Rigorously validated estimation of statistical properties of expanding maps

Caroline Wormell

The University of Sydney

August 18, 2020

Chaotic systems are commonly studied in terms of their ergodic theory:

$$\frac{1}{N} \sum_{i=0}^{N-1} A(f^n(x)) \xrightarrow{N \to \infty, x \text{ a.e.}} \int A\rho \, \mathrm{d}x$$

Relevant mathematical objects include absolutely continuous invariant measures (acims), diffusion coefficients, ...

Chaotic systems are commonly studied in terms of their ergodic theory:

$$\frac{1}{N}\sum_{i=0}^{N-1}A(f^n(x)) \xrightarrow{N\to\infty, x \text{ a.e.}} \int A\rho\,\mathrm{d}x + \mathcal{N}(0,\sigma_f^2(A)/N)$$

Relevant mathematical objects include absolutely continuous invariant measures (acims), diffusion coefficients, ...

Chaotic systems are commonly studied in terms of their ergodic theory:

$$\frac{1}{N}\sum_{i=0}^{N-1}A(f^n(x)) \xrightarrow{N\to\infty, x \text{ a.e.}} \int A\rho\,\mathrm{d}x + \mathcal{N}(0,\sigma_f^2(A)/N)$$

Relevant mathematical objects include absolutely continuous invariant measures (acims), diffusion coefficients, ...

We consider subclass of chaotic maps: full-branch uniformly expanding maps.

- Simple, illustrative model class
- Contains examples of independent theoretical interest, e.g. Gauss map on [0,1] (continued fractions), $f(x) = x^{-1} \mod 1$ under change of variable $2^y 1 = x$

Rigorous numerics can answer various theoretical problems (e.g. dimensionality of Lagrange and Markov spectra).

Current methods:

- Dynamical zeta methods (Pollicott, Jenkinson, et al.): only practical with a few branches, assumes maps are analytic
- Ulam's method on transfer operators (Galatolo, Nisoli, et al.): low-regularity method, only obtain a couple of rigorous digits.

Current methods:

- Dynamical zeta methods (Pollicott, Jenkinson, et al.): only practical with a few branches, assumes maps are analytic
- Ulam's method on transfer operators (Galatolo, Nisoli, et al.): low-regularity method, only obtain a couple of rigorous digits.

Goal: powerful numerics for a broad range of maps.

Current methods:

- Dynamical zeta methods (Pollicott, Jenkinson, et al.): only practical with a few branches, assumes maps are analytic
- Ulam's method on transfer operators (Galatolo, Nisoli, et al.): low-regularity method, only obtain a couple of rigorous digits.

Goal: powerful numerics for a broad range of maps.

We will use a Chebyshev Galerkin method for transfer operators.

Maps under consideration

We consider maps of the interval $f : [a, b] \circlearrowleft$ with nice properties:

- Countable partition $\overline{\bigcup_{i \in I} O_i} = [a, b]$, $f|_{O_i}$ bijections with inverses v_i
- Regularity conditions on distortion $D_i := \log |v_i'|$, either:
 - $\sup_{s < r, i \in I} \|D_i^{(r)}\|_{\infty} \le B_{D,r}$ for some r;
 - $\sup_{z \in Bern(e^{\delta}), i \in I} |D_i(z)| \le B_{A,\delta}$, where $Bern(e^{\delta})$ is a Bernstein ellipse...
- Technical requirement on placement of the O_i.
- Uniform "C-expansion" condition:

$$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos^{-1}\circ f\circ\cos)(\theta)\geq \check{\gamma}>1.$$

Spectral basis 2: Chebyshev series

A Bernstein ellipse of parameter e^{δ} is $\cos^{\delta} \frac{2\pi}{1000}$:

Lanford map

Standard map in this class used to test numerics is the Lanford map (e.g. Jenkinson *et al.*, '18, Bahsoun *et al.*, '16):

$$f(x) = 2x + \frac{1}{2}x(1-x) \mod 1$$

Transfer operator

We use the so-called transfer operator $\mathcal{L}:\mathcal{B}\circlearrowleft$

This tracks the action of the map f on signed measure densities in some Banach space \mathcal{B} of smooth functions:

$$\int_a^b A \circ f \varphi \, dx = \int_a^b A \, \mathcal{L} \varphi \, \mathrm{d}x.$$

Explicit formula for pointwise evaluation:

$$(\mathcal{L}\varphi)(x) = \sum_{i \in I} \sigma_i v_i'(x) \varphi(v_i(x)),$$

where v_i are the inverses of $f|_{O_i}$, and $\sigma_i = \text{sign } v_i'$. (Weights other than $\sigma_i v_i'$ also useful in various situations.)

