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The content of this note is a literate MAGMA script illustrating the facility for user-defined
types in MAGMA. The code defines three new types for finite nearfields and an associated
element type. There is an ‘abstract’ type NFD and two derived types: NFDDcCK for regular
(Dickson) nearfields and NFDZsS for irregular (Zassenhaus) nearfields; they inherit the at-
tributes declared for the NFD type. Both NFDDCK and NFDZSS use the same element type:
NFDELT.

Nearfields are important in group theory, geometry and a combination of these two fields.
On the one hand, the finite sharply doubly transitive permutation groups are in one-to-one
correspondence with the finite nearfields and on the other hand, nearfields coordinatise a
class of translation planes [29, 38] and they are the starting point for the construction of the
Hughes planes [15, 31]. Furthermore, every sharply transitive collineation group of projective
space over finite field is a quotient of the group of units of a nearfield [22] (see also, [14, §1.4,
n° 17].

The code to implement the nearfield types was supplied by John Cannon.

1 User types

The following description of user types has been lifted from the documentation supplied
by Allan Steel. These types are intended to replace the ‘hackobj’ types which are internal
to MAGMA and not accessible to the average user. The instructions for removing ‘hackobj’
types and replacing them with user types is contained in the full documentation in the file
user_types.doc.

1.1 Summary
— User types can now be declared in a package file.
— A type declaration may also specify ISA relations and an element type.
— A type declaration may be placed anywhere (but typically should be placed before an
attributes declaration).

1.2 Declaring types

Let MYTYPE be the new type in the following (and similarly MYTYPE2, MYTYPE3, ...). The
simplest form of a type declaration is:



declare type MyType;
If MYTYPE is to inherit from types MYTYPE2, MYTYPES, ..., then add them after a colon:
declare type MyType: MyType2, MyType3;

If MYTYPEELT is the element type for MYTYPE (i.e., if objects of type MYTYPEELT have type
MYTYPE for their parents, so that a set or sequence whose universe has type MYTYPE will contain
elements of type MYTYPEELT), then MYTYPEELT should be placed in brackets after MYTYPE as
follows:

declare type MyType [MyTypeElt];
declare type MyType [MyTypeElt]: MyType2, MyType3; // ISA relations

If MYTYPEELT is supplied, then a PARENT intrinsic must be present for MYTYPEELT (which
must return objects of type MYTYPE).

The type declaration can be placed anywhere in a package file and such a file can appear
anywhere in a spec file. That is, the type may be referenced (particularly in signatures) in
files that are attached before the file containing the type declaration. The only restriction is
that the file declaring the type must be attached before any code is run which uses the type.

1.3 Standard intrinsics to be defined for user types

The following standard intrinsics should be defined for any user type MYTYPE.
intrinsic Print(x::MyType)
or
intrinsic Print(x::MyType, level::MonStgElt)
or
intrinsic PrintNamed(x::MyType, level::MonStgElt, name::MonStgElt)

(Procedure) Print x of type MYTYPE. A new line should not be printed at the end
of the last (or only) line (thus one should use printf, etc.). If the second form of
procedure is used, then x should be printed at the given level (the level argument
is a string; test for equality with ‘Maximal’, etc.)

In the PRINTNAMED version, the string name of the object is given in the third
argument. So the object x should be printed at the given level, using the name if
desired, as in:

> Sym(2);

Symmetric group acting on a set of cardinality 2

> S:=Sym(2); S;

Symmetric group S acting on a set of cardinality 2



intrinsic IsCoercible(X::MyType, y::.) —-> BoolElt,

(Function) Attempt to coerce y into MYTYPE X.

If successful: return true, the_result (which must be in X)
else: return false, error-message-string

If no coercion is allowable, make the body of the function be:
return false, "I1llegal coercion'";

intrinsic ’in’(y::., X::MyType) -> BoolElt

(Function) Return whether the arbitrary object y is in MYTYPE X. Simple true/false
is the single return value). Note the order of the arguments!

intrinsic Parent(x::MyTypeElt) -> MyType

(Function) Return the parent of x. This is assuming that MYTYPE was declared to
have MYTYPEELT as element type.

Note: If T is a type which is not an element type for any other type, then a
parent function for objects of type T should not be defined; it will be automatically
present, returning POWERSTRUCTURE(T).

1.4 Optional intrinsics for user types

intrinsic SubConstr(X::MyType, RHS::<typeRHS> ) -> MyType, Map
intrinsic SubConstr(X::MyType, R1l::<typeR1>, R2::<typeR2> )
-> MyType, Map

(Function) Called when sub<X | RHS> or sub<X | Ry, Ry> is called. Specify
<typeRHS> to restrict types RHS or use . and check types within the function.
The function must not use require/error; use:

return "error message", _; // note the second return value

when there is an error or if RHS is wrong. The function should also return the
subobject S and inclusion map: S — X. The type of S and MYTYPE must have
an ISA relation.

intrinsic HomConstr(D::MyType, C::<typeC>, RHS::<typeRHS>:
Check := false) -> Map

intrinsic HomConstr(D::MyType, C::<typeC>, Rl::<typeR1>,
R2::<typeR2>: Check := false) -> Map

(Function) These intrinsics are called when hom< D — C | RHS: CHECK>> is called
or when hom< D — C | Ry, Re: CHECK> is called. Specify <typeC> or <typeRHS>
to restrict types of C and RHS or use . and check types within the function.
Default value for CHECK is false and can’t be changed on the MAGMA level. If
CHECK is true, the function should check if RHS actually defines a homomorphism;
if CHECK is false, the check isn’t necessary. Must not use require/error (as above).

Intrinsics to create objects of type MYTYPE can use the following expression
New (MyType) ;

to create an empty object of type MYTYPE. Typically one would then set relevant attributes.



2 Nearfield properties

In 1905, in the course of proving the independence of the field postulates, L. E. Dickson [18,
p. 203] introduced the first example of a nearfield. His example is a set of 9 elements with
operations of addition and multiplication which satisfy all the axioms of a field except for the
commutative law of multiplication and the right distributive law. Later that year Dickson
[20] published a more extensive collection of examples: an infinite series obtained by twisting
the multiplication of a Galois field and seven “irregular” examples.

The terminology ‘nearfield’ seems to have introduced by Zassenhaus in his 1935 paper
[67] where he showed that the only finite nearfields (endliche Fastkorper) are those due to
Dickson.

The irregular nearfields are often referred to as Zassenhaus nearfields and the nearfields
in the infinite series are called Dickson nearfields.

In the papers of Dickson and Zassenhaus the nearfields are left-distributive but for the
purposes of the MAGMA implementation we consider only right-distributive nearfields.

Definition 2.1. A (right-distributive) nearfield is a set N containing elements 0 and 1 and
with binary operations + and o such that

NF1: (N,+) is an abelian group and 0 is its identity element. Let N* denote the set of
non-zero elements of V.

NF2: (N*, o) is a group and 1 is its identity element.
NF3: ac0=00a=0forallaec N.
NF4: (a+b)oc=aoc+bocforall a,b,c € N.

Definition 2.2. A subset S of a nearfield N is a sub-nearfield if (S,+) and (S \ {0}, 0) are
groups. The sub-nearfield generated by a subset X is the intersection of all sub-nearfields
containing X. The prime field P(N) of N is the sub-nearfield generated by 1.

The inverse of # € N* is written /=1, But where no confusion is possible we write
multiplication of nearfield elements x and y as xy rather than x o y and we write the inverse
of z as 1. (In the MAGMA code we use * as the symbol for multiplication.)

If N is a finite nearfield, the prime field of N is a Galois field GF(p) for some prime p,
called the characteristic of N.

A nearfield of characteristic p is a vector space over its prime field and therefore its
cardinality is p” for some n. Every field is a nearfield.

Definition 2.3. If NV is a nearfield, the centre of N is the set
Z(N)={ze N |zy=yzxforallye N}
and the kernel of N is the subfield
K(N)={xe N |z(y+z2)=zy+azforally,ze N }.

It is clear that Z(N) C IC(IV) but equality need not hold because, in general, Z(N) need
not be closed under addition. Furthermore, the prime field P(/N) need not be contained in
Z(N). However, for the Dickson nearfields defined below Z(N) = IC(V).



Lemma 2.4. If N is a nearfield, then Z(N) = ({K(N)* |z € N, = # 0}.

Proof. (See [14]) If L = {K(N)* | = € N, x # 0}, it is clear that Z(N) C L. To prove the
converse, we may suppose that (N) # N and choose 0 # t € N\ IC(N). If d € L, then there
exist di,dy € L such that tdy = td and (t + 1)d = d2(t + 1). Thus

d1t+d:td—|—d:(t—i—l)d:dg(t—l—l):dgt—i-dQ,

whence (di — d2)t = da — d. But d; — d2 and da — d belong to IC(N) and since ¢ ¢ K(N) it
follows that dy = do = d. That is, td = dt and hence L C Z(N), as asserted. O

2.1 Sharply doubly transitive groups

Definition 2.5. A group G acting on a set Q is sharply doubly transitive if G is doubly
transitive on €2 and only the identity element fixes two points.

The finite sharply doubly transitive groups were determined by Zassenhaus [67] in 1935.
Accounts of the classification can be found in many places, including most of the books listed
in the references below. (Many recent references to Zassenhaus use 1936 as the publication
date for this paper, perhaps because this issue of the journal did not appear until 1936.)

