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Introduction

e |nterested in ergodic properties of chaotic systems: invariant
measures, statistical limit laws, etc.

e Typically these quantities in general do not have explicit
solutions: numerics are needed.

® Accurate, fast, transparent numerics that capitalise on smooth
structure are important for extending understanding (c.f.
PDEs, non-chaotic ODEs. . .)



Introduction

e |nterested in ergodic properties of chaotic systems: invariant
measures, statistical limit laws, etc.

e Typically these quantities in general do not have explicit
solutions: numerics are needed.

® Accurate, fast, transparent numerics that capitalise on smooth
structure are important for extending understanding (c.f.
PDEs, non-chaotic ODEs. . .)

Goal: powerful numerics for smooth ergodic theory of a useful
subclass of chaotic systems.



Chaotic maps

We consider maps of the interval f : [a, b] © with nice properties:

e Countable partition U;c;O; = [a, b], b

f|o, bijections with inverses v;
® Regularity conditions
on distortion D; := log|v/|, either:

® sup.<,ics ||D,-(r)|\oo < oo for some r;
® D; have unif. bounded analytic

extensions onto an open complex set a

® Technical
requirement on placement of the O;.

0, Oy -+ O

e Uniformly C-expanding. ..



Chaotic maps: Expansion condition

Standard condition is uniformly expanding:

inf |f’ =~v>1
xe'c?,-,fe/| )=~

We instead use C-uniformly expanding:
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where domain [a, b] is rescaled to [—1,1].
e <= cos !of ocos unif. expanding

e |f f is uniformly expanding then some
™ is C-unif. exp. (typically n =1)
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Examples of maps

® Tupling maps on [0,1], f(x) = kx mod 1 for k =2,3,...

e Continued fraction maps, e.g. Gauss map on [0, 1],
f(x) = x~! mod 1, with change of variable y = 2~

e Standard test map for numerics: Lanford map on [0, 1],
f(x) = 2x + 4x(1 — x) mod 1 (see Figure)
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Long-time statistical properties

These maps are chaotic with nice statistical properties. Two we are
interested in:

¢ Absolutely continuous invariant measures (acims) p:

N—-1
1 b

n N—s 00
N;A(f (o)) = [ A, .

¢ Diffusion coefficients: CLT correction to (*) with variance

o7 (A) = i /bAof”l <A—/bA,0d§>an

n=—0o0

well-defined if A is of bounded variation.



Transfer operator

The transfer operator £ : B () tracks the action of the map f on
signed measure densities in some Banach space B of smooth

functions:
b b
/ Ao f«pdx:/ A Lpdx.

Has explicit formula for pointwise evaluation:

(Lo)(x) = 3 ol (x)p(vi(x),

iel

where v; are the inverses of f|o,, and o; = sign v/.



Transfer operator

Statistical quantities of interest can be expressed in terms of linear
algebraic properties of the transfer operator:

Lp = p,
Sp = 1,
where .S = [ pdx.

* Diffusion coefficient 02(A) satisfies

e Acim p satisfies

of(A) = [A > L(pA—p.Sp Al

n=—o0

In general, no explicit solutions!



Galerkin method

Take a family of finite-rank projections P, : B () which
asymptotically approximate the identity.
Pick large(ish) n:
¢ Compute the finite-dimensional operator £, := PpLplimp, -
® Substitute P,L|imp, for L in the problem of interest, e.g. for
acim PpLpn = pn.
® Numerically solve to get estimate: e.g. p, should approximate
true acim p.



Galerkin method

Example: Ulam’s method: P, = L? projection onto
piecewise constant functions over even partition of size n.
If fis at least C2,

-1 H H ; :
—p|l;2 = O(n" log n). N SV
Ulam is a very “low order” method:
basis functions have low regularity, with e
consequent slow convergence of solutions o)

(in low regularity spaces). a

In theory of differential equations, etc.

highest-order methods typically use a “spectral” basis of smooth
functions.



Spectral basis 1: Cosine series

Take an even C! function ¢ : R/27Z — R.
We can write

where
™

Ok = — ©(0) cos k6 do.

Standard result that

O(k™), ¢pec’
—0k X
|Pk| = O(s(k)) := O(e %), ¢ bd. and analytic

We call s(-) the “spectral” rate of convergence.



