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Introduction

Chaotic systems are commonly studied in terms of their ergodic

theory:
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invariant measures (acims), diffusion coefficients, . ..
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Introduction

We consider subclass of chaotic maps:
full-branch uniformly expanding maps.

® Simple, illustrative model class

e Contains examples
of independent theoretical interest,
e.g. Gauss map on [0, 1] (continued
fractions), f(x) = x~1 mod 1
under change of variable 2¥ — 1 = x

Rigorous numerics can answer various
theoretical problems (e.g. dimensionality of
Lagrange and Markov spectra).



Introduction

Current methods:

¢ Dynamical zeta methods (Pollicott, Jenkinson, et al.): only
practical with a few branches, assumes maps are analytic

e Ulam's method on transfer operators (Galatolo, Nisoli, et al.):
low-regularity method, only obtain a couple of rigorous digits.
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Introduction

Current methods:

¢ Dynamical zeta methods (Pollicott, Jenkinson, et al.): only
practical with a few branches, assumes maps are analytic

e Ulam's method on transfer operators (Galatolo, Nisoli, et al.):
low-regularity method, only obtain a couple of rigorous digits.

Goal: powerful numerics for a broad range of maps.

We will use a Chebyshev Galerkin method for transfer operators.



Maps under consideration

We consider maps of the interval f : [a, b] O with nice properties:

b

e Countable partition U;c; O; = |[a, b],
f|o, bijections with inverses v;
® Regularity conditions
on distortion D; := log |V/|, either:
® SUPs<, e ||D,-(r)|\OO < Bp,, for some r;
° SUPzcBern(ed),icl IDI(Z)| < BA75'

5 . . .
where Bern(e°) is a Bernstein ellipse... 0 0y - O,
® Technical

requirement on placement of the O;.

e Uniform “C-expansion” condition:

%(cos*1 of ocos)(f) > % > 1.



Spectral basis 2: Chebyshev series
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Lanford map

Standard map in this class used to test numerics is the Lanford
map (e.g. Jenkinson et al., '18, Bahsoun et al., '16):

1
f(x)=2x+ §X(1 —x) mod 1
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Transfer operator

We use the so-called transfer operator L : B .
This tracks the action of the map 7 on signed measure densities in
some Banach space B of smooth functions:

b b
/ Aofcpdx:/ ALpdx.
a a

Explicit formula for pointwise evaluation:
(Lo)(x) =D aivi(x)e(vi(x)),
i€l

where v; are the inverses of f|p,, and o; = sign v/.
(Weights other than o;v/ also useful in various situations.)



Transfer operator: functional analysis

The transfer operator is quasi-compact on a range of Banach
spaces, and in particular always has an isolated eigenvalue at 1:

We will use as our Banach space B = BV, the space of functions of
bounded variation.

NB: [|¢llv = TV(¢) + [|¢llc and [[6¢][av < [[4llav ¥[8V



Transfer operator

Our particular quantities of interest can be expressed using
resolvent data at eigenvalue 1

e Absolutely continuous invariant measure pdx satisfies

Lp = p,
Sp = 1
where .S = [ pdx.
* Diffusion coefficient 02(A) satisfies

AN Lil(pA—pZpAl)

i=—o00

o2(A) =.7

In general, no explicit solutions!



Chebyshev series
We will use as our approximation basis the Chebyshev polynomials
on [—1,1]:
Ti(x) = cos(kcos™* x),k =0,1,...
These are related to Fourier series via transformation x = cos#.
Orthogonality relation
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Chebyshev series

We will use as our approximation basis the Chebyshev polynomials

on [—1,1]:

Ti(x) = cos(kcos™* x),k =0,1,...

These are related to Fourier series via transformation x = cos#.
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Chebyshev series
Take a C! function ¢ : [-1,1] — R.

Via orthogonality have c m
PR

where

Using Fourier series connection, we find |{x| = O(s(k)), where the
spectral convergence rate

kK=h wed
iy .
s(k):=4¢€"% 1 bd. and analytic c(>cn

e’-Bernstein ellipse —1 L



Transfer operator in Chebyshev basis

What do we get if we write the transfer operator as acting on
Chebyshev coefficients?
That is, consider infinite matrix of Lj,j, k =0,1,2,...:

.orl X
L= [ (€TI0 Ti00 2

SO

LTe=Y LT,
j=0



Transfer operator in Chebyshev basis

The transfer operator sends oscillating functions to functions of
lower frequency:

LT =Y (o)) x (Tiov;).

i€l

Graphically,

LW = 2= x AWV
+ o1 VT

Thus expect that Lj < 1 for j > k.

Can prove this using oscillatory integral techniques on orthogonality
relation.