Theorem 2.6. Suppose that G is a finite sharply doubly transitive group on ). Then

(1) The set M consisting of the identity element and the elements of G without fized points
is an elementary abelian normal subgroup of G of order p™ for some n and some prime p.

(2) Addition and multiplication between elements of  can be defined so that Q0 becomes a
nearfield and so that the group G is isomorphic to the group of all affine transformations
vi—=va+b of Q, where a € Q* and b € Q.

Proof. If o, 8 € Q and a # 3, then G, N Gg = 1 and therefore the conjugates of G, contain
m(m — 2) + 1 elements, where m = [€2|. Thus there are m — 1 elements without fixed points
and so |M| = m.

If a € M and b € Cg(a), then b € M otherwise b would fix a unique point in o € 2 and
then a would also fix a. Thus Cg(a) € M and so |G : Cg(a)| > m—1. It follows that equality
holds and so M is a normal abelian subgroup of G and its non-identity elements form a single
conjugacy class in GG. Consequently M is an elementary abelian p-group for some prime p
and therefore m = p" for some n.

Choose two elements of {2 and label them 0 and 1. Let H = Gg. The group M acts
regularly on 2 and therefore for all a € Q there exists n(a) € M such that a = 07@) . The
map 7 : 2 — M is a bijection such that for all @ € Q and all x € H we have n(a®) = 2~ 'n(a)z.
Using 1 we transfer the group structure of M to 2 but write it additively. That is, for a,b € €,
define a + b € Q so that n(a + b) = n(a)n(b).

The group H acts regularly on Q* = Q\ {0} and therefore there is a bijection p : Q% — H
such that a = 149 for all a € Q*. Now use p to define multiplication on Q; that is, for
a €  define Oa = a0 = 0 and for a,b € Q*, define ab € Q so that p(ab) = p(a)u(b).

The right distributive law holds because 7(bc) = n(b*(©) = p(c)~'n(b)u(c) and hence

ac + be = (ac)"") = at@u(e) "t n®)ule) — nbule) _ (a +b)e.



Thus €2 is a nearfield. The group G is the semidirect product H x M of M and H. Therefore,
if g € G there exists unique elements h € H and m € M such that ¢ = hm. Then h = p(a)
and m = n(b), where a € Q* and b € Q and consequently for all v € Q we have

09 = @) — 44 4+ p. n

There is a converse to this theorem, namely if N is a nearfield, the group of all transfor-
mations v — va + b acts sharply doubly transitively on V.

Let F' be the prime field of N, regard N as a vector space over F' and define y : N* —
GL(N) by v"® = va. Then for all a € N*, a # 1, the linear transformation p(a) is fixed-
point-free. Furthermore, x4 defines an isomorphism between the multiplicative group N* and
its image in GL(N).

Suppose that G = H x M is a sharply doubly transitive group of degree p™, as above.
The centre of G is trivial and M is a minimal normal subgroup. Thus if €’ is a minimal
permutation representation we may suppose that it is primitive. Then M is transitive on €’
and since M is abelian, it acts regularly on €. Thus p” is the minimal degree of a faithful
permutation representation of G.

3 The MAGMA code

3.1 Type declarations

There are two types of finite nearfield: the regular nearfields of Dickson and the irregular
nearfields of Zassenhaus. In order to accommodate both types we declare a ‘virtual type’ NFD
and then types NFDDCK and NFDZSS which inherit from NFD.

declare fype NFD;
declare aftributes NFD:
of, // Underlying finite field
prim, // Primitive element of the underlying field
p, // Characteristic of the underlying finite field
q, // Order of the kernel of the nearfield
matgrp, // The matrix group of units of the nearfield
sz, // The size of the base field of matgrp
v, // Homomorphism from matgrp to the nearfield
¢; // Bijection between field and vector space

Objects of the derived types NFDDCK and NFDZss will both have elements of type NFDELT
and so we declare that type here.

declare fype NFDELT;

declare attributes NFDELT:
parent, // Parent of element
elt, // Element (as an element of the corresponding finite field)
log; // Logarithm of the element, when a unit, otherwise -1

When declaring a user-defined type in MAGMA the element type is placed in brackets after the
type name.

declare type NFDDCK [NFDELT]: NFD;



Derived types inherit the attributes of the parent type and so for NFDDCK and NFDZSS we
need only declare the additional attributes specific to these types.

declare aftributes NFDDCK:
h, v, // (p,h,v) is a Dickson triple
twist, // sequence twisted residues mod v
p; // sequence of Frobenius powers
declare type NFDZsS [NFDELT]: NFD;
declare attributes NFDZSS:
ndx, // The index of the irregular nearfield
w; // Associative array mapping vectors to matrices

3.2 Dickson nearfields

In order to begin exploring the new types in MAGMA we need a way to create instances of
nearfields and their elements. As already mentioned there is a large class of nearfields first
described by L. E. Dickson [18, 20] in 1905 and in this section we provide a MAGMA intrinsic
for their construction.

The nearfields resulting from this construction will be called Dickson (or regular) nearfields.

Definition 3.1. If p is a prime and if the positive integers h and v satisfy
e ifr is a prime or 4 and if r divides v, then r divides p" — 1
then (p, h,v) is a Dickson triple.
If we write ¢ = p”, the condition above is equivalent to
o All prime factors of v divide ¢ — 1 and ¢ =3 mod 4 implies v Z0 mod 4.

We call (q,v) a Dickson pair.

isDicksonPair := func< q, Vv |
ISPRIMEPOWER(q) and forall{ r : r in PRIMEBASIS(v) | g mod r eq 1 } and
((g mod 4 eq 1) or (v mod 4 ne 0)) >;

intrinsic DICKSONPAIRS(p :: RNGINTELT, hlo :: RNGINTELT, hhi :: RNGINTELT,
vio :: RNGINTELT, vhi :: RNGINTELT) — ]
{List the Dickson pairs (gq, v) for prime p, where hlo and hhi
are the lower and upper bounds on h and vlo, vhi
are the lower and upper bounds on v}
require ISPRIME(p): “p must be prime”;
pairs :=[|;
for h := hlo to hhi do
for v := vio to vhi do
if isDicksonPair(ph, v) then
APPEND(~pairs, [p", v]);
end if;
end for;
end for;
return pairs;



end intrinsic;

intrinsic DICKSONPAIRS(p :: RNGINTELT, h; :: RNGINTELT, vy :: RNGINTELT) — ]

{List the Dickson pairs (p"h, v) for prime p, where hl and vl
are upper bounds on h and v}
return DICKSONPAIRS(p, 1, h1,1,v1);

end intrinsic;

intrinsic DICKSONTRIPLES(p :: RNGINTELT, hb :: RNGINTELT, vb :: RNGINTELT) — ]
{List the Dickson triples (p,h,v) for prime p, where
hb and vb are bounds on h and v}
require ISPRIME(p): “0 must be prime”;
triples := [|;
for h:=11to hb do
for v :=1to vbdo
if isDicksonPair(p”, v) then
APPEND(~triples, [p, h, v]);
end if;
end for;
end for;
return friples;
end intrinsic;

Given a Dickson pair (g, v), the following function creates a raw object of nearfield type
(NFDDCK). More needs to be done before the object can be used as a nearfield. In particular,
the operations of addition and multiplication need to be defined.

The isomorphism type of a Dickson nearfield depends on the choice of primitive element
of the underlying Galois field. It has been shown by Liineburg [39] that if ¢ is the Euler phi-
function and g is the order of p modulo v, there are ¢(v)/g isomorphism classes of Dickson
nearfields with the same Dickson triple (p, h,v).

good_exponent := function(q, v, e)
m:=(q¥ —1)divv;
m_:= &x{ r : r in PRIMEDIVISORS(m) | not ISDIVISIBLEBY(e, r) };
return e + m_xv;

end function;

For later use, when constructing sub-nearfields, it will be convenient to be able to specify the

primitive element ¢ directly.

nearField := function(q, v, K, ( : LargeMatrices := false)
_, p, h:=ISPRIMEPOWER(q);
sz := LargeMatrices select p else qg;

L :=GF(sz);

E, ¢ := VECTORSPACE(K,L);
twist :== [0 :jin[1..v]];

p = twist;

fori:=1tovdo
s:=((q'—1) div (q—1)) mod v;
twist[s+1] 1= i;



pls+i]=q’;
end for;

The intrinsic NEW creates a new object of the given type.
NF := New(NFDDCK) ;

NF'p :=p;
NF* h := h;
NF'v :=v;
NF'g:=q;
NF'gf .= K;
NF'sz .= sz;
NF'¢ = ¢;
NF prim := (;
NF twist := twist ;
NF'p :=p;
return NF;

end function;

The default nearfield will use the ‘standard’ primitive element of the field. The other
variants with the same Dickson pair can be obtained by providing an integer s coprime to v.
This must be converted to a suitable integer e coprime to ¢ — 1 such that s = e mod v (see
the proof of Lemma 4.2 for the details).