Transfer operator: functional analysis

The transfer operator is *quasi-compact* on a range of Banach spaces, and in particular always has an isolated eigenvalue at 1:

We will use as our Banach space $\mathcal{B} = BV$, the space of functions of bounded variation.

NB: $\|\phi\|_{BV} = TV(\phi) + \|\phi\|_{\infty}$ and $\|\phi\psi\|_{BV} \le \|\phi\|_{BV} \|\psi\|_{BV}$.

Transfer operator

Our particular quantities of interest can be expressed using resolvent data at eigenvalue 1

• Absolutely continuous invariant measure ρdx satisfies

$$\left\{ \begin{array}{lcl} \mathcal{L}\rho & = & \rho, \\ \mathscr{S}\rho & = & 1, \end{array} \right.$$

where $\mathscr{S}\varphi := \int_{b}^{a} \varphi \, \mathrm{d}x$.

• Diffusion coefficient $\sigma_f^2(A)$ satisfies

$$\sigma_f^2(A) = \mathscr{S}\left[A\sum_{i=-\infty}^{\infty} \mathcal{L}^{|i|}(\rho A - \rho \mathscr{S}[\rho A])\right]$$

In general, no explicit solutions!

Chebyshev series

We will use as our approximation basis the Chebyshev polynomials on [-1, 1]:

$$T_k(x) = \cos(k \cos^{-1} x), k = 0, 1, \dots$$

These are related to Fourier series via transformation $x=\cos\theta$. Orthogonality relation

$$\int_{-1}^{1} T_k(x) T_j(x) \frac{\mathrm{d}x}{\sqrt{1 - x^2}} = t_k^{-1} \pi \delta_{jk}$$

Chebyshev series

We will use as our approximation basis the Chebyshev polynomials on [-1, 1]:

$$T_k(x) = \cos(k \cos^{-1} x), k = 0, 1, \dots$$

These are related to Fourier series via transformation $x = \cos \theta$. Orthogonality relation

$$\int_{-1}^{1} T_k(x) T_j(x) \frac{\mathrm{d}x}{\sqrt{1-x^2}} = t_k^{-1} \pi \delta_{jk}$$

Chebyshev series

Take a C^1 function $\psi: [-1,1] \to \mathbb{R}$. Via orthogonality have

$$\psi(x) = \sum_{k=0}^{\infty} \check{\psi}_k T_k(x),$$

where

$$\check{\psi}_k = \frac{t_k}{\pi} \int_{-1}^1 \psi(x) T_k(x) \frac{\mathrm{d}x}{\sqrt{1-x^2}}.$$

Using Fourier series connection, we find $|\check{\psi}_k| = \mathcal{O}(s(k))$, where the spectral convergence rate

$$s(k) := egin{cases} k^{-r}, & \psi \in \mathcal{C}^r \ e^{-\delta k}, & \psi ext{ bd. and analytic on} \ & e^{\delta} ext{-Bernstein ellipse} \end{cases}$$

What do we get if we write the transfer operator as acting on Chebyshev coefficients?

That is, consider infinite matrix of \mathcal{L}_{jk} , j, k = 0, 1, 2, ...:

$$\mathcal{L}_{jk} = \frac{t_j}{\pi} \int_{-1}^{1} (\mathcal{L}T_k)(x) \, T_j(x) \, \frac{\mathrm{d}x}{\sqrt{1-x^2}}$$

SO

$$\mathcal{L}T_k = \sum_{j=0}^{\infty} \mathcal{L}_{jk} T_j.$$

The transfer operator sends oscillating functions to functions of lower frequency:

$$\mathcal{L}T_k = \sum_{i \in I} (\sigma_i v_i') \times (T_k \circ v_i).$$

Graphically,

$$\mathcal{L}_{-1}^{\frac{1}{2}} = \frac{1}{0.0} \times \frac{1}{1} \times$$

Thus expect that $\mathcal{L}_{jk} \ll 1$ for j > k. Can prove this using oscillatory integral techniques on orthogonality relation.

"Heat map" of $|\mathcal{L}_{jk}|$:

Theorem (W. '19)

For all $p > \tilde{\gamma}^{-1}$ there exists C depending on regularity of distortion D_i such that

$$|\mathcal{L}_{jk}| \leq C \min\{1, s(j-pk)\},$$

where s is the spectral convergence rate of the map f.

