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Abstract. We give a simple proof of the Faber-Krahn inequal-

ity for the first eigenvalue of the p-Laplace operator with Robin

boundary conditions. The techniques introduced allow to work

with much less regular domains by using test function arguments.

We substantially simplify earlier proofs, and establish the sharp-

ness of the inequality for a larger class of domains at the same

time.

1. Introduction

If Ω is a bounded domain in R
N , 1 < p < ∞ and β > 0, then it is

well known that

−∆pu = λ|u|p−2u in Ω,

|∇u|p−2∂u

∂ν
+ β|u|p−2u = 0 on ∂Ω

(1.1)

has a first eigenvalue λ1(Ω). Here ∆p is the p-Laplacian given by ∆pu =

div(|∇u|p−2∇u). That eigenvalue is given by

λ1(Ω) = min
u∈W 1

p (Ω)
u 6=0

∫

Ω
|∇u|p dx+ β

∫

∂Ω
|u|p dσ

∫

Ω
|u|p dx

. (1.2)

It is isolated and simple, and the corresponding eigenfunction can be

chosen to be positive. The aim of this paper is twofold. First, we

extend results from [8, 10] and [6] to a larger class of domains. Second,

we substantially simplify many arguments. The idea is to work only

with the weak form of the equation, and replace most key arguments

requiring boundary regularity by test function arguments. The main

result is the following isoperimetric inequality.
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Theorem 1.1. Let Ω ⊂ R
N , N ≥ 2, be a bounded Lipschitz domain. If

B is a ball of the same volume as Ω, then λ1(B) ≤ λ1(Ω) with equality

if and only if Ω is a ball.

Apart from a simpler proof, the improvement over [6, 10] is the

uniqueness in the class of Lipschitz domains rather than just C2-domains.

For more information on the history and background of the problem

we refer to [8].

We expect that our new method is powerful enough to deal with

an even larger class of domains, provided a suitable weak formulation

for the eigenvalue problem and good trace theorems are used. We

refer to Section 6 for a detailed discussion of the issues involved. The

result may also be useful to improve the isoperimetric inequality for

the second eigenvalue given in [14] in case of p = 2.

2. A level set representation for the first eigenvalue

The aim of this section is to use a test function argument to establish

the level set representation for the first eigenvalue λ1(Ω) of (1.1) from

[8, Proposition 2.1] and [6, Proposition 3.1]. As a consequence we

do not need certain smoothness assumptions on the domain, and the

eigenfunction does not need to be as regular as in the above mentioned

references. In particular, in case of the p-Laplacian, we can avoid the

rather technical regularisation procedure used in [6, Section 3].

The eigenvalue problem is understood in the weak sense, that is, λ

is an eigenvalue if there exists a non-zero function u ∈ W 1
p (Ω), called

an eigenfunction, such that
∫

Ω

|∇u|p−2∇u · ∇v dx+

∫

∂Ω

β|u|p−2uv dσ = λ

∫

Ω

|u|p−2uv dx (2.1)

for all v ∈ W 1
p (Ω). It is well known that (1.1) has an isolated first

eigenvalue. The corresponding eigenfunction ψ is simple and can be

chosen such that ψ(x) > 0 for all x ∈ Ω and normalised such that

‖ψ‖∞ = 1. The proofs in [17] using the direct method in the calculus

of variations are easily adapted to our situation (see [6, Section 2] or

[16, Theorem 3.4]). Note that the very elegant and simple proof from

[13, 2] could be adapted.

From standard regularity theory ψ ∈ C1(Ω) (see [21]). We also use

that the eigenfunction is continuous up to the boundary, even though

we believe that this is not really necessary if good trace theorems are

available. For a discussion of that see Section 6.
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Lemma 2.1. If Ω is Lipschitz and ψ is the first eigenfunction of (1.1),

then ψ ∈ C(Ω̄) ∩ C1(Ω).

Proof. We have seen already that ψ ∈ C1(Ω). For the boundary regu-

larity note that ψ ∈ L∞(Ω). (see [9, Theorem 2.7 and Section 4], where

that fact is proved for arbitrary domains). Now the arguments in [15,

page 466/467] imply that ψ is Hölder continuous on Ω̄. The aim of

that reference is to prove that ∇ψ is Hölder continuous. An analysis of

that proof shows that for the Hölder continuity of ψ only the Lipschitz

continuity of Ω is needed. For the case p = 2 also see [22]. �

We next define a functional.