intrinsic DICKSONNEARFIELD(q :: RNGINTELT, v :: RNGINTELT : Variant := 1,
LargeMatrices := false) — NFDDCK
{Create a Dickson nearfield from the Dickson pair (q,Vv)}
require isDicksonPair(q, v):
SPRINTF(“ (%0, %0) is not a Dickson pair”, q, v);
e := (v eq 1) select 1 else INTEGERS() ! Variant mod v ;
require ISCOPRIME(v, €): “Variant must be coprime to v”;
if e ne 1 then
e := good_exponent(q, v, e);
end if;
K := GF(q");
return nearField(q, v, K, PRIMITIVEELEMENT(K) € :
LargeMatrices := LargeMatrices);
end intrinsic;

intrinsic NUMBEROFVARIANTS(q :: RNGINTELT, v :: RNGINTELT) — RNGINTELT
{The number of non-isomorphic nearfields with
Dickson pair (q,v) }
require isDicksonPair(qg, v):
SPRINTF(“ (%0, %0) is not a Dickson pair” @, vV );
if v eq 1 then return 1; end if;
_, p, h:=ISPRIMEPOWER(q);
return EULERPHI(v) div ORDER(RESIDUECLASSRING(V) ! p);
end intrinsic;

intrinsic NUMBEROFVARIANTS(N :: NFDDCK) — RNGINTELT



{The number of variants of the Dickson nearfield N}
return EULERPHI(N"v) div ORDER(RESIDUECLASSRING(N V) | N'p);
end intrinsic;

intrinsic VARIANTREPRESENTATIVES(q :: RNGINTELT, v :: RNGINTELT) — SEQENUM
{Representatives for the variant parameter of nearfields with

Dickson pair (q,v) }

require isDicksonPair(q, v):

SPRINTF(“ (%0, %0) is not a Dickson pair”, q, v );

if v eq 1 then return [ 1]; end if;

_, p, h:=ISPRIMEPOWER(q);

R := RESIDUECLASSRING(V);

U, f := UNITGROUP(R);

X:={@f(u):uinU @};

m:=R!p;
t:=[xxm:xinX];
S = SYM(X);

P := sub<S|t>;
reps := ORBITREPRESENTATIVES(P) ;
return [r[2] : r in reps];

end intrinsic;

3.3 Irregular nearfields

It was shown by Zassenhaus [67] that in addition to the regular nearfields there are seven
irreqular nearfields. Zassenhaus gives constructions but does not prove their uniqueness.

The proofs in [67] are known to contain gaps. Perhaps the most reliable account of the
existence and uniqueness of the irregular nearfields is the PhD thesis of Dancs-Groves [27].

The seven finite nearfields which are not Dickson nearfields will be called the irregular
nearfields. To define them we first define seven matrix groups which act fixed-point-freely on
the non-zero vectors of the underlying vector space.

Irregular nearfields can be distinguished from regular nearfields by the following property
of their unit groups.

Theorem 3.2 ([27, Lemma 4.16]). The multiplicative group of a finite nearfield N is meta-
cyclic if and only if N is reqular.

As a consequence, a Zassenhaus nearfield cannot occur as a subfield of a Dickson nearfield.
The matrices in the following function were obtained from Hall [29, p.391]. Note that in
[14] there is a misprint in the definition of the matrix A.

irrNF := function(ndx)
A := MATRIX(2,2,[0,1,—1,0]);
case ndx:
when 1:
p:=5;
B := MATRIX(2,2,[1,—2,—1,-2]);
when 2:

10



p:=11;
B := MATRIX(2,2,[1,5,—5,—2]);
C := MATRIX(2,2,[4,0,0,4]);
when 3:
p:=7;
B := MaTRIX(2,2,[1,3,—1,-2]);
when 4:
p:=23;
B := MATRIX(2,2,[1,—6,12,—2]);
C := MATRIX(2,2,]2,0,0,2]);
when 5:
p:=11;
B := MATRIX(2,2,[2,4,1,—3]);
when 6:
p:=29;
B := MATRIX(2,2,[1,—7,—12,-2]);
C := MATRIX(2,2,[16,0,0,16]);
when 7:
p:=159;
B := MATRIX(2,2,[9,15,—10,—10]);
C := MATRIX(2,2,[4,0,0,4]);
else:
error “Index out of range 1..77;
end case;
if ndx in [1,3,5] then
return p, sub<GL(2,p) | A, B >;
else
return p, sub<GL(2,p) | A, B, C >;
end if;
end function;

intrinsic ZASSENHAUSNEARFIELD(n :: RNGINTELT) — NFDZSS
{Create the irregular nearfield number n) }
requirerange n, 1, 7;
p, S :=irNF(n);
K := GF(p,2);
E, ¢ := VECTORSPACE(K, PRIMEFIELD(K));

The associative array p maps field elements to matrices.

p := ASSOCIATIVEARRAY (E) ;
w:=¢(K!1);
for x in S do ufwx*x] := x; end for;

Create a new nearfield object and assign its attributes.
NF := NEw(NFDZsS);

NF ndx := n;
NF'p :=p;
NF'g:=p;

11



NFgf := K;
NF'prim := PRIMITIVEELEMENT(K ) ;

NF'sz := p;

NF ¢ := ¢;

NF 1 = p;

NF matgrp := S;

NF'¢:=map< S — NF|x = (wsx)@@¢, y — plo(y elt)] >;
return NF;

end intrinsic;

3.4 Nearfield arithmetic
3.4.1 Addition

First define a few functions which will be internal to the package file. The mutation operators
are not strictly necessary because the default options in the package file System/mutate.m
will be used if no intrinsic is provided for objects of type NFDELT.

sameNF := “Elements must belong to the same nearfield’;
procedure op_mutate(~x, ~y, op) op(~x"elt, ~y elt); end procedure;

The operations of addition, subtraction and negation are inherited from the underlying
Galois field and therefore they are quite straightforward to implement.

intrinsic ‘+* (x :: NFDELT, y :: NFDELT) — NFDELT
{x + vy}

require x parent eq y parent: sameNF ;

return ELEMENT(x parent, x"elt+y elt);
end intrinsic;

intrinsic ‘+:=" (~x :: NFDELT, ~y :: NFDELT)
{x +:= vy}
require x parent eq y parent: sameNF ;
op_mutate(~x, ~y, ‘+=");
end intrinsic;

intrinsic ‘-’ (x :: NFDELT, y :: NFDELT) — NFDELT
{x - vy}

require x parent eq y parent: sameNF ;

return ELEMENT(x parent, x" elt—y elt) ;
end intrinsic;

intrinsic -’ (x :: NFDELT) — NFDELT
{-x}

return ELEMENT(x parent, —x"elt) ;
end intrinsic;

intrinsic -:=" (~x :: NFDELT, ~y :: NFDELT)
{x +:= vy}
require x parent eq y parent: sameNF ;

12



op_mutate(~x, ~y, “:=");
end intrinsic;

3.4.2 Multiplication

The operation of multiplication distinguishes a nearfield from a field. In a nearfield, multipli-
cation is not commutative and the left distributive law fails.
intrinsic *’ (n :: RNGINTELT, y :: NFDELT) — NFDELT
{Left scalar multiple of a nearfield element vy}
N := y parent ;
m:=nmod N'p;
return ELEMENT(N, mxy elt);
end intrinsic;

intrinsic *’ (x :: NFDELT, n :: RNGINTELT) — NFDELT

{Right scalar multiple of a nearfield element x}
N := x"parent;
m:=nmod N'p;
return ELEMENT(N, mxx’elt);

end intrinsic;

intrinsic *:=" (~x :: NFDELT, ~y :: NFDELT)
{x *:= vy}
require x parent eq y parent: sameNF ;
op_mutate(~x, ~y, *:=");
end intrinsic;

In order to define the multiplication in a Dickson nearfield we begin with a Dickson triple

(p, h,v) and a primitive element ¢ of the Galois field K = GF(¢"), where q = p".

Lemma 3.3 ([38, Lemma 6.3.2]). If (p, h,v) is a Dickson triple and q = p", then

1q2—1 q3—1 q" —1
7q_17 q_17"'7 q—l

is a complete residue system modulo v. In particular, (¢ —1)/(q—1) =0 mod v.

Adapting the approach of [23] to our situation (as in [21, p.237]) we deduce from this
lemma that A = (¢¥) is a group of order m = (¢* — 1)/v and the elements s; = ¢(@'~1/(a=1)
(1 <1 < w) are coset representatives for A in K*. Let ® denote the Frobenius automorphism
z — 29 of K and define p : K* — Gal(K/GF(p)) by p(u) = @' if u € s;A; that is, letting
automorphisms of K act on the right, we have 27(*) = 7', The map p is not a homomorphism.
However, its image is the cyclic group of order v generated by ® = p(¢) and the fixed field of
im p is GF(q); thus im p may be identified with Gal(K/GF(q)).

Lemma 3.4. For all u,w € K* we have p(w)p(u) = p(w”Wu).

Proof. We may suppose that p(u) = ® and p(w) = ®/ for some i and j. Then u = s;a and

w = s;b for some a,b € A. Thus uwPW = sis;?labqﬂ € sis;blA. Furthermore, 5,82 is ¢ raised

J
to the power
i1 J_1 ) i _ 1
¢ -1 (4 j=!
qg—1 g—1 qg—1
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and so sis;?iA = s;1;A. Thus p(w’Wu) = 7 = p(w)p(u). O]

Definition 3.5. Given a Dickson triple (p, h,v) and a primitive element ¢ of the Galois field
K = GF(q"), where q = p¥, the Dickson nearfield D(p, h,v,() is the set K with addition as
in K, 0ow = w o0 =0, and multiplication in K* defined by wou = wPWy,

It follows from Lemma 3.4 that p(w o u) = p(w)p(u) for all w,u € K*. To see that
D(p, h,v,() is a nearfield we check the associative and the right distributive laws. The
associative law obviously holds if any factor is 0, otherwise we have:

(wou)ox=(wWu)or=(wWu)®z =w " (yozr)=wo (uouz).