Transfer operator in Chebyshev basis
“Heat map” of |Lj|:

1077

10-10

1071

10-20

I

<107%



Transfer operator in Chebyshev basis

Theorem (W. '19)

For all p > %~ there exists C depending on regularity of distortion
D; such that

|Ljk] < Cmin{1,s(j — pk)},

where s is the spectral convergence rate of the map f.



Transfer operator in Chebyshev basis

Theorem (W. '19)

For all p > %~ there exists C depending on regularity of distortion
D; such that

Lkl < Cmin{1,s(j — pk)},
where s is the spectral convergence rate of the map f.

Upshot: the transfer operator is close to “upper-triangular +
finite-rank”



Galerkin method

Take a family of finite-rank projections Py : BV O which
asymptotically approximate the identity.
Pick large(ish) N:
¢ Compute the finite-dimensional operator Ly := PyLp|im Py -
® Substitute PyL|imp, for L in the problem of interest, e.g. for
acim PNﬁpN = PN-
e Numerically solve to get estimate: e.g. py should approximate
true acim p.

In our case, Py is projection onto Chebyshev modes Ty, ... Ty.



Operator approximation

Our finite rank operator Ly is the top-left block of a block-upper
triangular operator

0 n ACN = PN£|imP
0
Ly =L~ (id=Py)LPy= F
e

In particular, Ly|imp, = Ln-

Theorem (W. '19)
There exists a constant C depending on bounds on the D; such that

ILn — L]lgy < CNYs(N)},

where s is the spectral convergence rate of the map f.



Solution operator

We want to probe the resolvent data of £ at eigenvalue 1 (for
acim, diffusion coefficient, etc.). To do this we will use the solution
operator:

S=(d-L+17)"
resolvent of /j/ranL 1 pertumﬁ left eig'f'n .7

Has useful properties:
e Sl=p
e Sp =2 Lkpif f_llapdx =0
® Can write 02(A) = S [A(2S —id)(p A — p 7 [p A])]



Convergence of estimates: operator error

Then, since S is just an operator function of 1.# (which is
upper-triangular and whose Chebyshev coefficients we know) and
L, if

SN = (id —,CNN + 1y)_1

then )
|Sn = Sllsy = O(N* s(N)),

and by block-upper-triangularity we can compute
SN’imPN =(d—Ln + 1<5ﬂ|im7>,\,)_1-



Convergence of estimates: operator error

Theorem (W. '19)

There exist constants C, C' depending on bounds on the D; such
that if N**es(N)||S||gy < C’ then

IS — Sllav < C||S|lsy N*es(N)},

where s is the spectral convergence rate of the map f.

Once again, our Galerkin approximation Sy = SN\;mpN.

(NB: also possible to use bounds on |Lji| for estimates in the style
of Keller and Liverani '99)
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Bounds on norm of S

How to estimate norm of solution operator ||S|/gy?

e This amounts to bounding “decay of correlations”

1£¥ker |8V < CB¥, 8 € (0,1)

for which there are very weak a priori bounds in the literature.

e Using Korepanov et al. ('16) have ||S||gy < 9235 for the
Lanford map.

e But, if our map is analytic we have exponential convergence of
the estimates and this is fine.

® A posteriori bounds are also possible (Galatolo and Nisoli '14).



How to compute Ly?

Our transfer operator approximation Ly, acting on Chebyshev
coefficients, is just the first (N + 1) x (N + 1) block of £. But
recall the coefficients of Lj are

t; 1 dx
L= [ (£T0) Tt 2

i.e. we need to compute the first N + 1 Chebyshev coefficients of
each LTy, k=0,1,... N.

We can estimate coefficients L very accurately via interpolating
LT, on M > N Chebyshev points

2/ +1

X|,M = COS m I=1...,M.

Fast algorithm for this based on Fast Fourier Transform.



How to compute Ly?

Error given by aliasing formula:

o0
M
Lj = Ly — § Lom—jk + Lom+j k
=1

rigorously bounded a priori

Thus get rigorous interval estimate for the Lj, that is very efficient
to compute.



Rigorous algorithm

To compute invariant measures:

® Generate Ly = (Ljk)j k=0,..,n Using pointwise evaluation of
transfer operator and FFT algorithm (O(N? log N))

e Estimate Sy = (I — Ly + (1.7)n) L (O(N®) but reusable)
e Compute coefficients of py := Sy1.
e Estimate BV error of p — py



Rigorous algorithm

To compute invariant measures:

® Generate Ly = (Ljk)j k=0,..,n Using pointwise evaluation of
transfer operator and FFT algorithm (O(N? log N))

e Estimate Sy = (I — Ly + (1.7)n) L (O(N®) but reusable)
e Compute coefficients of py := Sy1.
e Estimate BV error of p — py

Output: a vector of intervals containing the coefficients of pp, plus
a bound on the BV norm of p — py.
Can of course roll interval diameters into BV error.