Spectral basis 1: Cosine series

Take an even C! function ¢ : R/27Z — R.
We can write

o0

= Z Pk cos kb,

; tk =2 — dok 0
where

:3 " 5(6) cos k0 6.
T Jo

‘G>

Standard result that

O(k™), e’
S5k .
2] = O(s(K)) = O(e %), ¢ bd. and analytic

We call s(-) the “spectral” rate of convergence.



Spectral basis 1: Cosine series

We can make the approximation

o(0) = ok cos kb + O(K s(K)),
0

X
-

»
Il

where .
e= %[ 5(6) cos k0.
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Spectral basis 1: Cosine series

We can make the approximation

K—1
0(0) = Pk cos kb + O(Ks(K)),
k=0
where for k =0,..., K —1,
ot K—1
k (8 k) cos kb k + O(s(K)),
_]:0
where 0; i : 2?;(177

Can compute all K Fourier coefficients with O(K log K') operations
using FFT algorithm.



Spectral basis 2: Chebyshev series

We can approximate a function
¥ : [-1,1] — R via cosine series theory

of ¢ = 1) o cos.

The Chebyshev polynomials are, for

x € [-1,1],

Ti(x) = cos(k cos ™! x).

They are orthogonal with respect to the weight (1 — x?)
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Spectral basis 2: Chebyshev series

Take a C! function ¢ : [-1,1] — R.
We can write

where

Have

k| =

—6k ,
O(s(k)) := O(e™°%), 4 bd. and analytic on

P(x) =Y D Tu(x),
k=0

v ty 1 dx
o= om0

O(k™"), e

C
e9-Bernstein ellipse —1



Spectral basis 2: Chebyshev series

Take a C! function ¢ : [-1,1] — R.
We can write

P(x) =Y D Tu(x),
k=0

- tk = 2 — dok
where /

Have

O(k™"), e

Tl — _ ) O(e%k), 1 bd. and analytic on
il = O(s(K) : ;

e9-Bernstein ellipse —1



Spectral basis 2: Chebyshev series

e

A Bernstein ellipse of parameter e’ is cosd

cosh §

sinh §

DA



Spectral basis 2: Chebyshev series

We can make the approximation

where




Spectral basis 2: Chebyshev series

We can make the approximation

K-1
W(x) = Ui Te(x) + O(K s(K)),
k=0
where
Kfl
Dp = ? Y(xj k) cos kxj k + O(s(K)),
j=0

where x; i 1= cosf); x = cos 2§J,§17r are the Chebyshev points of the

first kind.
Can compute all K Chebyshev coefficients with O(K log K)
operations using FFT algorithm.



Transfer operator discretisation

Choose projection P, to be projection onto first n Chebyshev

coefficients, i.e.
n—1

Path = > x T
k=0
Then, if ¢ € im P,

n—1n—1

Pl =Y > Lyt T;

j=0 k=0

where Lj is the jth Chebyshev coefficient of LTy (computable!).



Discretisation error

The transfer operator sends oscillating functions to functions of
lower frequency:

ﬁTk = Z(U;VI{) X (Tk e} V,').
iel

Graphically,

LT = «fF—— x I
+ 1 x VWU




Discretisation error
“Heat map” of |Lj|:
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Convergence: bounds on |Lj]

Cp=Y /1 (LT () Ti(ox)
jk — ) k J 1_ x2
t: 21
= j/ (L Ty)(cos ) cosjOdo
2T 0
t: 2
= i Z/ o;v!(cos 8) cos k (cos ! vj(cos 8)) cos jf df
jer 79 hi(6) wi(6)
_ bl 2T (e kwi(0)£76)
%D /0 hi(6)e a0
i€l :‘:1,:‘:2/‘

periodic integral nice oscillatory



Convergence: bounds on |Lj]

. X
L= 2 [ (LT T -

1 V1— x?
t: 21
=L (L Tk)(cos ) cos jO do
2T 0
t: 27
= 271 Z/ ;v (cos ) cos k (cos ! vj(cos 8)) cos jf df
T < 0
il hi(0) wi(0)
£ Z 1 Z /27T (41 kw;(6)£2)6)
=gy hi(0) e/ (Erkwi(O)£21) 4
27 i€l 4:‘:1,:‘:2 0
periodic integral nice oscillatory

h; can be general: could treat weights other than v/.