Theorem (W. '19)

For all $p > \gamma^{-1}$ there exists C depending on regularity of distortion D_i such that

$$|\mathcal{L}_{jk}| \leq C \min\{1, s(j-pk)\},$$

where s is the spectral convergence rate of the map f.

Upshot: the transfer operator is close to "upper-triangular + finite-rank"

Galerkin method

Take a family of finite-rank projections $\mathcal{P}_N : BV \circlearrowleft$ which asymptotically approximate the identity. Pick large(ish) N:

- Compute the finite-dimensional operator $\mathcal{L}_N := \mathcal{P}_N \mathcal{L}_N|_{\text{im } \mathcal{P}_N}$.
- Substitute $\mathcal{P}_N \mathcal{L}|_{\text{im }\mathcal{P}_N}$ for \mathcal{L} in the problem of interest, e.g. for acim $\mathcal{P}_N \mathcal{L} \rho_N = \rho_N$.
- Numerically solve to get estimate: e.g. ρ_N should approximate true acim ρ .

In our case, \mathcal{P}_N is projection onto Chebyshev modes $T_0, \ldots T_N$.

Operator approximation

Our finite rank operator \mathcal{L}_N is the top-left block of a block-upper triangular operator

$$\tilde{\mathcal{L}}_N := \mathcal{L} - (\operatorname{id} - \mathcal{P}_N) \mathcal{L} \mathcal{P}_N = \int_{n}^{0} \int_{n}^{n} \mathcal{L}_N := \mathcal{P}_N \mathcal{L}_{|\operatorname{im} \mathcal{P}_N|}$$

In particular, $\tilde{\mathcal{L}}_N|_{\operatorname{im}\mathcal{P}_N}=\mathcal{L}_N$.

Theorem (W. '19)

There exists a constant C depending on bounds on the D_i such that

$$\|\tilde{\mathcal{L}}_N - \mathcal{L}\|_{BV} \le CN^{1+\epsilon}s(N)\},$$

where s is the spectral convergence rate of the map f.

Solution operator

We want to probe the resolvent data of $\mathcal L$ at eigenvalue 1 (for acim, diffusion coefficient, etc.). To do this we will use the *solution operator*:

$$\mathcal{S} = (\operatorname{id} - \mathcal{L} + 1 \mathscr{L})^{-1}$$
 resolvent of \mathcal{L} rank 1 perturbation with left eig'f'n \mathscr{S}

Has useful properties:

•
$$S1 = \rho$$

•
$$\mathcal{S}\varphi = \sum_{k=0}^{\infty} \mathcal{L}^k \varphi$$
 if $\int_{-1}^1 \varphi \, \mathrm{d}x = 0$

• Can write
$$\sigma_f^2(A) = \mathscr{S}[A(2S - id)(\rho A - \rho \mathscr{S}[\rho A])]$$

Convergence of estimates: operator error

Then, since $\mathcal S$ is just an operator function of $1\mathscr S$ (which is upper-triangular and whose Chebyshev coefficients we know) and $\mathcal L$, if

$$ilde{\mathcal{S}}_{\textit{N}} := (\mathsf{id} - ilde{\mathcal{L}}_{\textit{N}} + 1\mathscr{S})^{-1}$$

then

$$\|\tilde{\mathcal{S}_N} - \mathcal{S}\|_{BV} = \mathcal{O}(N^{1+\epsilon} s(N)),$$

and by block-upper-triangularity we can compute $\tilde{\mathcal{S}_N}|_{\lim \mathcal{P}_N} = (\operatorname{id} -\mathcal{L}_N + 1\mathscr{S}|_{\lim \mathcal{P}_N})^{-1}$.

Convergence of estimates: operator error

Theorem (W. '19)

There exist constants C, C' depending on bounds on the D_i such that if $N^{1+\epsilon}s(N)\|\mathcal{S}\|_{BV} \leq C'$ then

$$\|\tilde{\mathcal{S}}_N - \mathcal{S}\|_{BV} \le C\|\mathcal{S}\|_{BV}N^{1+\epsilon}s(N)\},$$

where s is the spectral convergence rate of the map f. Once again, our Galerkin approximation $\mathcal{S}_N = \tilde{\mathcal{S}}_N|_{\text{im}\,\mathcal{P}_N}.$

(NB: also possible to use bounds on $|\mathcal{L}_{jk}|$ for estimates in the style of Keller and Liverani '99)

How to estimate norm of solution operator $\|S\|_{BV}$?