Similarly, if any one of w, u,  or w+w is 0, it follows directly that (w+wu)ox = wox+uox,
otherwise:
(w+u)ox = (w+u)Pz=uwPz+u @z =woxr+uoux.

The function reg_mult implements multiplication in a Dickson nearfield.

reg_mult := function(N, w, u)

v:=Nv;

if v eq 1 then return wxu; end if;
q:=Ngq;

s := LoG(N prim,u) mod N'v;

e = N'p[s+1];

return w°xu;
end function;
To define multiplication between non-zero elements in an irregular nearfield, the elements are
mapped to matrices in the group of units, the matrices are multiplied and the result is pulled
back to the nearfield.
irreg_mult := function(N, w, u);

¢:=No;
A= N plp(w)];
B:=Np[p(u)];

return (¢ (N gf |1 1)xAxB)@@¢;
end function;

intrinsic *’ (x :: NFDELT, y :: NFDELT) — NFDELT
{x * vy}

require x parent eq y parent: sameNF ;

N := x’parent;

K := Ngf;
w = x elt;
u:=yelt

if ISZERO(w) or ISZERO(u) then return ZERO(N) ; end if;

if ISONE(w) then return y ; end if;

if ISONE(u) then return x ; end if;

pr := NEW(NFDELT);

pr parent := N;

pr-elt := TyPe(N) eq NFDDCK select reg_mult(N, w, u) else irreg_mult(N, w, u);
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return pr;
end intrinsic;

Before moving on to the implementation of inverses we deduce a little more from the cal-
culations which preceded the definition of a Dickson nearfield. A version of these calculations
first appeared in [23].

We retain the notation introduced earlier in this section. In particular, if D denotes the
Dickson nearfield constructed from K = GF(q") as above, then p : D* — Gal(K/GF(p)) is
a homomorphism whose kernel is the set A = (¢). Thus A is both a subgroup of the group
of units of K and a subgroup of the group of units of D. Furthermore, for a € A and w € D
we have w o a = w”Ya = wa.

It follows that A is a cyclic subgroup of D* and the sets s; 0 A = s; A are the cosets of A
in D* and also the cosets of A in K*. If u € s;A, it follows from the definition of the product
that ulfl = u(qki_l)/(q_l), where the notation [v] indicates that the power is to be computed
in D. In particular, (¥ = s; and so D* /A is a cyclic group generated by A, hence D* is
metacyclic. If u € A, then ulf = .

Setting m = (¢* — 1)/v and t = m/(q — 1) we see that ¢[*) = ¢(@"=D/(a=1) = (¢v)?,

Lemma 3.6. wl= oaow = a”™ for allw € D* and all a € A.

Proof. We have

= (wlHP@ar) = (=1 o )aP™) = gP(w),
O

Lemma 3.7. The centre Z(D) of D is isomorphic to the Galois field GF(q) and the group
of units of Z(D) is contained in A.

Proof. By the previous lemma the subgroup E = {a € A | a? = a} is contained in Z(D) and
it is clear that £ U {0} is GF(q).

Conversely, if w is a non-zero element of Z(D), then we may write w = s;a’ for some 7 and
some a’ € A. Then for all a € A we have a = wl™ 0 a0 w = a?™ and thus A is contained in
the fixed field of ®°. It follows that (¢” — 1)/v divides ¢* — 1 and ¢* — 1 divides ¢* — 1. Using
the fact that every prime divisor of v divides ¢ — 1 a rather lengthy calculation (see [38, p.
6.24]) shows that ¢ = v; that is, w € A. Now w = (Yo wo ¢ = w and therefore w € E, as
required. ]

Theorem 3.8. If (p, h,v) is a Dickson triple, ¢ = p*, m = (¢ —1)/v, t = m/(q—1) and if
is a primitive element of GF(q"), there is an isomorphism ¢ from the group with generators
a and b and relations

a"=1, W=d, b lab=al.
to the group of units of the Dickson nearfield D(p, h,v, () such that p(a) = (¥ and p(b) = (.
The inverse of o is given by ¢~ 1((%) = b'a’, where i is the unique integer (1 < i < v) such
that (¢ —1)/(q—1)=s modv and j = ((¢" —1)/(g — 1) — 8)/v.

Proof. We have already shown that (Y and ( satisfy the given relations. Conversely, it is
clear that the group defined by the given relations has order mv = ¢V — 1. The formula
0 1(¢%) = bla’ follows from the fact that (* € s;4 = s; 0 A. O

15



3.4.3 Inverses, conjugates, powers

reg_inv := function(N, x)

v.=Nv;

if v eq 1 then return xelt™! ;end if;
q:=Nagq;

z := N prim;

s :=LoG(z,x"elt);
e:=N'p[s mod v + 1];
r := SOLUTION(e, —s,q " —1);
return z';

end function;

irreg_inv := function(N, x)
¢:=N¢;
A= Npulp(xelt)];
return (¢(N'gf | 1)xA~ " @@0¢;
end function;

intrinsic INVERSE(x :: NFDELT) — NFDELT
{x"-1}
require not ISZERO(x): “Cannot invert the zero element”;
N := x parent ;
inv := NEW(NFDELT);
inv'parent := N;
inv'elt := TYPE(N) eq NFDDcK select reg_inv(N, x) else irreg_inv(N, x) ;
return inv;
end intrinsic;

intrinsic /' (x :: NFDELT, y :: NFDELT) — NFDELT

{The quotient x/y of nearfield elements x and vy}
require x parent eq y parent: sameNF ;
return x*INVERSE(Y);

end intrinsic;

intrinsic ' (x :: NFDELT, n :: RNGINTELT) — NFDELT
{The n-th power of nearfield element x}
t := IDENTITY(X parent);
if n It 0 then x := INVERSE(x); n := —n; end if;
while n gt 0 do
if IsODD(n) then
tx:=X;
if n eq 1 then break; end if;
end if;
X %= X
n:=ndiv2;
end while;
return t;
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end intrinsic;

intrinsic ' (x :: NFDELT, y :: NFDELT) — NFDELT
{The conjugate of x by vy}

return INVERSE(Y )*Xx*y ;
end intrinsic;

3.5 Operations on nearfields

By defining a PRINTNAMED intrinsic we link into MAGMA’s printing services so that simply typing
the name of a nearfield will print the object. This is one of the intrinsics (or a variant, such
as PRINT) which should always be defined for a new type.

intrinsic PRINTNAMED(N :: NFDDCK, level :: MONSTGELT, name :: MONSTGELT)
{Print description of the nearfield N}

msg =
SPRINTF(“Nearfield %o of Dickson type defined by the pair”
name);

if level eq “Minimal” then
printf msg «“ (%0, %0)”, N'q, N'v;
elif level eq “Magma” then
printf “DicksonNearfield (%0, %0)”, N'q,N'v;

else
printf msg * “ (%0, %o0)\nOrder = %0”, N'qg,N v,#N;
end if;

end intrinsic;

intrinsic PRINTNAMED(N :: NFDZSS, level :: MONSTGELT, name :: MONSTGELT)
{Print description of the nearfield N}

msg :=
SPRINTF(“Irregular nearfield %o with Zassenhaus number”,
name);

if level eq “Minimal” then
printf msg x “ %0”, N ndx;
elif level eq “Magma” then
printf “ZassenhausNearfield (%0)”, N ndx;

else
printf msg * “ $o\nOrder = %0”, N'ndx, #N;
end if;

end intrinsic;
Tests for equality of nearfields will be given in §4.

intrinsic ‘# (N :: NFD) — RNGINTELT

{Cardinality of the nearfield N}
return #(N"gf );

end intrinsic;

intrinsic CARDINALITY(N :: NFD) — RNGINTELT
{Cardinality of the nearfield N}
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return #(N"gf);
end intrinsic;

3.6 Operations on elements

Because the element type NFDELT has been declared, a PARENT intrinsic must be defined and
it must return an object of type NFD.

intrinsic PARENT(x :: NFDELT) — NFD

{Return the parent of the nearfield element x}
return x parent ;

end intrinsic;

intrinsic PRINT(x :: NFDELT)
{Print a nearfield element x}
printf “%s0”, x"elt;
end intrinsic;
Defining the HASH intrinsic considerably speeds up the set and sequence machinery.

intrinsic HASH(x :: NFDELT) — RNGINTELT

{Return the hash value for a nearfield element x}
return HASH(PARENT(x) gf );

end intrinsic;

intrinsic ‘" (N :: NFD, x :: FLDFINELT) — NFDELT

{Coerce a finite field element x into the nearfield N}
return ELEMENT(N, x);

end intrinsic;

intrinsic ELEMENT(N :: NFD, x :: FLDFINELT) — NFDELT
{Create a nearfield element from a finite field element}
flag, y := ISCOERCIBLE(N gf, x);
require flag: “Finite field element is not in the carrier”x
“ set of the nearfield”;
X := New(NFDELT);
X parent := N;
Xelt:=y;
return X ;
end intrinsic;
The functions ISCOERCIBLE and ‘in’ are standard intrinsics which should be defined for a
new type. The following versions apply to both NFDDCK and NFDZSS types.