Convergence: bounds on |Lj]

Let's suppose that v; is analytic on a d-Bernstein ellipse. Then
hi, w; are analytic on a complex strip of half-width §.
We can move the contour of integration by id:

27
/ hi(0)ei ki 0)-i0) g
0

2
h,(9 + I-(S)eikw,-(9+i5)fl_'j(9+i6)d6

/
27

/ hi(0 + i) (W (O)k=i)=3(-w}(0)K)+kO(0?) g
0

So

27
/ hi(g)ei(kW/(G)J'G)dg‘ < (- + i8) 16~ 00— +OUS?)
0




Convergence: bounds on |Lj]

Theorem (W. '19)
For all p > X~1 there exists C such that

|Ljk| < Cmin{1,s(j — pk)},

where s is the spectral convergence rate.

k
0 10 20 30 40 50 60 70 80

Figure: Heat map of |Ljc| for the Lanford map



Solution operator

We will find estimates for acim, diffusion coefficient, etc. using
solution operator.
S=(d-L+17)"

resolvent of E/ranwk 1 pertum left eig'f'n .7

Has useful properties:
e Sl=p
o Sp=> 12, Lroif f_llgodx =0
® Hence 02(A) = L [A(2S —id)(pA— pZ[pA])]



Convergence of estimates: operator error

The solution operator is a simple matrix function of £. We use
near-upper-triangularity of £ in Chebyshev basis, computing with:

0 PnLlim P,
Ln:=L—(id=Pp)LPy= F
S

For Banach space B (e.g. BV) and ¢ < 1 depending on 13, standard
relationships between norms and Chebyshev coefficients give

0 n
0
H['n - EHB = H n;

= O(n**s(n)).
B




Convergence of estimates: operator error

Then, since § is just an operator function of 1.% (which is
upper-triangular) and L, if

Spi=(id—L,+17)7!

then
ISh = Slls = O(n**< s(n)),
and by block-upper-triangularity we can compute

Solimp, = (id =L + 1.%[imp,) L.

(NB: also possible to use bounds on |Lji| for estimates in the style
of Keller and Liverani '99.)



Computational complexity

Complexity of spectral Galerkin method:
® nx O(nlogn)

Lanford map estimates

for computation of P,L|imp,, plus s T
® O(n3) for matrix ? wef \ g
inversion to get solution operator is = ol
O(n3) complexity overall, vs O(n'*¢s(n)) 1074 e
decay in error. v
Method Error Complexity | Error vs Cxty C
Ulam O(n~tlogn) O(n) O(C1log C)
Dynamical zeta | O(e*") |" O(e~ < (loep C)z)
Chebyshev O(e™0) O(n?) O(e='"?)

Table: Comparison of error vs complexity for an analytic map



Poltergeist.jl

Software package written in Julia that uses adaptive-order
Chebyshev (and Fourier) Galerkin methods to compute statistical
properties.

julia> using Poltergeist, ApproxFun

julia> A = Fun(x->x"2,0.0..1.0) # functions are approximated as 'Funs'
Fun(Chebyshev(8.0..1.0),[0.375, 0.5, 0.125])

julia> lanford = modulomap(x—>2x+x#(1-x)/2,0.8..1.0)
MarkovMap ©.0..1.0 % 0.0..1.0 with 2 branches

julia> L = Transfer(lanford)
CachedOperator : Chebyshev(.0..1.8) > Chebyshev(0.0..1.0)

1.0045576876022717 0.018230750409086872 w  —0.11314609383584001
0.1316684582640518 0.5266738330562073 -0.10870638179928527
0.013630206449799351 0.054520825799197474 -0.32581774878619435
0.0016352485384284832 0.006540994153714011 0.047971755978939705
0.0002125058970416101 ©0.0008500235881663991 -0.1716273579552732

2.9022773481041993e-5 0.00011609109392424459 .. 0.22837932763765162
4.094991428494383e-6 1.6379965713883478e-5 0.16173854758342135
5.906536576252858e-7 2.362614630552166e-6 0.32220668844414624
8.650893019720111e-8 3.460357204282739%e-7 0.13713910992310985