Rigorous algorithm

Interval-valued

. BV errors
coefficient vectors

ISx = SllBv
Sy

vector 3 py Bound on p — pn



Rigorous algorithm

o2(A) = S TAQS — id)(p A~ pS[p Al

Interval-valued
L BV errors
coefficient vectors

P vector 3 py Bound on p — pn
Ax) = a? A | Allsv
Ap vector 3 Apy Bound on Ap — Apyx
7 S Il
7 [Ap] interval 3 . [Apy] Bound on .[Ap — Apn]
A—- A—. id
A— S[Ap) vector 3 A — . [Apy] Bound on .#'[Ap — Apy]
p PN R TP P
p(A—7[Ap]) vector 3 py (A — Z[Apn]) Bound on diff.
s sww 1185

S[p(A - Z[Ap))] vector 3 Sy [pn (A — F[Apn])] Bound on diff.

' v M



Validated bounds

Using N = 2048 we have:
Theorem (W. '19)

® The Lanford map'’s Lyapunov exponent Ley, := [, log |f'| p dx
lies in the range

Lexp = 0.657 661 780 006 597 677 541 582 413 823 832 065 743 241 069
580 012 201 953 952 802 691 632 666 111 554 023 759 556 459
752 915 174 829 642 156 331 798 026 301 488 594 89 + 2 x 10~ %2,

O The diffusion coefficient for the Lanford map with observable
A(x) = x? lies in the range

U%(A) = 0.360 109 486 199 160 672 898 824 186 828 576 749 241 669 997
797 228 864 358 977 865 838 174 403 103 617 477 981 402 783

211 083 646 769 039 410 848 031 999 960 664 7 + 6 x 10~ ***.



Related results

e Slipantschuk and Bandtlow ('20): using Chebyshev
approximation of analytic expanding maps, all eigendata
converge exponentially.

e Bandtlow et al. ('20): Chebyshev approximation of expanding
maps used to compute Laplace operator spectra of some
infinite hyperbolic surfaces

e Crimmins and Froyland ('19): statistical properties that are
functions of the transfer operator (e.g. large deviations) can
be estimated using transfer operator discretisations.



Intermittent systems

Interested in statistical properties of
non-uniformly expanding maps, for example
T:[0,1] 0O

Ty — x(142%%%), x
2x — 1, X >

where v > 0.

® [ack of uniform expansion and weak
mixing properties makes numerics very
challenging.

¢ Ulam-style methods very slow,
non-viable for a: > 1 (infinite ergodic
theory).

| P S

0.4



Intermittent systems

We approach via induced map f : [%, 1] ©:
f(x):= Tr(x)«,

This map is analytic and full-branch
uniformly-expanding: we can use Chebyshev
methods on it.

However, induced map f

® is difficult to compute when 7 > 1,
and

O has an infinite number of branches
(problem for computing transfer
operator)

02 04 06 08 10



Intermittent systems

To solve (a):
Theorem (W., forthcoming)

There exists a real-analytic function A : (0,1] — [0, 00) such that

f(x) = AY(A(T(x)) mod 1),

The function A has an asymptotic expansion near 0 with explicit
bounds on error.



Intermittent systems

To solve (b), note that transfer operator of f is

2 A (x) o(ATHA(RX — 1) + 1))
=2 2 AAL(Ax—1)+1))

(Lre)(x
i=0

We can use smoothness to solve this! When ¢ = Ty (i.e. smooth),
can use Euler-Maclaurin formula. (One can also do this with the
Gauss map.)



Intermittent systems
Effective estimates of statistical properties of both the induced map
and the full, non-uniformly expanding map, for a wide range of a:

Acim of full map 7" Acim of induced map f

—_— a=02

— a=06

— a=095

0.0 0.2 0.4 0.6 0.8 10 0.5 0.6 0.7 0.8 0.9 10

Figure: Acims of the full map with different normalisations. Pale colours
indicate estimates from binning on 108 simulations.



Intermittent systems

Upshot: very accurate validated bounds again possible.
For example, using N = 512, the expected return time to [1/2, 1]
for « = 0.95 (a near-singular case) lies in the range

E¢[r7] = 14.073 323 220 001 939 529 241 549 699
610 756 609 803 3171 & 10~ 3.



Conclusion

Chebyshev Galerkin transfer operator discretisations provide a very
effective way to rigorously estimate statistical properties of
full-branch uniformly expanding maps.
Some further directions:
® Better/higher-order function spaces (e.g. for estimating
first-order response to perturbations)
® A posteriori estimates on decay of correlations (i.e. on ||S||)

® General spectral data
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