Definition 2.2. For t ∈ (0, 1) we set

Ut := {x ∈ Ω: ψ(x) > t},

St := {x ∈ Ω: ψ(x) = t},

Γt := {x ∈ ∂Ω: ψ(x) > t}.

For a measurable function ϕ : Ω → [0,∞) we set

HΩ(Ut, ϕ) :=
1

|Ut|

(

∫

St

ϕdσ +

∫

Γt

β dσ − (p− 1)

∫

Ut

ϕp′ dx
)

whenever the integral exists. Here σ is the (N − 1)-dimensional Haus-

dorff measure and |Ut| denotes the Lebesgue measure of the set Ut.

One of the main tools we use is the co-area formula asserting that

for every non-negative measurable function v on Ω
∫

Ω

v|∇ψ| dx =

∫ ∞

0

∫

St

v dσ dt. (2.2)

For a proof we refer to [19, Section 1.2.4] or [12, Equation (3.4)]. We

prove the following level set representation of the first eigenvalue.

Proposition 2.3. Let ψ > 0 be the eigenfunction of (1.1) correspond-

ing to λ1(Ω). Then

λ1(Ω) = HΩ(Ut, |∇ψ|
p−1/ψp−1)

for almost all t ∈ (0, 1).

Proof. Fix t ∈ (0, 1) and let ε ∈ (0, t). Define the function

ϕε :=
1

ψp−1
min

{

1,
(ψ − t

ε

)+}

.
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Then clearly ϕε is increasing in ε and

ϕε →
1

ψp−1
1Ut

(2.3)

as ε → 0. As usual, 1Ut
is the indicator function for the set Ut. More-

over, ϕε ∈W 1
p (Ω) and by [11, Section 4.2.2],

∇ϕε =























−(p− 1)
∇ψ

|ψ|p
if ψ > t+ ε (on Ut+ε),

1

ε

(

(p− 1)
t

ψ
− p+ 2

) ∇ψ

ψp−1
if t < ψ < t+ ε,

0 otherwise.

Note that if t is below the infimum of ψ, then ϕε is simply given by

ψ−(p−1). We now look at each term of (2.1) setting u = ψ and v = ϕε.

For the first term we have
∫

Ω

|∇ψ|p−2∇ψ · ∇ϕε dx = −(p− 1)

∫

Ut+ε

|∇ψ|p

ψp
dx

+
1

ε

∫

Ut\Ut+ε

(

(p− 1)
t

ψ
− p+ 2

) |∇ψ|p

ψp−1
dx

for all 0 < ε < t. We rewrite the second integral using the co-area

formula (2.2). We then get

∫

Ut−ε\Ut

(

(p− 1)
t

ψ
− p+ 2

) |∇ψ|p

ψp−1
dx

=

∫ t+ε

t

(

(p− 1)
t

τ
− p+ 2

)

∫

Sτ

|∇ψ|p−1

ψp−1
dσ dτ

Since ψ ∈W 1
p (Ω) the above also shows that the function

s 7→

∫ s

t

(

(p− 1)
t

τ
− p+ 2

)

∫

Sτ

|∇ψ|p−1

ψp−1
dσ dτ

is locally absolutely continuous on (0, 1). Using that such functions are

differentiable almost everywhere (see [20, Theorem 8.17]) we get that

1

ε

∫

Ut\Ut+ε

(

(p− 1)
t

ψ
− p+ 2

) |∇ψ|p

ψp−1
dx

=
1

ε

∫ t+ε

t

(

(p− 1)
t

τ
− p+ 2

)

∫

Sτ

|∇ψ|p−1

ψp−1
dσ dτ

→
(

(p− 1)
t

t
− p+ 2

)

∫

St

|∇ψ|p−1

ψp−1
dσ =

∫

St

|∇ψ|p−1

ψp−1
dσ
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for almost all t ∈ (0, 1) as ε → 0. Looking at the other terms in (2.1)

we get by using (2.3) and the monotone convergence theorem
∫

∂Ω

β|ψ|p−2ψϕε dσ →

∫

Γt

β dσ. (2.4)