1.2809804145791083e-8 5.123921654851547e-8 0.04128910954214535

julia> Q@time p = acim(L)

0.297052 seconds (594.27 k allocations: 29.067 MiB, 1.57% gc time)
Fun(Chebyshev(8.0..1.0),[1.01524, 0.29594, ©.0454783, ©.00726774, 0.00119289, 0.
000199207, 3.36268e-5, 5.71372e—6, 9.74689%e-7, 1.66662e-7 .. 2.46504e-11, 4.071
36e-12, 6.73066e-13, 1.11325e-13, 1.8383e-14, 3.02673e-15, 4.96306e-16, 8.09087e
-17, 1.31132e-17, -2.12448e-18])



Poltergeist.jl

julia> lyapunov(L)
0.6576617800065931

julia> birkhoffvar(L,A) # diffusion coefficient
0.36010948619915506

julia> scatter(@:40,covariancefunction(L,A,40),x1im=(0,40),legend=false)

008
006
°
0041
°
w2l o
°
%o
000 ©00000000000000000000009000000000¢
0 10 20 30 o

More examples: https://github.com/wormell/Poltergeist.jl


https://github.com/wormell/Poltergeist.jl

Validated bounds

A dramatic example of validated bounds (Theorem 2.5, W. '19):
® The Lanford map’s Lyapunov exponent Le,, := [, log|f’| p dx
lies in the range

Lep, = 0.657 661 780 006 597 677 541 582 413 823 832 065 743 241 069
580 012 201 953 952 802 691 632 666 111 554 023 759 556 459

752 915 174 829 642 156 331 798 026 301 488 594 89 4 2 x 10 '8,
O The diffusion coefficient for the Lanford map with observable
A(x) = x2 lies in the range

o7 (A) = 0.360 109 486 199 160 672 898 824 186 828 576 749 241 669 997
797 228 864 358 977 865 838 174 403 103 617 477 981 402 783

211 083 646 769 039 410 848 031 999 960 664 7 & 6 x 10 *2*.

These results were obtained in 9 hours on a research server (mostly
computing S, which is reusable).



Related results

e Slipantschuk and Bandtlow ('20): using Chebyshev
approximation of analytic expanding maps, eigendata
converges exponentiallly.

e Crimmins and Froyland ('19): statistical properties that are
functions of the transfer operator (e.g. large deviations) can
be estimated using transfer operator discretisations.



Application: Pomeau-Manneville systems

Interested in statistical properties
of non-uniformly expanding maps
T:[0,1] ©

T — x(1+2%x),
2x — 1,

where o > 0.

For example, absolutely continuous
invariant measures: for o > 1 this
is infinite ergodic theory.

® |ack of uniform expansion and

weak mixing properties makes numerics very challenging.

e Ulam-style methods very slow,
non-viable for @ much greater
than 1.




Application: Pomeau-Manneville systems

We approach via induced map

f:[3.1] 0
f(x) = TTTXx,

This map is analytic and full-branch
uniformly-expanding: we can use
Chebyshev methods on it.

Theorem (W., forthcoming)
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There exists a real-analytic function A : (0,1] — [0, oo)'rsuch that

f(x) = A"H(A(x)

mod 1),



Application: Pomeau-Manneville systems

The transfer operator of f is

LA (x) p(ATHA(2x — 1) + n))
Z 2 A(A1(A(2x —1)+n))’

(Lrp)(x
n=0

Problem: the terms in the sum decay very slowly!
Solution: use smoothness. When ¢ = T (i.e. smooth), can use
Euler-Maclaurin formula to accurately evaluate (Lrp)(x).



Application: Pomeau-Manneville systems

Effective estimates of statistical properties of both the induced map
and the full, non-uniformly expanding map, for a wide range of a:

Acim of full map 7" Acim of induced map f

—_— a=02
— a=06

— a=095

0.0 0.2 0.4 0.6 0.8 10 0.5 0.6 0.7 0.8 0.9 1.0

Figure: Acims of the full map with different normalisations. Pale colours
indicate estimates from binning on 108 simulations.



Application: Pomeau-Manneville systems

Very accurate validated bounds again possible.
For example, the expected return time to [1/2, 1] for « = 0.95 (a
near-singular case) lies in the range

E¢[r7] = 14.073 323 220 001 939 529 241 549 699
610 756 609 803 3171 & 10~ 3.