How to estimate norm of solution operator $\|S\|_{BV}$?

• This amounts to bounding "decay of correlations"

$$\|\mathcal{L}^k|_{\ker\mathscr{S}}\|_{BV} \le C\beta^k, \beta \in (0,1)$$

for which there are very weak a priori bounds in the literature.

How to estimate norm of solution operator $\|S\|_{BV}$?

• This amounts to bounding "decay of correlations"

$$\|\mathcal{L}^k|_{\ker\mathscr{S}}\|_{BV} \le C\beta^k, \beta \in (0,1)$$

for which there are very weak a priori bounds in the literature.

• Using Korepanov *et al.* ('16) have $\|S\|_{BV} \le 9235$ for the Lanford map.

How to estimate norm of solution operator $\|S\|_{BV}$?

This amounts to bounding "decay of correlations"

$$\|\mathcal{L}^k|_{\ker\mathscr{S}}\|_{BV} \leq C\beta^k, \beta \in (0,1)$$

for which there are very weak a priori bounds in the literature.

- Using Korepanov *et al.* ('16) have $\|S\|_{BV} \le 9235$ for the Lanford map.
- But, if our map is analytic we have exponential convergence of the estimates and this is fine.

How to estimate norm of solution operator $\|S\|_{BV}$?

This amounts to bounding "decay of correlations"

$$\|\mathcal{L}^k|_{\ker\mathscr{S}}\|_{BV} \leq C\beta^k, \beta \in (0,1)$$

for which there are very weak a priori bounds in the literature.

- Using Korepanov *et al.* ('16) have $\|S\|_{BV} \le 9235$ for the Lanford map.
- But, if our map is analytic we have exponential convergence of the estimates and this is fine.
- A posteriori bounds are also possible (Galatolo and Nisoli '14).

How to compute \mathcal{L}_N ?

Our transfer operator approximation \mathcal{L}_N , acting on Chebyshev coefficients, is just the first $(N+1)\times(N+1)$ block of \mathcal{L} . But recall the coefficients of \mathcal{L}_{jk} are

$$\mathcal{L}_{jk} = \frac{t_j}{\pi} \int_{-1}^1 (\mathcal{L}T_k)(x) T_j(x) \frac{\mathrm{d}x}{\sqrt{1-x^2}},$$

i.e. we need to compute the first N+1 Chebyshev coefficients of each $\mathcal{L}T_k$, $k=0,1,\ldots N$.

We can estimate coefficients \mathcal{L}_{jk} very accurately via interpolating $\mathcal{L}T_k$ on M>N Chebyshev points

$$x_{I,M} = \cos \frac{2I+1}{M}\pi, I = 1, \dots, M.$$

Fast algorithm for this based on Fast Fourier Transform.

How to compute \mathcal{L}_N ?

Error given by aliasing formula:

$$\mathcal{L}_{jk} = \mathcal{L}_{jk}^{M} - \sum_{l=1}^{\infty} \mathcal{L}_{2lM-j,k} + \mathcal{L}_{2lM+j,k}$$
rigorously bounded a priori

Thus get rigorous interval estimate for the \mathcal{L}_{jk} that is very efficient to compute.

Rigorous algorithm

To compute invariant measures:

- Generate $\mathcal{L}_N = (\mathcal{L}_{jk})_{j,k=0,\dots,N}$ using pointwise evaluation of transfer operator and FFT algorithm $(O(N^2 \log N))$
- Estimate $S_N = (I \mathcal{L}_N + (1\mathscr{S})_N)^{-1}$ ($O(N^3)$ but reusable)
- Compute coefficients of $\rho_N := S_N 1$.
- Estimate BV error of $\rho \rho_N$

Rigorous algorithm

To compute invariant measures:

- Generate $\mathcal{L}_N = (\mathcal{L}_{jk})_{j,k=0,\dots,N}$ using pointwise evaluation of transfer operator and FFT algorithm $(O(N^2 \log N))$
- Estimate $S_N = (I \mathcal{L}_N + (1\mathscr{S})_N)^{-1}$ $(O(N^3)$ but reusable)
- Compute coefficients of $\rho_N := S_N 1$.
- Estimate BV error of $\rho \rho_N$

Output: a vector of intervals containing the coefficients of ρ_N , plus a bound on the BV norm of $\rho - \rho_N$.

Can of course roll interval diameters into BV error.

