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Linear response theory

Consider a smooth family of deterministic dynamical systems

Xp = T'(xp—1), which are mixing with physical invariant measures
t

pt.:
E'[®] := /CD(X) duf(x)

Linear response theory (LRT): What is <& ufEt[®]?
(e.g. for Taylor approximations)

...supposing Ef[®] is differentiable



LRT in theory

Analytically, we know LRT works in
e Statistical mechanics (the original): Kubo '66

® Stochastic systems: Hanggi '78, Hairer & Majda '10 (range of
Taylor series validity shrinks as noise — 0)

e Hyperbolic deterministic systems: Ruelle '97-8



LRT in theory

Fails in simplest non-hyperbolic case: logistic map has Holder
< 1/2 response, even restricted to “nice” chaotic parameters
(Baladi and others '08, '10, '14, '15)
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Conjecture: “large scales of high-dimensional systems evolve
hyperbolically, i.e. have LRT"



LRT in practice

LRT has been applied to plenty of systems:
® Toy models: Majda et al '07, '10, Lucarini & Sarno '11

® Barotropic models: Bell '80, Gritsun & Dymnikov '99,
Abramov & Majda '09

® Quasi-geostrophic models: Dymnikov & Gritsun '01

® Atmospheric models: North et al '04, Cionni et al. '04, work
of Gritsun and others '02, '07, '10, Ring & Plumb '08

e Coupled climate models: Langen & Alexeev '05, Kirk &
Davidoff 09, Fuchs et al '14, Ragone et al. ‘15, Lembo et al
'20

Often it works pretty welll



LRT in practice
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Question

In this talk we will address the following question:

What are the criteria and mechanisms by which high-
dimensional systems have linear response at macroscopic
scales ?
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Method

Study a “simple complex system”: globally coupled maps.
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We derive LLN and CLT reductions for these maps as ensemble size

M — oo, and study their linear response, considering different kinds
of maps.

(These systems have rich dynamical and linear response behaviour!)
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1. Thermodynamic limit: reduction

Formulate in terms of empirical measure of

)
qYs t |
1 ¢ \Y ¢\
/‘n:MZI(Sqr({) ..:./71. M
= ®e%e :o
so that system becomes ° '.0
°.%°

{
=L - t Q
Hn t,®,Mn—1 (I)n

b, = /cbdun

where transfer operator L; ¢ pushes forward measures by f;( -; ®).
In thermodynamic limit expect u, to be a measure typical of
cocycle f; (absolutely continuous if f uniformly expanding, etc.)



1. Thermodynamic limit: reduction

Under appropriate mixing conditions expect p, to be the
time-varying physical invariant measure of cocycle

ok
po = M Loy yeo Loy e

where p, is any absolutely continuous probability measure.
This gives us delay system in ®:

b, = /(bd,uzo = Fe(®p_1,Pp_2,...)



1. Thermodynamic limit: reduction

What are dynamics of
&, = F(®p-1,Pp_2,...)?

If f is exponentially mixing, then the effect of ®,_,, k> 1is
negligible, i.e.

(Dn ~ Ft(¢n—17 ¢n—27 ey ¢n—k*)

Approximates finite-dimensional dynamics!



1. Thermodynamic limit: reduction

(Dn — Ft((bn—la ¢n—27 .. )

® Partial derivative 625; is response of ¢(qp) to kicking

mean-field input at times n — k.

e If cocycle fi(-;®,) has summable response function (i.e. a
linear response) then derivative is in /1(N) and we can do
bifurcation theory on F.



1. Thermodynamic limit: reduction

o, = Ft(q)nfla bp2,.. )

Suppose f has summable decay of response function coefficients.

o If , = &t is an equilibrium, then
Bt = F (&8, ) = GH(&)

® By implicit function theorem, ddi;t exists when 8%75)@ #1

® So coupled system has linear response (generically).

e Similar arguments hold for periodic, hyperbolic etc ®-dynamics

¢ Non-hyperbolic dynamics (!) in mean-field ®7?



1. Thermodynamic limit: numerics

Choose

fe(q: @) = g(h(q), tP)

for some g, h (see W. and Gottwald,
'19). Have g is an analytic diffeo. and h
is such that each f;(-; ®) are analytic
uniformly expanding.
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1. Thermodynamic limit: numerics

Notice that we can write

fn = Lto,fn—1

¢n=/¢dun

Hn = Lt,fq‘)d,un,l:unfl =: He(pn)

in terms of 1i,:

We can approximate these dynamics very accurately using
Chebyshev spectral methods,. e.g. in Poltergeist.jl.



1. Thermodynamic limit: numerics
For large t we see period doubling bifurcation to chaos:
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1. Thermodynamic limit: numerics

Chaotic ® dynamics look unimodal (+ some contracting
directions):

Attractor t = 31, delay coords
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1. Thermodynamic limit: failure of LRT

In fact, a failure of linear response!

Globally coupled unif. exp. maps, M = co

N 1 |

Despite hyperbolic microscopic components!
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Can we find the culprit?



1. Thermodynamic limit: non-hyperbolicity

Using Chebyshev spectral methods, we numerically look for
homoclinic tangencies in macroscopic dynamics: i.e. an orbit
{ltn}nen such that

® The orbit is homoclinic:

lim u, = I|m Un = s

n——0o0

® There exist tangent vectors along this orbit
Spin = Jyu,_1[Gt]dpen—1 such that

lim dp, = I|m Opn =0,

n——oo

i.e., dup in both stable and unstable subspaces = tangency
of stable and unstable manifolds!
This would mean that the map is non-hyperbolic, with a nasty
response



1. Thermodynamic limit: non-hyperbolicity

L? norm

Various norms on the orbit of a homoclinic tangency
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1. Thermodynamic limit: non-hyperbolicity
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1. Thermodynamic limit: non-hyperbolicity

t = 30.061831392296 . . .
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1. Thermodynamic limit: non-hyperbolicity

t =30.061831392296 . . .
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2. Finite size

In most applications expect an incomplete separation of scales:
need to consider finite size effects.