Similarly
∫

Ω

|ψ|p−2ψϕε dx→

∫

Ut

1 dx = |Ut|

as ε→ 0. Hence by letting ε→ 0 in the identity
∫

Ω

|∇ψ|p−2∇ψ · ∇ϕε dx+

∫

∂Ω

β|ψ|p−2ψϕε dσ = λ1(Ω)

∫

Ω

|ψ|p−2ψϕε dx

we get

−(p− 1)

∫

Ut

|∇ψ|p

ψp
dx+

∫

St

|∇ψ|p−1

ψp−1
dσ +

∫

Γt

β dσ = λ1(Ω)|Ut|

for almost all t ∈ (0, 1). Rearranging, the assertion of the proposition

follows. �

3. An estimate for the first eigenvalue

We can use the representation in Proposition 2.3 to estimate the

functional HΩ(Ut, ϕ) in terms of λ1(Ω).

Proposition 3.1. Let ϕ : Ω → [0,∞) be a measurable function such

that ϕ ∈ Lp′(Ut) for all t > 0, where p′ is such that 1/p+1/p′ = 1. Set

w := ϕ−
|∇ψ|p−1

ψp−1
and F (t) :=

∫

Ut

w
|∇ψ|

ψ
dx.

Then F : (0, 1) → R is locally absolutely continuous and

HΩ(Ut, ϕ) ≤ λ1(Ω) −
1

|Ut|tp−1

d

dt

(

tpF (t)
)

(3.1)

for almost all t ∈ (0, 1). Moreover, there is strict inequality in (3.1) if

and only if ϕ 6= |∇ψ|p−1/ψp−1 in Ut on a set of non-zero measure.

Proof. We start by proving an elementary inequality. Consider the

function g(ϕ) = ϕp′ defined for ϕ ≥ 0. Since g′′(ϕ) = p′(p′−1)ϕp′−2 > 0

for all ϕ > 0, the function g is strictly convex. The tangent of g at

v ≥ 0 is given by vp′ + p′vp′−1(ϕ− v), so by the strict convexity

ϕp′ ≥ vp′ + p′vp′−1(ϕ− v) (3.2)
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for all ϕ ≥ 0 with strict inequality if and only if ϕ 6= v. We next con-

sider a new representation of λ1(Ω). From the definitions of HΩ(Ut, ϕ)

and w as well as Proposition 2.3 we immediately get

HΩ(Ut, ϕ) = λ1(Ω) +
1

|Ut|

(

∫

St

w dσ − (p− 1)

∫

Ut

ϕp′ −
|∇ψ|p

ψp
dx

)

.

Applying (3.2) with v := |∇ψ|p−1/ψp−1 we get

ϕp′ −
|∇ψ|p

ψp
≥

p

p− 1
w
|∇ψ|

ψ
(3.3)

with strict inequality if and only if w 6= 0. Therefore,

HΩ(Ut, ϕ) ≤ λ1(Ω) +
1

|Ut|

(

∫

St

w dσ − p

∫

Ut

w
|∇ψ|

ψ
dx

)

for almost all t ∈ (0, 1). We next want to derive a different representa-

tion of the above volume integral. We note that

|∇ψ|

ψ
≤

1

t
|∇ψ|

on Ut if t > 0. Hence |∇ψ|/ψ ∈ Lp(Ut) for all t > 0. By the co-area

formula (2.2)
∫

Ut

|∇ψ|p

ψp
dx =

∫ 1

t

1

τ

∫

Sτ

|∇ψ|p−1

ψp−1
dσ dτ <∞

and since ϕ ∈ Lp′(Ut)
∫

Ut

ϕ
|∇ψ|

ψ
dx =

∫ 1

t

1

τ

∫

Sτ

ϕdσ dτ <∞

for all t ∈ (0, 1). Because the integrands are non-negative this implies

that the function
(

t→
1

t

∫

St

w dσ
)

∈ L1((δ, 1)) (3.4)

for all δ > 0 and that

F (t) =

∫

Ut

w
|∇ψ|

ψ
dx =

∫ 1

t

∫

Sτ

w

ψ
dσ dτ =

∫ 1

t

1

τ

∫

Sτ

w dσ dτ.