Application: Chaotic hypothesis

Joint work with Georg Gottwald

Chaotic hypothesis (Gallavotti-Cohen)

The macroscopic dynamics of a (high-dimensional) chaotic system
on its attractor can be regarded as a transitive hyperbolic
(“Anosov”) evolution.

e We derive a “thermodynamic” limiting system of a large
self-coupled ensemble of uniformly-expanding maps.

® We use Poltergeist to discover non-hyperbolic dynamics in the
limiting system.



Application: Chaotic hypothesis

Consider an ensemble of M > 1

microscopic constituents q(J) €[-1,1] fuo for t — 31, varying ©
. . . . 1.0

with uniformly expanding dynamics:

@y = feo (@), =1, M.

The mean-field

1 — ;

feeds back into the gU). - ';
External parameter t which regulates
the strength of the feedback.



Application: Chaotic hypothesis

Let 1n(q)dg be the empirical measure of the q,(,j). Then:
® Dynamics can be formulated

Hn+l = Ft(,un) = £1.“;f dhtn dgMn

where L;.¢ is the transfer operator of f;.¢.

® Mean-field observables (i.e. “macroscopic’ dynamics) are
expectations over 1,(q) dg;

® In “thermodynamic” limit M — oo reasonable to take p9 € C?
— can study dynamics with Chebyshev methods.



Application: Chaotic hypothesis

The following Poltergeist function iterates ju,:

function F(mu, t)
Phi = sum(phi * mu) # ‘sum’ = total integral
f = fmap(t,Phi) # predefined initialiser
return transfer (f,mu)

end

For standard double-floating-point implementation this routine
evaluates in around 1 millisecond, accurate in norm to ~ 1013,

More details at tinyurl.com/pg-selfcoupled.


tinyurl.com/pg-selfcoupled

Application: Chaotic hypothesis

For large t, macroscopic dynamics are chaotic, with
quasi-unimodal dynamics in ®, = [ ¢, dg.

Attractor ¢ = 31, delay coordinates
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Application: Chaotic hypothesis

Clearly see Henon/logistic-like orbit plot—indicating
non-hyperbolicity (W. and Gottwald, '19)
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Application: Chaotic hypothesis

Compare with simulations using large, finite M = 300,000:
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Application: Chaotic hypothesis

Using Poltergeist, we have found direct evidence of
non-hyperbolicity in the limit system: a homoclinic tangency.

(Gonchenko et al, '12)



Application: Chaotic hypothesis

For 30 < t < 31 there is a fixed point puf = F¢(uy) with

[ ¢uis dg =~ 0.05.

At this fixed point, the Jacobian J,x F; has a single unstable
eigenvalue Ay ~ —1.6 with (normalised) eigenfunction v;.
The unstable manifold W/ is locally parametrised

1
W¢(a) = py + vea+ Ehta2 + 0(a%),

with
Wi'(Aea) = Fe(W/(a)).

(Thus, {WF(A\'a) : m € Z} is an orbit originating from x.)



Application: Chaotic hypothesis

For a homoclinic, we need the orbit to return to p;:

lim W¢(A\{'a) —pr =0 (1)

m—-00

Along the stable manifold, the unstable vector at W/} (a) is given by
d u 2
Vea X @Wf (a) = v+ + hra+ O(a%).

For a stable-unstable tangency v, must also be a stable vector, i.e.

lim ey W () [ve.] = 0. 2)
Thus, a homoclinic tangency can be found by searching for (a, t)
such that (1-2) both hold. We can do this quite efficiently with
Poltergeist (as yet no theorems).



Application: Chaotic hypothesis

Using Poltergeist the following homoclinic tangency was found at
t = 30.0618314:
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Application: Chaotic hypothesis
Error probably of order ~ 1078:

108 -
104 o4
10[) -4
1074
— [IF" W (a0) = pi [l s
10-8 — HJW;‘(ao)thvc.au HH‘

-20 0 20 40



Conclusion

Chebyshev Galerkin transfer operator methods for chaotic systems:
® Harness smooth structure of the problem
® Are very efficient and very accurate

e Can be harnessed profitably for study of more complex
phenomena in chaotic dynamics.