Natural direction: central limit theorem.

Figure: http://mri-q.com



2. Finite size

Remove the feedback loop:

¢i,,n a pre-determined time series N qr([,j)
j j in . e® _Jj=1..I M
qlgj):ﬂ(qul. n—1)7 jzl,,M e o°
M °e®%e %
ou 1 j o © ..
q)”t:MZ‘b(q,(f)) .....d
= 1\®in (I)out
n n

Here, the gU) all evolve independently: they are
samples from the time-varying map fi(-; ®}").



2. Finite size

If we consider the distribution of the system in the thermodynamic
limit:

o' a pre-determined time series

Hn = Et,@ﬂilﬂzil
o = [ oduy = (@005 )
Then for large M,

q)OUt Ft( n 1 inn—27"')+ th

L
vM

where (, is a centered Gaussian random variable.



2. Finite size

Because the CLT correction (, is generated from a sample of
qﬁ(q,(f)), we can determine its covariance for n > m:

COV[Cm Cm] = COV(¢(q”)7 ¢(Qm)) = th—m( irrm—lv inm—27 e )

This has same decay of correlations as microscopic dynamics f.



2. Finite size

Ansatz: the self-coupled system can be modelled by setting
I — OUt after each step n.

This gives ‘ ;
\Y ¢/
O, = F(Ppoq, ® )+ ¢ 0®o0 Y
n— Nt\¥n—-1,¥n-2,--- mn: ......
° 0.0’
where Cov[Cn, Cm] = V™ ™(Pn1, Ppa, .. .). ®e o° h
This is a stochastic system. ‘(\q)in _ gpout

=—> we expect LRT n n



2. Finite size: numerical example 1

Consider the situation from the thermodynamic limit (i.e. uniformly
expanding f)

Globally coupled unif. exp. maps
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Convergence of averages to thermodynamic limit.



2. Finite size: numerical example 2

What if the microscopic systems have a rough response when
uncoupled (e.g. logistic maps)?
Can define dynamics in thermodynamic limit

cI>n = Ft(cbn—ly ¢n—27 .. )

Effect of distant past ®,,_,, kK > 1 is small, but derivatives cause
problems:

© Partial derivatives 835 are non-summable;
n—m

® Partial derivative % is undefined.

Don't expect smooth bifurcation theory or linear response.



2. Finite size: numerical example 2

Fact: when forced by noise, logistic maps have a rough quenched
response but a smooth annealed response.
This means that with noise, in some “annealed” sense,

® Partial derivatives 837'? become summable;

O Partial derivative % (linear response of cocycle) becomes

defined.

Consequently expect LRT in our stochastic reduction.



2. Finite size: numerical example 2
Breakdown of LRT occurs through bifurcations:

Globally-coupled unimodal maps
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2. Finite size: numerical example 2

Linear response induced even for very small systems (e.g. M = 4):

Globally-coupled unimodal maps

0.35
—— M=3
—+= M=4
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May help explain success of LRT in locally-coupled systems.



3. Inhomogeneous microscopic subsystems

In the real world, there will be some variation between components:




3. Inhomogeneous microscopic subsystems

What if we have inhomogeneous subsystems?
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parameters of the system.



3. Inhomogeneous microscopic subsystems

Two maps f and g share a topological conjugacy class if there
exists a homeomorphism h such that

f=hogoht

e Conjecture (Avila et al '03): unimodal maps’ topological
conjugacy classes have a uniformly analytic lamination of
codimension 1.

e Typically, linear response fails only if perturbations change the
system's topological conjugacy class (Baladi '14).



3. Inhomogeneous microscopic subsystems

So: if ensemble contains all top. conj. classes (via variation in at)),
then we can find a conjugacy between microscopic dynamics at ty
and at t by changing a:

il - ®,a0) = ho fig(+; . a(a0, 1) o h L,

where the parameter a;(ag, to) lies in the support of v, and a; is
differentiable in t.
If v has a C! density, this gives us LRT.
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3. Inhomogeneous microscopic subsystems

Upshot: same as if individual subsystems have LRT (i.e. well-posed
thermodynamic limit, etc.)

Inhomogeneous globally-coupled unimodal maps

——= M =300
044 —— M = 10,000
—— M = 300,000
024 —— M =10,000,000

Shilnikov-type
chaos

ol o o0 005N bifurcation



Conclusions

Studied globally coupled systems via models for macroscopic
dynamics for large/infinite M

e At finite size have emergent stochastic effects, which induces
linear response
® |n thermodynamic limit linear response is more complicated:

® Depends on microscopic systems' LRT properties
® Also requires “nice” macroscale dynamics
® Surprisingly: can be non-hyperbolic and violate LRT

® Parameter variation between subsystems helps generate LR at
macroscale.



Further details

Wormell, C.L. and Gottwald, G.A., 2019. Linear response
for macroscopic observables in high-dimensional systems.
arXiv:1907.13490.

Wormell, C.L., forthcoming. Homoclinic tangencies in the
macroscopic dynamics of a globally coupled system.



1. Thermodynamic limit: numericals
Specifically for g € [-1,1]:

h(g) =(2g mod 2)—1
g+ K (1-/0.03(1 = 0.97K2) + 0.97(q + K,)?

b)) =
8(9.9) 1-0.97K?
where K = tanh(t® — 2). Also, ¢(q) = —23 + £¢° — 2q*.

o glh(-); i) for different i

gl K)