Therefore

HΩ(Ut, ϕ) ≤ λ1(Ω) +
1

|Ut|

(

∫

St

w dσ − pF (t)
)

(3.5)

for all t ∈ (0, 1). By (3.4), the function F is absolutely continuous on

(δ, 1) for all δ > 0. Hence for almost all t ∈ (0, 1)

−
d

dt

(

tpF (t)
)

= tp
1

t

∫

St

w dσ − ptp−1F (t) = tp−1
(

∫

St

w dσ − pF (t)
)

.
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To get (3.1) we substitute the above into (3.5). �

We use the above tho prove the following theorem which generalises

[10, Theorem 2.2] and [6, Theorem 4.2] to a larger class of domains.

At the same time we relax the restrictions on the boundary behaviour

of ϕ made in [4, 6, 8, 10]. We now get an estimate for HΩ(Ut, ϕ) from

below if ϕ 6= |∇ψ|p−1/ψp−1. Note that the case ϕ = |∇ψ|p−1/ψp−1 is

covered in Proposition 2.3

Theorem 3.2. Let ϕ : Ω → [0,∞) be a measurable function such that

ϕ ∈ Lp′(Ω). Furthermore, suppose that ϕ 6= |∇ψ|p−1/ψp−1 on a set

of non-zero measure. Then there exists a set S ⊂ (0, 1) of non-zero

measure such that

λ1(Ω) > HΩ(Ut, ϕ) (3.6)

for all t ∈ S.

Proof. We give a proof by contradiction, assuming that

λ1(Ω) ≤ HΩ(Ut, ϕ)

for almost all t ∈ (0, 1). Then from Proposition 3.1 we have

λ1(Ω) ≤ HΩ(Ut, ϕ) ≤ λ1(Ω) −
1

|Ut|tp−1

d

dt

(

tpF (t)
)

for almost all t ∈ (0, 1). Setting G(t) := tpF (t) we have in particular

G′(t) =
d

dt

(

tpF (t)
)

≤ 0

for almost all t ∈ (0, 1). Hence G is decreasing on (0, 1). Since F (1) = 0

we have G(1) = 0 and hence G(t) ≥ 0 for all t ∈ (0, 1). By assumption

ϕ 6= |∇ψ|p−1/ψp−1 on a set of nonzero measure in Ω. Since the sets Ut

exhaust Ω this is also true for Ut if t is small enough. Because (3.1) is

strict in that case, G′(t) < 0 for t > 0 in a neighbourhood of zero and

so

lim
t→0+

G(t) > 0.

We show that this is not possible. By definition of F and w and Hölder’s

inequality

F (t) =

∫

Ut

w
|∇ψ|

ψ
dx =

∫

Ut

ϕ
|∇ψ|

ψ
dx−

∫

Ut

|∇ψ|p

ψp
dx

≤

∫

Ut

ϕ
|∇ψ|

ψ
dx ≤

1

t

∫

Ut

ϕ|∇ψ| dx ≤
1

t
‖ϕ‖p′‖∇ψ‖p
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for all t ∈ (0, 1). Hence, since p > 1, we get

0 < lim
t→0+

G(t) = lim
t→0+

tpF (t) ≤ tp−1‖ϕ‖p′‖∇ψ‖p = 0

which is a contradiction. �

4. The eigenvalue problem on balls

In this section we prove some results on the first eigenvalue and the

corresponding eigenfunction if Ω is a ball Br of radius r > 0. We

assume for simplicity that Br is centred at zero. In the spirit of this

paper we prove these results in a natural fashion from the variational

characterisation (1.2) of λ1(Br), replacing an explicit representation

using Bessel functions in [8], and a cumbersome differential inequality

in [6, Proposition 2.8]. We start by showing that λ1(Br) is a strictly

decreasing function of r.

Lemma 4.1. The function r 7→ λ1(Br) is strictly decreasing on (0,∞).