intrinsic ISCOERCIBLE(N :: NFD, x :: ANY) — BOOLELT, ANY
{True 1ff the finite field element x is coercible
into the nearfield N}
M := PARENT(X);
if TYyPE(M) eq TYPE(N) and M eq N then
return true, x;
end if;
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flag, y := ISCOERCIBLE(N"gf, x);

if flag then

return true, ELEMENT(N, y);
else

return false, “IT11legal coercion”;;
end if;

end intrinsic;

intrinsic ELEMENTTOSEQUENCE(X :: NFDELT) — ]
{Create a sequence from an element x of a nearfield}
return ELEMENTTOSEQUENCE(x elt);
end intrinsic;

intrinsic ‘in’(x :: ANY, N :: NFD) — BOOLELT

{True 1ff the element x is in the nearfield N}
M := PARENT(x);
return TYPE(M) eq TYPE(N) and M eq N ;

end intrinsic;

intrinsic RANDOM(N :: NFD) — NFDELT
{Create a random element of the nearfield N}
X := NEW(NFDELT);

X parent := N;
X' elt := RANDOM(N"gf ) ;
return X;

end intrinsic;

intrinsic IDENTITY(N :: NFD) — NFDELT

{Create the multiplicative identity of the nearfield N}
X := NewW(NFDELT);

X parent := N;
Xelt:= (N'gf) ! 1;
return X ;

end intrinsic;

intrinsic ZERO(N :: NFD) — NFDELT
{Create the additive identity of the nearfield N}
X := NEW(NFDELT);

X parent := N;;
X'elt:= (N'gf) ! 0;
return X ;

end intrinsic;

intrinsic ISZERO(x :: NFDELT) — BOOLELT

{True if x is the additive identity of the nearfield N}
return x"elt eq (x parent’ gf) ! 0;

end intrinsic;

intrinsic ISIDENTITY(x :: NFDELT) — BOOLELT
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{True if x is the multiplicative identity of the nearfield N}
return x"elt eq (x parent gf) | 1;
end intrinsic;

intrinsic ‘eq’ (x :: NFDELT, y :: NFDELT) — BOOLELT
{x eq y}

require x parent eq y parent: sameNF ;

return x elt eq y elt;
end intrinsic;

intrinsic ‘ne’ (x :: NFDELT, y :: NFDELT) — BOOLELT
{x ne y}

require x parent eq y parent: sameNF ;

return x elt ne y elt;
end intrinsic;

3.7 The group of units

intrinsic ISUNIT(x :: NFDELT) — BOOLELT

{True if the nearfield element x is a unit}
return x"elt ne (x"parent’gf) ! 0;

end intrinsic;

If N is a nearfield and F' = KC(N) is its kernel, N is a vector space over F' and for all
uw € N*, the map x — zowu is an F-linear transformation. This action of N* on the non-zero
elements of the vector space is transitive and fixed-point-free. (See §3.8 for a proof that the
kernel is GF(q).)

Similarly, we may regard N as a vector space over its prime field and again the elements
of N* act as linear transformations. In the following code the vector space E could be either
a vector space over the kernel or a vector space of the prime field. The default setting is to
use the kernel. But if the parameter LargeMatrices is set to true when a regular nearfield is
first defined, the prime field will be used. For irregular nearfields the kernel coincides with
the prime field.

matrixUnitGroup := function(N)

K := Ngf;
z:=K.1;
v:=Nv;
»:=Ng¢;

¢ := N prim;

E := IMAGE(¢);

n := DIMENSION(E);

F<x> := BASERING(E);

basis := [ELEMENT(N, z') : i in [0.. n—1]];

a := ELEMENT(N,C");

A := MATRIX(F, n,n,[¢((x*a) elt) : x in basis]);
b := ELEMENT(N,();

B := MATRIX(F,n, n,[¢((x*b)"elt) : x in basis]);
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G :=sub< GL(E) | A, B >;
G ORDER := #N—1;

In addition to the matrix group G we want an embedding ¢ : G — N and its inverse, which
is defined only on the non-zero elements of N.
q:=Nagq;
psi_inv := function(y)
s :=LoG((, y elt);
t:=smodv +1;
i:= Ntwist[t];
e := N'pl[t];
j:=(s— (e—1)div(q—1)) div v;
return B/ xA/
end function;

w:=¢(K!1);
Y:=map< G — N|x — (wsx)@@¢, y +— psi_inv(y) >;
return G, v;

end function;

Theorem 3.8 shows that the group U of units of the Dickson nearfield D = D(p, h,v, () has
generators a and b and relations @™ = 1, b¥ = a’ and b~'ab = a9, where ¢ = p", m = (¢*—1) /v
and t = m/(¢—1). Furthermore, Ellers and Karzel [23] show that ged(v,t) = ged(¢—1,¢) < 2.
Equality holds if and only if v =2 mod 4 and ¢ =3 mod 4 and this in turn is equivalent to
the Sylow 2-subgroup of U being a generalised quaternion group.

The centre of D is GF(q) and its group of units is generated by ¢**.

intrinsic UNITGROUP(N :: NFD) — GRPMAT, MAP
{The unit group of the nearfield N returned as
a matrix group M and a map from M to N}
if not assigned N matgrp then
U, v := matrixUnitGroup(N);

N matgrp := U;
Ny :=;
end if;

return N matgrp, N ;
end intrinsic;

intrinsic UNITGROUP("GRPPERM, N :: NFD) — GRPPERM
{The unit group of the nearfield N returned as
a permutation group}
U := UNITGROUP(N) ;
require #U le 108 : “Unit group 1s too large to construct as a
permutation group”’;
_, H, _ := COSETACTION(U, sub<U|>);
return H;
end intrinsic;

intrinsic UNITGROUP("GRPPC, N :: NFDDCK) — GRPPC
{The unit group of the nearfield N returned as a PC-group}
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U := UNITGROUP(N) ;
LMGINITIALISE(U) ;
_, pcg, _ := LMGSOLUBLERADICAL(U);
return pcg;

end intrinsic;

intrinsic UNITGROUP("GRPPC, N :: NFDZSs) — GRPPC
{The unit group of the nearfield N returned as a PC-group}
require N'ndx in [1..4]: “Unit group not soluble”;
U := UNITGROUP(N) ;
LMGINITIALISE(U) ;
_, pcg, _ := LMGSoLUBLERADICAL(U);
return pcg;
end intrinsic;

intrinsic ORDER(x :: NFDELT) — RNGINTELT
{Order of the unit x of a nearfield}
require ISUNIT(x): “Attempting to find the order of a non-unit”;
N := x"parent;
one := IDENTITY(N);
if x eq one then return 1; end if;
n:=#N—-1;
ord :=1;
facts := FACTORISATION(n);
for term in facts do
p, e := EXPLODE(term);
y = X(n div pe)
f:=0;
while y ne one do
yi=yP;
f4:i=1;
end while;
ord x:=p’;
end for;
return ord ;
end intrinsic;

As a matrix group, the unit group U acts regularly on the non-zero vectors of the under-
lying vector space E and consequently the affine group E - U is sharply two-transitive. As
shown in §2.1, all sharply two-transitive groups occur in this way.

intrinsic AFFINEGROUP(N :: NFD) — GRPMAT
{The sharply two-transitive affine group associated with a
nearfield, returned as a matrix group}
U := UNITGROUP(N) ;
F := BASERING(U);
one := MATRIX(F,1,1,[1]);
gens := [DIAGONALJOIN(U.i,one) : i in [1..NGENS(U)]];
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n := DIMENSION(U);
C := DIAGONALJOIN(U ! 1, 0ne);
Cln+1,1] :=1;
APPEND(~gens, C);
G := sub<GL(n+1,F) | gens >;
G ORDER := #Nx*(#N—1);
return G;
end intrinsic;

To convert from a matrix group to a permutation group we construct the permutation
representation on the cosets of the unit group. Given that the affine group has n generators,
the following code relies on the assumption that the unit group of the nearfield is generated
by the first n — 1 generators

intrinsic AFFINEGROUP("GRPPERM, N :: NFD) — GRPPERM
{The sharply two-transitive affine group associated with a
nearfield, returned as a permutation group}
G := AFFINEGROUP(N) ;
S :=sub<G |[G.i:iin[1..NGENS(G)—1]] >;
require INDEX(G, S) le 107 :
‘Degree of permutation group is too large”;

_, H, _ := COSETACTION(G, S);
H ORDER := #Nx(#N—1);
return H;

end intrinsic;

intrinsic AFFINEGROUP("GRPPC, N :: NFDDCK) — GRPPC
{The sharply two-transitive affine group associated with a
regular nearfield, returned as a PC-group}
A := AFFINEGROUP(N);
LMGINITIALISE(A) ;
_, pcg, _ := LMGSOLUBLERADICAL(A);
return pcg ;
end intrinsic;

intrinsic AFFINEGROUP("GRPPC, N :: NFDZSS) — GRPPC
{The sharply two-transitive affine group associated with an
irregular nearfield, returned as a PC-group}
require N'ndx in [1..4]: “Unit group not soluble”;
A := AFFINEGROUP(N);
LMGINITIALISE(A) ;
_, pcg, _ := LMGSOLUBLERADICAL(A);
return pcg ;
end intrinsic;

3.8 Miscellaneous

intrinsic PRIMEFIELD(N :: NFD) — FLDFIN
{Return the prime field of the nearfield N}
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return GF(N'p);
end intrinsic;

Lemma 3.9. If (p, h,v) is a Dickson triple and if ¢ is a primitive element of K = GF(q"),

where ¢ = p, then every element of K can be written as a polynomial in (¥ with coefficients
in GF(q).

Proof. (Zassenhaus [67, p. 190]) Let F' be the subfield of K generated by (V. Then F = GF(¢")
for some divisor £ of v. The order of ¢V is (¢° — 1)/v and therefore (¢” — 1)/v divides ¢* — 1.
But ¢*/24+1>2"24+1> v and so £ = v and hence F = K. O

Corollary 3.10. The kernel of D = D(p, h,v,() is GF(q).

