a/(m—1).

If (a), then Rp_pyi—py > o/m > a/(m+k—1) = af/(n — (n —m — k + 1)),
so Hjy,n —m —k +1 <1 < n, and so H;,iecl, are all accepted by at most the
(n—m —k+1)" Step. If (b), then R, i1 r) > o/(m—1)>a/m > a/(m+k—1),
with the same conclusion. O
THEOREM: If the set {H;,icl} is the set of true hypotheses (where I is any non-null
subset of {1,---,n}), then (1) holds for PROCEDURE CS.

Proof. For notational convenience put A = {H;, sel, true} .

P(H,, sel, are accepted |A)
. flaty) @
> P R; —t —] A
> (ﬂ { > min ( o |

rel

4



by the Lemma;

1o (=2

m
21—2P<RZ»§ min<(a;7 moi1> |A>

tel

+max(ic]) Y P (RZ- < min <M a > ,R; < min <M L) |A>

jeI—{3} mm—1

~——

by Kounias’ inequality;

> 1 —min((e + 7),ma/(m — 1)) + max(iel) > P(R; <
jel—{i}

Ry < —|A)

a
m
by the uniformity of distribution of each R;el, since min((a +v)/m, o/(m —1)) < 1;
— 1~ min(a + ), ma/(m — 1)) + 5
>l—(a+y)+7=1—0a.

COROLLARY. For any given [, if v> «af/(m —1), then
P(H,, sel, are accepted |A) > 1 —ma/(m—1)+~ . O

It will be seen that the test procedure could have been constructed, with increase
of complexity at (2), round the sharper inequality of Hunter (1976), of which there are
non-graph theoretic formulations (Margaritescu, 1986; Seneta, 1988). Possible use of
degree 2 inequalities such as ours is mentioned in this context by Simes (1986, Section
5) and Shaffer (1986), and use of them for confidence intervals is made by Stoline
(1983) (see Seneta, 1993).

The quantity + defined in the LEMMA above is required for the proof of the
THEOREM following it, which establishes strong control of the adaptive test pro-
cedure, but is not needed in the adaptive test procedure itself. Note that v <

(m—1)a/m < a.



3. EXAMPLE AND SIMULATIONS

We shall measure power by
P(Reject at least one  H;, i =1,---,n).

This has the advantage that when all of the H,, ¢ = 1,--- n hold, from (1) this
value will be < «, and its closeness to the nominal error « will measure the actual
conservativeness of the error rate. According to the COROLLARY above, if we take
I =H1,2,---,n} then v > «a/(n —1) results in a bound < « . This suggests that
the degree of conservativeness of the PROCEDURE CS is related to the strength of
positive association between the R;’s (and hence of X;’s ) from the definition of ~ .
This is confirmed by Table 1 below.

We take the test statistics to be exchangeable under corresponding null hypotheses,

so from (2)
a a

—(n—p)P(Ry < ———— Ry < ——
Wp) =0 =p)P(Ry < oo Fo < oy

), (4)

which is thus non-random in this special setting. More specifically we consider upper-
tail tests where X; = |T3|, ¢« = 1,2,-+-,n with Ty, Ts,---,T, defined by T, =
I/V’/\/X?’T’ 1 = 1,2,---,n where the W;’s are multivariate normal with EFW; =
pi, Var(W;) =1, ¢ = 1,2,---,n, Corr(W;,W;) = p, i # j, and are independently
distributed of x . Thusunder H; : y; =0, i =1,---,n,the T;, i = 1,-- -, n have jointly
a multivariate exchangeable ¢ distribution with parameters n, p(p > —1/(n —1)),v
as in Dunnett’s tests (Miller, 1981). We take n = 3, = 16, = 0.05 , and consider
0<p<1. Wecan calculate from tables giving upper-tail values P(T; < a, T5 < a)
for various @ and p =0, £0.1,---,40.9 (Krishnaiah, Armitage and Breiter, 1969)
our values of A(1) = (a4 7(1))/n. Some of these are shown in Table 1. Notice
that in our setting A(1) > a/2 = 0.025 at p =1, but is < 0.025 for p < 0.9.
Our measure of power when p < 0.9 (in fact for p upto approximately 0.95) is thus
P(R@y < A(1)), whereas for the Bonferroni-Holm procedure the measure of power is
P(R@uy < a/n) , which is smaller; and remains smaller than our measure of power for
p very close to 1 viz. P(Rn) < af/(n—1)). (A more sensitive measure of power
would separate out Holm from Bonferroni.) Table 2 displays the power at p = 0.9 when

w1 = 0, pe = 2[6|, us = 31| for the Bonferroni-Holm, Hochberg and CS procedures.



Table 1. Values of A(1) and Error Rate (E.R.)
(n=3, v=16, a =0.05)
p 0 05 08 09 1

A(1) 0.0171 0.0183 0.0211 0.0228 0.0278
ER. (o/n) 0.049 0.042 0.033  0.028
E.R. (A(1)) 0.050 0.046 0.042  0.040

Table 2. Power at p =0.9(n =3, v =16, o = 0.05)

) -1 -0.5 0 0.5 1
aln 0.685 0.184 0.028 0.159  0.633
Hochberg 0.689  0.187  0.034 0.164  0.634
A(1) 0.749  0.227  0.040 0.193  0.685

The error rate (E.R.) entries in Table 1 were produced from a simulation of 20,000
independent sets of values of the triple 7, 1 = 1,2, 3 at each p. These values for p = .9
are given again in Table 2 at § = 0. The other values of Table 2 were also produced
from 20,000 triples.

Overall, the simulations support a conclusion that our proposed procedure is most
effective as regards power when test statistics are strongly positively dependent. The
error rate is closer to the nominal value « irrespective of degree of dependence, and is
not much affected by it. The indication is that Procedure CS controls error rate well,
and has significantly better power than Hochberg.

While our procedure may be useful only for small n (1) holds without any restriction
on the continuous joint distribution of test statistics.

Finally, our computational results on E.R. are consistent with those of Sarkar and

Chang (1997, Table 2), inasmuch as

P(Ry > —

e
—— 1< < > PRy > —,1<:1<
Z T <i1<n)> ((Z)_n, <1< n)
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