Proof. Let 0 < r < R and suppose ψ is the eigenfunction on Br cor-

responding to λ1(Br). Setting t := r/R we define v(x) := ψ(tx) for

x ∈ BR. Then ∇v(x) = t∇ψ(tx), so by (1.2) and the transformation

formula

λ1(BR) ≤

∫

BR
|∇v|p dx+ β

∫

∂BR
|v|p dσ

∫

BR
|v|p dx

=
tp

∫

Br
|∇ψ|p dx+ tβ

∫

∂Br
|ψ|p dσ

∫

Br
|ψ|p dx

<

∫

Br
|∇ψ|p dx+ β

∫

∂Br
|ψ|p dσ

∫

Br
|ψ|p dx

= λ1(Br),

where we have used that t < 1 in the last inequality. �

If ψ is the eigenfunction on BR corresponding to λ1(BR), then the

simplicity implies that ψ is radially symmetric. In case of p = 2 the

eigenfunction is positive and strictly decreasing in the radial direction.

The same turns out to be true for all p ∈ (1,∞) (see [6, Proposi-

tion 2.7]).

In particular, ∇ψ 6= 0 on BR \ {0}, so in that domain the operator

∆p is uniformly elliptic. Standard regularity theory for linear equa-

tions with diffusion coefficient |∇u|p−2 implies that ψ ∈ C∞(BR \ {0}).

Because of the radial symmetry of the eigenfunction also

βr :=
|∇ψ(x)|p−1

ψ(x)p−1
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is constant for |x| = r. The following result is essential for our proof

of Theorem 1.1. Its proof is much simpler and more natural than the

one in [6, Proposition 2.8].

Proposition 4.2. The function r 7→ βr is strictly increasing on [0, R]

with β0 = 0 and βR = β.

Proof. Note that β0 = 0 since ∇ψ(0) = 0, and βR = β by the boundary

condition. Hence look at r ∈ (0, R). We know already that ψ is smooth

and strictly decreasing in the radial direction, so the outer unit normal

to Br is in the direction of −∇ψ. Hence λ1(BR) and ψ satisfies the

eigenvalue problem

−∆pψ = λ1(BR)|ψ|p−2ψ in Br,

|∇ψ|p−2∂ψ

∂ν
+ βr|ψ|

p−2ψ = 0 on ∂Br

for every r ∈ (0, R). Denote the first eigenvalue on Ω with boundary co-

efficient β by λ1(Ω, β). Since the first eigenvalue is the only eigenvalue

with a positive eigenfunction, we conclude that

λ(Br, βr) = λ(BR)

for all r ∈ (0, R]. Hence by Lemma 4.1 and (1.2) we get for 0 < r1 <

r2 ≤ R

∫

Br1
|∇ψ|p dx+ βr1

∫

∂Br1
|ψ|p dσ

∫

Br1
|ψ|p dx

= λ1(Br1 , βr1) = λ1(Br2, βr2)

< λ1(Br1 , βr2) ≤

∫

Br1
|∇ψ|p dx+ βr2

∫

∂Br1
|ψ|p dσ

∫

Br1
|ψ|p dx

,

which is only possible if βr1 < βr2 . �

5. Proof of the isoperimetric inequality

The aim of this section is to prove Theorem 1.1. We assume that

Ω ⊂ R
N is an open bounded set and let B ⊂ R

N the ball of radius

R > 0 centred at zero having the same volume as Ω. We first construct

a suitable function ϕ on Ω by rearranging |∇ψ∗|
p−1/ψp−1

∗ , where ψ∗ is a

positive first eigenfunction of (1.1) for Ω = B. We know from Section 4

that ψ∗ is radially symmetric and so

βr := ϕ∗(x) :=
|∇ψ∗(x)|

p−1

ψp−1
∗ (x)
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for |x| = r is well defined for r ∈ [0, R]. As in earlier sections we let ψ

be the positive eigenfunction of (1.1) with ‖ψ‖∞ = 1. Given t ∈ (0, 1)

we define r(t) to be radius the ball Br(t) centred at zero having the

same volume as Ut, where Ut is the level set of ψ as in Definition 2.2.

Then we define

ϕ(x) := βr(t)

whenever x ∈ Ω and ψ(x) = t.

Lemma 5.1. The function ϕ : Ω → R defined above is measurable and

0 ≤ ϕ(x) < β for all x ∈ Ω.

Proof. By the continuity of ψ we have |Us| < |Ut| if 0 ≤ t < s ≤ 1.