Proof. If A = (¢V), then for w € D and a € A we have w o a = wa. From the Lemma,
¢ = f(¢V) for some f(x) € GF(q)[z]. Therefore, if w € K(D), wo ( = w¢, whence w? = w.
Thus (D) C GF(q). The converse is clear and so K(D) = GF(q) = Z(D). O

For the irregular nearfields it is clear that the kernel is the prime field.

intrinsic KERNEL(N :: NFD) — FLDFIN

{Return the kernel of the nearfield N as a finite field}
return GF(N'q);

end intrinsic;

4 Complements and 1-cocycles

IfT' = Gal(K/GF(p)) and S =I'x K* is the semidirect product of I" and K*, it follows from
Lemma 3.4 that D* — S : w — p(w)w is an embedding of the multiplicative group D* of
D(p, h,v,¢) in S, where multiplication in S is defined by

(y1a1)(y202) = 7172@2 as.

If U is the image of D* in S, then 'NU =1, TU = S and K* NU = A = ({V). In fact,
from the definition of p, we have UK* = T'g x K*, where I'g = Gal(K/GF(q)).

intrinsic EXTENDEDUNITGROUP(N :: NFDDCK) — GRPMAT
{The extended unit group of a Dickson nearfield}

U, _ := UNITGROUP(N);
z:=(Ngf).1;
q:=Ngq;

¢ :=Ng¢;

n := DIMENSION(U) ;
C := MaTRIX(n, n, [6(2(7%))) - i in [0.. n—1]]);
G := sub< GL(n,BAsSERING(U))| U, C >;
G ORDER := ORDER(U)*N'"v;
return G;
end intrinsic;

In the remainder of this section we reverse the above process and describe how to construct
a Dickson nearfield from a complement of I' in I x K *. This will lead to an efficient criterion
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for isomorphism testing of nearfields including a simple construction for the isomorphism
itself.

Therefore, suppose that K = GF(p"), I' = Gal(K/GF(p)) and that U is a subgroup of
S=Tx K*such that TNU =1and I'U = S.

For all u € U there are unique elements {(u) € I' and #(u) € K* such that

u = §(u)f(u). (1)

It follows from (1) that
{(wu) = E(w)é(u), and (2)
0(wu) = 0(w)4™h(u). (3)

The map £ : U — I' is a homomorphism and since I' is cyclic and generated by z +— zP,
the image T’y of £ is cyclic and generated by ®, where ®(x) = 2?" for some h. If q = p", the
fixed field of ® is GF(q) and thus I'g = Gal(K/GF(q)). Then n = hv, where v = |I'g|. We
have U C Sg=Tox K*, ToNU =1 and Sy =T'yU = K*U.

Lemma 4.1. 0 : U — K* is a bijection and a 1-cocycle.

Proof. Suppose that 6(w) = 6(u). Then &(u)é(w)™! =uw™! € TNU = 1 and hence w = u.
Thus 6 is one-to-one and since |U| = |K*|, it is a bijection. Equation (3) shows that 6 is a
1-cocycle. ]

If A=kerg, then A=UNK* and A is the unique subgroup of order m = (¢* — 1)/v in
K*. For all a € A we have 0(a) = a. Thus for u € U and a € A we have 6(ua) = 6(u)a and
therefore # induces a bijection 6 : U/A — K> /A : 4 +— O(u)A, where @ = uA. Similarly, &
induces a bijection £ : U/A — Ty and if o = 61, then from (3) we have

a(my2) = o(1)”0(v2) (4)

and so o : 'y — K* /A is a 1-cocycle.
The proof of the next lemma is essentially the argument of [23, p.253].

Lemma 4.2. There exists a generator ¢ of the cyclic group K* such that ®( € U.

Proof. Choose w € U such that {(w) = ®. If { is a primitive element of K, then #(w) = ¢* for
some s and hence G(wi)' = ¢3¢ =1/(@=1) for all i. The maps £ and 0 are bijections and therefore
the elements o; = ¢5(¢'~1/(¢=1) (0 < i < v) are the coset representatives of A in K*. That
is, for 0 < i < v, the quantities s(¢’ —1)/(¢—1) mod v are distinct and s(q” —1)/(g—1) =0
mod v. Since ged(s,v) = 1, it follows that

i1 v_1
4 Z0 modv for0<i<wv and 4

=0 dv.
1 — mod v

Let m = (¢¥ — 1)/v and let m’ be the product of the primes r such that r | m and r { s. Then
ged(s +m'v,mv) = 1. Let ¢’ = ¢*t"'?; then ¢’ generates K*. Now (" € A and therefore
O(w¢™?) = ¢’ and £(wC™?) = &. Thus &' = wC™" € U, as required. O

In the course of this proof we have shown that v(q — 1) | ¢ — 1. A number theoretic
argument now shows that (¢, v) is a Dickson pair (see [38]).
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4.1 Isomorphisms and automorphisms

We continue with the notation established above. That is, U is a complement to 'y in Sy
and ( is a primitive element of K such that ®¢ € U.

Since (®(¢)! = Pi¢(a'=1/(@=1)  the subgroup U is uniquely determined by the coset (A =
o(®). Let V be the (unique) subgroup of order v in K* and define A : K* — V by A\(b) = b™.
Then A is a homomorphism onto V' with kernel A and so K*/A ~ V. It follows that U is
uniquely determined by the element § = (" of order v. This provides a convenient test for
equality.

intrinsic ‘eq’ (N :: NFDDCK, M :: NFDDCK) — BOOLELT

{N eq M}
q:=Ngq;
v:=Nv;

if g ne M"q or v ne M'v then return false; end if;
m:=(q¥—1)divv;
return (N prim)™ eq (M prim)™;

end intrinsic;

intrinsic ‘eq’ (N :: NFDZSS, M :: NFDZSS) — BOOLELT
{N eq M}

return N ndx eq M ndx;
end intrinsic;

intrinsic ‘ne’ (N :: NFDDCK, M :: NFDDCK) — BOOLELT

{N ne M}
q:=Ng;
v:=Nv;

if g ne M"q or v ne Mv then return true;; end if;
m:=(q¥—1)divv;
return (N"prim)™ ne (M prim)™ ;

end intrinsic;

intrinsic ‘ne’ (N :: NFDZSS, M :: NFDZsS) — BOOLELT
{N ne M}

return N ndx ne M ndx ;
end intrinsic;

We may identify the field K with a vector space E of dimension v over GF(q). Given
v €Iy and a € K, the map e — ¢e”a is a linear transformation of E, whence Sy C GL(E).
The affine group U x E acts sharply doubly transitively on E and it follows from Theorem 2.6
that E can be given the structure of a nearfield with U (isomorphic to) its group of units. In
the notation of Theorem 2.6, Q = E, M = K, n is the identity and p = 671,

If @ o b denotes the nearfield multiplication defined on K* via this construction, then
6~ (aob) =6~ (a)d~(b) and from (3) we have a o b = a?®b, where p = €07" : K* — T.
If b € A, then p(ab) = p(a) and p is completely determined by the induced map p = o~ :
K*JA — Ty. Furthermore, for w € K* we have §~'(w) = p(w)w and so we recover the
embedding defined in the first paragraph of this section.

26



Theorem 4.3 (23, Satz 4]). If q is a prime power and D is a Dickson nearfield of order
q" # 9, centre GF(q) and defining map p : K* — T'o, then the cyclic normal subgroups of
D* are contained in kerp. If |D| =9, then D* is a quaternion group and every element
generates a cyclic normal subgroup.

It follows from this theorem that if Uy and Uy are complements to I'g in Sy, if ¢ : Uy — Us
is an isomorphism and |U;| # 9, then ¢ preserves A. It then follows from Lemma 3.9 that
¢ € Gal(K/GF(p)). If ®(; € Uy, where (7 generates K*, then (®(;)? = ®(2, where (2 also
generates K *. Setting §; = (/" (i = 1,2) we have §7 = d. Thus the nearfields corresponding
to Uy and Us are isomorphic if and only if the minimal polynomials of §; and do are equal.

If ¢ is the Euler phi-function, there are ¢(v) complements to I'g in S and if g is the order
of p modulo v, there are ¢(v)/g pairwise non-isomorphic Dickson nearfields of order ¢* with
centre GF(q).

intrinsic ISISOMORPHIC(N; :: NFDDCK, No :: NFDDCK) — BOOLELT, MAP
{Test whether the regular nearfields N1 and N2 are

isomorphic. If they are, return an isomorphism}
q:=Nigq;
v :=Niv;

if g ne N2"g or v ne Ny v then
return false, _;
end if;
m:=(q¥ —1)divv;
di := (N1 prim)™;
do := (N2 prim)™;
if MINIMALPOLYNOMIAL(d1) ne MINIMALPOLYNOMIAL(d2) then
return false, _;
end if;
s := LoG(d1,d2);
_,t,_:=XGCD(s,q"—1);
return true, map<N; — N |
x +— ELEMENT(Ny, ((x'elt)®)), y +— ELEMENT(Ny, ((y'elt)!)) >;
end intrinsic;

Theorem 4.4. If ¥(z) = 2P, the automorphism group of D = D(p,h,v,() is the cyclic
group (V) of order hv/g except for D(3,1,2,() whose automorphism group is the symmetric
group Sym(3).