Rigorous algorithm

Rigorous algorithm

$$\sigma_f^2(A) = \mathscr{S}[A(2S - id)(\rho A - \rho \mathscr{S}[\rho A])]$$

Validated bounds

Using N = 2048 we have:

Theorem (W. '19)

1 The Lanford map's Lyapunov exponent $L_{\text{exp}} := \int_{\Lambda} \log |f'| \, \rho \, dx$ lies in the range

```
L_{exp} = 0.657\ 661\ 780\ 006\ 597\ 677\ 541\ 582\ 413\ 823\ 832\ 065\ 743\ 241\ 069
580\ 012\ 201\ 953\ 952\ 802\ 691\ 632\ 666\ 111\ 554\ 023\ 759\ 556\ 459
752\ 915\ 174\ 829\ 642\ 156\ 331\ 798\ 026\ 301\ 488\ 594\ 89 \pm 2 \times 10^{-128}.
```

- **b** The diffusion coefficient for the Lanford map with observable $A(x) = x^2$ lies in the range
 - $\sigma_f^2(A) = 0.360\ 109\ 486\ 199\ 160\ 672\ 898\ 824\ 186\ 828\ 576\ 749\ 241\ 669\ 997$ 797 228 864 358 977 865 838 174 403 103 617 477 981 402 783
 211 083 646 769 039 410 848 031 999 960 664 $7\pm 6\times 10^{-124}$.

Related results

- Slipantschuk and Bandtlow ('20): using Chebyshev approximation of analytic expanding maps, all eigendata converge exponentially.
- Bandtlow et al. ('20): Chebyshev approximation of expanding maps used to compute Laplace operator spectra of some infinite hyperbolic surfaces
- Crimmins and Froyland ('19): statistical properties that are functions of the transfer operator (e.g. large deviations) can be estimated using transfer operator discretisations.

Interested in statistical properties of non-uniformly expanding maps, for example $T:[0,1] \circlearrowleft$

$$Tx = \begin{cases} x(1+2^{\alpha}x^{\alpha}), & x \leq \frac{1}{2}, \\ 2x-1, & x > \frac{1}{2}, \end{cases}$$

where $\alpha > 0$.

- Lack of uniform expansion and weak mixing properties makes numerics very challenging.
- Ulam-style methods very slow, non-viable for $\alpha\gg 1$ (infinite ergodic theory).

We approach via induced map $f: [\frac{1}{2}, 1]$ \circlearrowleft :

$$f(x) := T^{\tau_T(x)}x.$$

This map is analytic and full-branch uniformly-expanding: we can use Chebyshev methods on it.

However, induced map f

- and is difficult to compute when $\tau_T\gg 1$,
- has an infinite number of branches (problem for computing transfer operator)

To solve (a):

Theorem (W., forthcoming)

There exists a real-analytic function $A:(0,1]\to [0,\infty)$ such that

$$f(x) = A^{-1}(A(T(x)) \mod 1),$$

The function A has an asymptotic expansion near 0 with explicit bounds on error.

To solve (b), note that transfer operator of f is

$$(\mathcal{L}_f \varphi)(x) = \sum_{i=0}^{\infty} \frac{A'(x)}{2} \frac{\varphi(A^{-1}(A(2x-1)+i))}{A'(A^{-1}(A(2x-1)+i))}.$$

We can use smoothness to solve this! When $\varphi=T_k$ (i.e. smooth), can use Euler-Maclaurin formula. (One can also do this with the Gauss map.)

Effective estimates of statistical properties of both the induced map and the full, non-uniformly expanding map, for a wide range of α :

Figure: Acims of the full map with different normalisations. Pale colours indicate estimates from binning on 10^8 simulations.

Upshot: very accurate validated bounds again possible. For example, using N=512, the expected return time to [1/2,1] for $\alpha=0.95$ (a near-singular case) lies in the range

$$\mathbb{E}_f[\tau_T] = 14.073\ 323\ 220\ 001\ 939\ 529\ 241\ 549\ 699$$
 $610\ 756\ 609\ 803\ 3171 \pm 10^{-43}.$

Conclusion

Chebyshev Galerkin transfer operator discretisations provide a very effective way to rigorously estimate statistical properties of full-branch uniformly expanding maps.

Some further directions:

- Better/higher-order function spaces (e.g. for estimating first-order response to perturbations)
- A posteriori estimates on decay of correlations (i.e. on $\|\mathcal{S}\|$)
- General spectral data

Wormell, C.L., Spectral Galerkin methods for transfer operators in uniformly expanding dynamics. *Numerische Mathematik* 142 (2019) 421–463.