Hence t 7→ r(t) is strictly increasing. By Proposition 4.2 we conclude

that t 7→ βr(t) is strictly increasing with maximum β for t = 1. This

implies that

{x ∈ Ω: ψ(x) ≥ t} = {x ∈ Ω: ϕ(x) ≤ r(t)}

is closed for all t ∈ (0, 1), and so ϕ is bounded and measurable. Since

0 ≤ ϕ∗(x) < β for all x ∈ B we also have 0 ≤ ϕ(x) < β for all

x ∈ Ω. �

We also need to relate St and Γt to the boundary of Ut, so we can

apply the geometric isoperimetric inequality.

Lemma 5.2. There exists an at almost countable set Q ⊂ (0, 1) such

that σ(∂Ut) ≤ σ(St) + σ(Γt) for all t ∈ (0, 1) \Q.

Proof. Since ψ ∈ C(Ω) it is clear that ∂Ut ∩ Ω ⊂ St for all t > 0.

Similarly, since ψ ∈ C(Ω̄) by Lemma 2.1

∂Ut ∩ ∂Ω ⊂ Γ̃t := {x ∈ ∂Ω: ψ(x) ≥ t}.

Now by [19, Section 1.2.3] we have

σ(∂Ω) =

∫

∂Ω

1 dσ =

∫ ∞

0

σ(Γt) dt =

∫ ∞

0

σ(Γ̃t) dt <∞.

Since σ(Γt) ≤ σ(Γ̃t) for all t > 0 the above implies that σ(Γt) = σ(Γ̃t)

for almost all t ≥ 0. Moreover, the functions t 7→ σ(Γt) and t 7→ σ(Γ̃t)

are monotone and therefore continuous except for an at most countable

set Q. Hence

σ(∂Ut) = σ(∂Ut ∩ Ω) + σ(∂Ut ∩ ∂Ω) ≤ σ(St) + σ(Γt)

for all t ∈ (0, 1) \Q. �

Next we compare the functionals HΩ and HB.
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Proposition 5.3. Let ϕ be as defined above. Then

HΩ(Ut, ϕ) ≥ HB(Br(t), ϕ∗) = λ1(B)

for all t ∈ (0, 1) \ Q, where Q is the set from Lemma 5.2. Moreover,

there is equality if and only if σ(Γt) = 0 and Ut is a ball except possibly

for a set of measure zero.

Proof. Since ϕ(x) = βr(t) on St by definition, the isoperimetric inequal-

ity (see [19, Theorem 6.1.6 and Remark 6.2.2]) and Lemma 5.2 imply
∫

∂Br(t)

ϕ∗ dσ = βr(t)σ(∂Br(t)) ≤ βr(t)σ(∂Ut)

≤ βr(t)σ(St) + βr(t)σ(Γt) ≤

∫

St

ϕdσ +

∫

Γt

β dσ (5.1)

for all t ∈ (0, 1), where for the last inequality we used that ϕ ≤ β.

There is clearly equality if Ut is a ball and σ(Γt) = 0. For the converse

note that βr(t) < β for all r ∈ (0, R) by Proposition 4.2. Hence the

last inequality in (5.1) is strict unless σ(Γt) = 0. If Ut does not have

finite perimeter, then Ut is not a ball and by [19, Remark 6.2.2] the

first inequality in (5.1) is strict. If Ut has finite perimeter, then by

the sharpness of the isoperimetric inequality (see [18, Theorem 3.1])

the first inequality in (5.1) is strict unless Ut is a ball up to a set of

measure zero. Finally, by definition |Ut| = |Br(t)| for all t ∈ (0, 1) and

so by [19, Section 1.2.3]
∫

Ω

ϕp′ dx =

∫

Br(t)

ϕp′

∗ dx.

The assertion of the proposition now follows by using Definition 2.2. �

For the sharpness of the inequality we need the following lemma.

Lemma 5.4. Suppose that λ1(Ω) = λ1(B). Then

HΩ(Ut, ϕ) = HB(Br(t), ϕ∗) = λ1(B)

and for almost all t ∈ (0, 1), Ut is a ball except possibly for a set of zero

(N − 1)-dimensional Hausdorff measure.