Proof. Suppose that D # D(3,1,2,() and that ¢ is an automorphism of D. By Theorem 4.3,

¢ fixes A and by Lemma 3.9, ¢ € Gal(K/GF(p)). Thus ¢(z) = 2" for some a.
For w,u € K* we have

(e

pwou) = (wou) = (wpa)p(upa)upa and
p(w) o p(u) = (wu)? :
hence @(w)P#®) = p(w)P® for all w. It follows that p(p(u)) = p(u) for all w.
In particular, p(¢) = p(¢(¢)) and hence p(¢)¢~! € A. It follows that ¢P"~! = p** for

some v and thus p* —1=kv mod ¢* —1. But ¢* =1 =0 mod v and so p* —1 =0 mod v.
From this we deduce that g divides o and hence ¢ € (V).

(o1

(e}
— WP PP
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Conversely, suppose that u € §(qi*1)/(q*1)A. Then ¥(u) € Cpg(qifl)/(qfl)A. But p9 =1
mod v and therefore (P’ A = (A. Consequently p(¥(u)) = p(u). We now have
U(wou) = U(wWy) = U (w)" ™ (u)
= U (w)" YD (y)
= U(w) o ¥(u)
and therefore ¥ is an automorphism of D. This completes the proof that Aut(D) = ().
The group of units of D(3, 1,2, () is a quaternion group of order 8. If ¢ is an automorphism
which fixes the subgroup A of order 4, then the argument just given shows that ¢ is a field

automorphism and hence its order is 1 or 2. The group of units has an automorphism of
order 3 which permutes the three subgroups of order 4. It follows that the full automorphism

group is Sym(3). O
TODO:
Maps for intrinsic AUTOMORPHISMGROUP(N :: NFDDCK) — GRPPERM, MAP
Sym(3) {The automorphism group A of the regular nearfield N and
and a map giving the action of A on N}
Zassenhaus if #N eq 9 then return Sym(3),_; end if;
nearfields vi=Nv:

g := ORDER(RESIDUECLASSRING(v) | N'p);
ord := vxN h div g;
A := CycLICGROUP(ord) ;

)

Y := map< car<A,N> — N |7 — ELEMENT(N, (w[z]‘elt(’\"p
where o is (1711 -1) mod ord >
return A, v;
end intrinsic;

The following theorem is due to Foulser [25]. A proof can also be found in [27].

Theorem 4.5. The automorphism group of a Zassenhaus nearfield is cyclic. Their orders
are 4, 2,3,1,5, 2 and 1.

intrinsic AUTOMORPHISMGROUP(N :: NFDZSS) — GRPPERM

{The automorphism group A of the irregular nearfield N and
a map giving the action of A on N}
order :==[4, 2, 3, 1, 5, 2, 1];
return CYCLICGROUP(order [N"ndx]);

end intrinsic;

5 Sub-nearfields

If N is a Zassenhaus nearfield, its only proper sub-nearfield is its prime field, which is not
of type NFDZss. Therefore the current implementation of sub< for user types is unable to
return this object and so for now we ignore them.

Lemma 5.1 (Dancs [27, Lemma 6.1]). If (g,v) is a Dickson pair and (¢ —1)/(q—1) = j
mod v, then ged(j,v) = ged(i,v).
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Proof. 1f £ = ged(j,v) and n = ged(i,v), then (¢,€) and (g,7n) are Dickson pairs. Therefore
(¢ —1)/(g—1) = 0 mod & whence £ | i and so ¢ | 5. We have 1 | i and consequently
(¢" —=1)/(g—1) =0 mod n, whence 7 | j. It follows that n | ¢ and hence n = £. O

Lemma 5.2 (Dancs [27, Lemma 6.2]). If (¢,v) is a Dickson pair and if t divides v, then
(¢ —1)/(¢" = 1) = v/t mod v.

Theorem 5.3 (Dancs [11, 12, 27]). If D = D(p, h,v,() is the Dickson nearfield based on the
Galois field K = GF(p), then for each divisor A of hv, D contains exactly one sub-nearfield
of order p*, namely D(p,k,\/k,(!), where k = ged(hI,)\) and where I = (p™ —1)/(p* — 1).

Proof. Let p: K* — Gal(K/GF(p)) be the map defined in §3.4.2 and let ® = p(¢). If F' is
the subfield of K of size p*, then wou = w?™y € F for all w,u € F, because F is fixed by ®.

Then x = ¢! is a primitive element of F' and p(x) = ®*, where « is the unique integer such
that 0 < o < v and k € (" ~D/(@=D A where A = (¢V). It follows that I = (¢® —1)/(q — 1)
mod v and therefore, by Lemma 5.1, we have ged (I, v) = ged(a, v).

The fixed field of p(k) is GF(p*) for some k and since for all x € F we have p(k)(z) = ",
it follows that k = ged(ha, A).

If 5| ged(hl, ), then 3 | ged(hl, hv) = hged(I,v) = ged(a,v) and so (| ha, A, whence
B | ged(ha, A) = k. Similarly, if 8 | ged(ha, k), then 8 | ged(hl, X). Thus k = ged(hl, A) and
F is the underlying Galois field of the nearfield D(p, k, \/k, ¢1). O

intrinsic SUBCONSTR(N :: NFDDCK, E :: SEQENUM) — NFDDCK, MAP
{The sub-nearfield of the Dickson nearfield N generated by E}
if #£ gt 0 and (TYPE(E[1]) ne NFDELT or E[1] parent ne N) then
return “elements on RHS must be in the nearfield’”, _;

end if;
v:=Nv;
h:= Nh;

L, g:=sub< N'gf | [eelt: ein E] >;
_, P, A := ISPRIMEPOWER(#L);
I = (#N — 1) div (p* — 1);
if / eq 0 then / := v; end if;
k := GCD(hx/,\);
w:=\div k;
K := GF(p?);
C:=K ! (Nprim");
M = nearFie/d(pk, w, K, : LargeMatrices := N'sz eq p);
f:=map<M — N |x — ELEMENT(N, (g(x'elt))) >;
return M, f;
end intrinsic;

intrinsic SUBCONSTR(N :: NFDDCK, x :: ANY) — NFDDCK, MAP
{The sub-nearfield of the Dickson nearfield N generated by x}
if (TYPE(x) ne NFDELT) or (x parent ne N) then
return “the element must belong to the nearfield’, _;
end if;
return SUBCONSTR(N, [x]);
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end intrinsic;

6 Nearfield planes

The first part of this section is based on the book by Dembowski [14, p. 119ff] and a paper
of André [2].

A collineation of a projective plane P is an incidence preserving automorphism mapping
points to points and lines to lines. A centre of a collineation « is a point ¢ such that « fixes
every line incident with ¢. An axis of « is a line A such that « fixes every point incident
with A.

A collineation « has a centre if and only if it has an axis. If o # 1, the centre and axis
are unique. If a has a centre (and hence an axis) it is called a central collineation.

If « is a central collineation with centre ¢ and axis A we say that « is an elation if ¢ is
incident with A and that it is an homology otherwise.

Let T' = Aut(P) be the group of all collineations of P. Given a point ¢ and a line A, let
I'(c, A) be the group of all central collineations with centre ¢ and axis A.

If 2, y and c are three distinct points of P, if neither x nor y lie on the line A, and if
x and y lie on a line through ¢, there is at most one element v € I'(c, A) such that z7 = y.
If for all such = and y there exists v € I'(c, A) such that 7 = y, the group I is said to be
(¢, A)-transitive (Baer [3]). This is equivalent to the transitivity of I'(¢, A) on the non-fixed
points of any line # A through c.

The projective plane P is said to be a translation plane with respect to A if P is (¢, A)-
transitive for every point ¢ on A. In this case the group I'(4, A) of all elations with a centre
on A is abelian and acts regularly on the points of P not on A.

If w and v are points, then P is said to be (u,v)-transitive if it is (u, L)-transitive for
every line L incident with v. In this case P is a translation plane with respect to uwv, the line
through v and v.

A nearfield N is said to be planar if the mapping = +— —xa + zb is a permutation of N
whenever a # b. Every finite nearfield is planar.

Given points u and v, the projective plane P is (u,v)-transitive if and only if it can be
coordinatised by a planar nearfield with the line uv as the line at infinity. This implies that
a plane P is (u,v)-transitive if and only if it is (v, u)-transitive.

If P is coordinatised by a nearfield N and |N| > 9, then the points u and v are uniquely
determined. Thus every collineation of P fixes the line at infinity and is therefore an affine
collineation of P \ uwv.

6.1 Coordinates

Given a finite nearfield N, there is an affine plane A with point set N x N and lines given
by the equations

y=axm-+b

r =c

Let P be the corresponding projective plane, obtained from 4 by adjoining a line L.
called the line at infinity. We label the points of P with triples of elements of N as follows.
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(1) For every point (z,y) of A there is a point [1,z,y] of P.

(2) For every m there is an “ideal” point [0, 1, m] of P which lies on every line y = zm + b
(b€ N) and on L.

(3) There is a point [0,0, 1] of P which lies on every line z = ¢ and on L.

The lines of P may also be labelled by triples of elements of N: the line y = am + b
corresponds to the triple [—b, —m, 1] and the line x = ¢ corresponds to [—¢,1,0]. The line
L is labelled [1,0,0]. A point 7 = [w,z,y] is incident with a line L = [a, b, ] if and only if
wa + b + yc = 0.

Every collineation of A extends to a collineation of P.

Theorem 6.1 (André [2, Satz 9]). If a is a collineation of the nearfield N, which is composed
of central collineations, then « is of the form

(x,y) — (sza+ c,syb+d) or
(x,y) — (syb+d, sza+ c)

where s € K(N)*, a,b€ N* and ¢,d € N.