Proof. Suppose that ϕ 6= |∇ψ|p−1/ψp−1 on a set of positive measure.

Then Theorem 3.2 implies that there exist S ⊂ (0, 1) of positive mea-

sure such that λt(Ω) > HΩ(Ut, ϕ) for almost all t ∈ S. Hence by

Proposition 2.3

λ1(B) = λ1(Ω) > HΩ(Ut, ϕ) ≥ HB(Br(t), ϕ∗) = λ1(B)
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for all t ∈ S. Since this is a contradiction ϕ = |∇ψ|p−1/ψp−1 almost

everywhere. By Proposition 5.3 Ut is a ball up a set of zero (N − 1)-

dimensional Hausdorff measure. �

We are finally in a position to complete the proof of Theorem 1.1.

First observe that Proposition 2.3 and Theorem 3.2 imply the existence

of t ∈ (0, t) such that λ1(Ω) ≥ HΩ(Ut, ϕ). Hence λ1(Ω) ≥ λ1(B)

by Proposition 5.3. For the sharpness of the inequality assume that

λ1(Ω) = λ1(B). Then by Lemma 5.4 Ut is a ball for almost all t ∈ Ut.

Since Ut, t ∈ (0, 1), are nested sets it follows that Ω =
⋃

t∈(0,1) Ut is

a ball except possibly a set of measure zero. Since Ω is Lipschitz, it

needs to be a ball.

6. Remarks on non-smooth domains

Our main regularity assumption on Ω, namely the Lipschitz charac-

ter, could be weakened. First of all we have to make sure is that Γt as

given in Definition 2.2 makes sense. For that we need to assume that

the Robin problem is well posed in a function space where a suitable

trace can be defined on ∂Ω. Then, one can repeat the arguments in

the proof of Proposition 2.3 as soon as the (local) trace of ψ can be

related to the trace of 1/ψ.

A second key argument is the application of the geometric isoperi-

metric inequality in the proof of Proposition 5.3. For that we need to

relate Γt and St to the boundary of Ut. In fact we only need that

P (Ut) = σ(∂∗Ut) ≤ σ(Γt) + σ(St)

for almost all t > 0, where P (Ut) denotes the perimeter and ∂∗tUt the

reduced boundary of Ut as defined for instance in [11, Chapter 5]. Such

an inequality is valid if

∂∗Ut ⊂ Γt ∪ St (6.1)

except for a set of zero (N − 1)-dimensional Hausdorff measure.

For the sharpness of the inequality we also get more information

from the proof of Proposition 5.3. Assuming equality we conclude that

σ(∂Ut) = σ(St) = σ(Br(t))

and σ(Γt) = 0. Hence Ut is not just a ball up to a set of measure zero,

but a set of (N − 1)-dimensional Hausdorff measure zero. This gives

us additional information in case of non-smooth domains.

If Ω is an open set, not necessarily smooth, [7] used the space intro-

duced by Maz’ja in [19, Section 4.11.6] to introduce a weak framework
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for the Robin problem. As it was noticed in [1], the trace operator in

this space may not be well defined for sets which have a boundary con-

taining a very large number of points with zero density with respect

to Ω. However, even then there is hope that our method works by

setting the trace to zero on those parts of the boundary on which it is

not well defined. We then would need to try to show that (6.1) holds.

In particular we would need to show that ∂∗Ut ∩ ∂Ω is contained in

the part of ∂Ω where the trace is well defined. An indication that this

could be true is the example given in [1, Example 4.2]. Hence it seems

evident that the right way to deal with the trace problem should in-

volve tools of geometric measure theory, the reduced boundary playing

a fundamental role.

We expect that a sufficient condition in order to have a “good” trace

property is that the (N − 1)-dimensional Hausdorff measure restricted

to the boundary is absolutely continuous with respect to the relative

capacity as introduced in [1, 3]. From this point of view, the Lipschitz

regularity could certainly be weakened at least to open sets for which

the trace is locally defined up to a set of (N − 1)-Hausdorff measure

zero in a usual sense such as for instance domains with cusps.

A different approach to define pointwise traces up to sets of zero

(N − 1)-dimensional Hausdorff measure is established in [5], where the

“natural” space for the weak formulation of the Robin problem relies

on a particular class of functions of bounded variation.
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