To construct a nearfield plane from a nearfield N of order n we begin with the affine plane
as described above with lines y = am + b and x = ¢ and then adjoin the line and points at
infinity.

We begin with the set of points {Pi, Py, ..., P;}, where t = n? + n + 1 and represent the
lines as subsets of the index set {1,2,...,t}.

Multiplication of nearfield elements is quite slow compared to multiplication of the under-
lying Galois field elements and therefore, to gain speed, we first compute the multiplication
table.

multiplicationTable := function( N )

A := ASSOCIATIVEARRAY( ) ;
K := N'gf;
for x in K do for y in K do
A[<x,y>] := (ELEMENT(N, x)*ELEMENT(N, y)) elt;
end for; end for;
return A;
end function;

The points of the nearfield plane are represented as triples of Galois field elements.

intrinsic PROJECTIVEPLANE( N :: NFD : CHECK := false)
— PLANEPROJ, PLANEPTSET, PLANELNSET
{The finite projective plane coordinatised by the nearfield N}
K := Ngf;
pts :={@ [K| 1,x,y] : x,y in K @} join
{@ [K|0,1,y] : y in K @} join {@ [K|0,0,1] @};
Iset := {@ @};
M := muiltiplicationTable(N) ;

Construct the lines with equations y = xm + b.

for min K do
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for b in K do
In := { INDEX(pts, [K|1,x, M[<x,m>]|+b]) : x in K };
INCLUDE(~In, INDEX(pts, [K| 0,1,m]) );
INCLUDE(~Iset, In);
end for;
end for;

Include the lines x = ¢, through [0, 0, 1].

for c in K do
In :== { INDEX(pts, [K| 1,c,y]) : y in K };
INCLUDE(~In, INDEX(pts, [K]| 0,0,1]) );
INCLUDE(~Iset, In);

end for;

Finally, include the line at infinity.

In := { INDEX(pts, [K| 0,1,y]) : y in K };

INCLUDE(~In, INDEX(pts, [K| 0,0,1]));

INCLUDE(~Iset, In);

return FINITEPROJECTIVEPLANE< #pts | Iset : CHECK := CHECK>;
end intrinsic;

Alternatively we can determine the incidence relation between points and lines by com-
puting the ‘inner product’ of each point with each line, but this is somewhat slower than the
method above.

intrinsic PROJECTIVEPLANEALT( N :: NFD : CHECK := false)

— PLANEPROJ, PLANEPTSET, PLANELNSET
{The finite projective plane coordinatised by the nearfield N}
K := N'gf;
pts :=[[K|1,x,y] : x,y inK | cat [[K]|0,1,y] :y in K] cat [ [K| 0,0,1] |;
linelist := [ [K| b,a,1] : a,bin K ] cat | [K| b,1,0] : bin K | cat [ [K| 1,0,0] |;
v = #pis;
M := multiplicationTable(N ) ;
lineset := {@ {i:iin[1..v]|
M(<ptsi][1], L[1]>]+M][<pts][i][2], L[2]>]+M[<pts][i][3], L[3]>] e K 1 0 } :
L in linelist @} ;
return FINITEPROJECTIVEPLANE< v | lineset : CHECK := CHECK>;
end intrinsic;

For comparison, here is a version which uses arithmetic within the nearfield.

intrinsic PROJECTIVEPLANEOLD( N :: NFD : CHECK := false)
— PLANEPROJ, PLANEPTSET, PLANELNSET
{The finite projective plane coordinatised by the nearfield N}
pts :=[[N|1,x,y] : x,y in N'gf | cat [ [N| 0,1,y] : y in N'gf | cat [ [N| 0,0,1] |;
linelist := [ [N| b,a,1] : a,b in N°gf | cat [ [N| b,1,0] : b in N°gf ] cat [ [N| 1,0,0] |;
v = #pis;
lineset := {@ {i:iin[1..v]|
IsZero(pts[i|[1]*L[1]+pts[i][2]*L[2]+pts[i][3]*L[3]) } : L in linelist @} ;
return FINITEPROJECTIVEPLANE< v | lineset : CHECK := CHECK>;
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end intrinsic;

A slightly faster approach is to construct the plane using an adjacency matrix but this is
still significantly slower than the method which uses the projective completion of the affine
plane.

intrinsic PROJECTIVEPLANEADJ( N :: NFD : CHECK := false)
— PLANEPROJ, PLANEPTSET, PLANELNSET
{The finite projective plane coordinatised by the nearfield N}
K := N'gf;
pts :=[[K|1,x,y] : x,y inK ] cat [[K| 0,1,y] : y in K] cat [ [K| 0,0,1] |;
linelist := [ [K| b,a,1] : a,bin K ] cat [ [K| b,1,0] : bin K | cat [ [K| 1,0,0] |;
v = #pts;
M := multiplicationTable(N) ;
A := MATRIX(INTEGERS(), v, v,
[IsZERO(M[<pt[1], In[1]>]+M[<pt[2], In[2]>]+M[<pt[3], In[3]>])
select 1 else 0 : pt in pts, In in linelist |);
return FINITEPROJECTIVEPLANE< v | A : CHECK := CHECK>;
end intrinsic;

6.2 Hughes planes

In 1957 Hughes [31] discovered a class of finite projective planes constructed from the Dickson
nearfields which have rank 2 over their kernel. Neither these planes nor their duals are
translation planes and therefore they cannot be obtained by the coordinatisation method of
the previous section. Hughes’ methods required the kernel to be central but in 1960 the
construction was generalised by Rosati [56] to include the Zassenhaus nearfields (see also
Dembowski [14, §5.4] and [15]). For simplicity of notation we shall use the term ‘Hughes
plane’ to include both Hughes planes and generalised Hughes planes.

Given a nearfield N of order ¢ and whose kernel is GF(q), the points of the Hughes plane
H are equivalence classes of triples of elements of N where [z, y, z] ~ [zk, yk, zk| for all k € N,
k # 0. For each equivalence class we choose as representative the unique triple whose leading
non-zero entry is 1. Let P be the set of representatives of the points.

The group I' = GL(3, ¢) acts on the equivalence classes of points. If A = (a;;) is a 3 x 3
non-singular matrix, then the transformation

3 3 3
(21,20, 23] = [ anwi,»  agiwi, » agwi]
i=1 i=1 i=1

maps points to points.
Given f € N, define the line L(f) to be the set

L(f) ={lz.y,z] e Pz +y+ fz=0}.

The lines of the Hughes plane of N are the images of the lines L(f) under the action of the
group I'.

It was shown by Rosati [55] in the case of Dickson nearfields and by Dembowski [15] in
general, that I' has two orbits, p and ¢, on points. The orbit p is the set of points with
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TODO:
Check this

representatives [x,y, z|, where x, y and z belong to I(IN). By a general result of Brauer on
symmetric block designs it follows that I has two orbits on lines.

The points p together with the lines joining them are the points and lines of the Desar-
guesian plane of order ¢; it is a Baer subplane of the Hughes plane. The automorphism group
of H is the semidirect product of PGL(3,¢q) by Aut(NV).

intrinsic HUGHESPLANE( N :: NFD : CHECK := false)
— PLANEPROJ, PLANEPTSET, PLANELNSET
{ The Hughes plane based on the nearfield N }
if TYPE(N) eq NFDDCK then
require N'veq2:
“the nearfield must have rank 2 over its kernel”;
end if;
K := N'gf;
points := {@ [K|1,x,y] : x,y in K @} join
{@ [K]| 0,1,y]: y in K @} join {@ [K| 0,0,1] @};
M := muiltiplicationTable(N) ;

A triple is normalised if its leading non-zero coefficient is 1.

normalise := function(v)
if not ISZErRO(v[1]) then
a := ELEMENT(N, v[1]) ~1;
b := a'elt;
return (K| 1, M[<v[2],b>], M[<V[3], b>]];
end if;
if not ISZERO(v[2]) then
a := ELEMeNT(N, v[2]) ;
return (K| 0,1, M[<v[3],a elt>]];
end if;
return [K10,0,1];
end function;

Given a triple v of elements of N and a matrix A € GL(3,q), apply 4 to v to get (Av*™)*™
(which is not necessarily the same as vA'T).

apply := func< v,A |
[ &+ M[<A[i,jl,v[j]>]:jin [1.4#v]] : i in [1.#v]] >;
The initial set of lines are the solutions of equations x +y+ fz = 0, where f =0 or f = (.

lines .= {@ @};

In:={[K|1,-1,z]: zinK };
INCLUDE(~In, [K|0,0,1] );

line := { INDEX(points,v) : v inin };
INCLUDE(~lines, line);

f:= N prim;
In:={[K[1,-1-M[<f,z>],z] : zinK };
INCLUDE(~In, normalise([K| 0,f,—1]) );
line := { INDEX(points,v) : v inIn };
INCLUDE(~lines, line);
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The complete set of lines is the union of the orbits of GL(3, ¢) on the lines already obtained.

n := #points;
S :=Sym(n);
gens :=[S|];
for g in GENERATORS(GL(3,N'q)) do
perm :=[|;
fori:=1tondo
v := normalise(apply (pointsli],g));
APPEND(~perm, INDEX(points, v));
end for;
APPEND(~gens, S | perm);
end for;

H := sub< S| gens >;

L := &join[ In" - In in lines |;

return FINITEPROJECTIVEPLANE< n | L : CHECK := CHECK >;
end intrinsic;
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