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We consider separable ring objects in symmetric monoidal categories and inves-

tigate what it means for an extension of ring objects to be (quasi)-Galois. Remi-

niscent of field theory, we define splitting ring extensions and examine how they

occur. We also establish a version of quasi-Galois-descent for ring objects.

Specializing to tensor-triangulated categories, we study how extension-of-scalars

along a quasi-Galois ring object affects the Balmer spectrum. We define what it

means for a separable ring to have constant degree, which turns out to be a nec-

essary and sufficient condition for the existence of a quasi-Galois closure. Finally,

we illustrate the above for separable rings occurring in modular representation

theory.
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Introduction

Classical Galois theory studies field extensions L/K through the Galois group Γ,

that is the group of automorphisms of L that fix K. Writing LΓ for the subfield of

elements in L fixed by Γ, we call a field extension Galois with group Γ if LΓ = K.

For a polynomial f ∈ K[x], the splitting field of f over K is the smallest extension

over which f decomposes into linear factors. A field extension L/K is sometimes

called quasi-Galois1 when L is the splitting field for some polynomial in K[x].

We highlight some facts from Galois theory for fields (see [Bou81] or [Kap72], for

instance) to consult later. Let L/K be a finite field extension and f an irreducible

separable polynomial with coefficients in K. Then,

(a) The field L is a splitting field of f over K if and only if L is the smallest

extension of K such that L⊗K K[x]/(f) ∼= L× deg(f).

(b) There exists a unique (up to isomorphism) splitting field of f over K.

(c) The field extension L/K is quasi-Galois if and only if any irreducible poly-

nomial in K[x] with a root in L factors completely in L.

(d) There exists a field extension N/L such that N is quasi-Galois over K and

no other field between L and N is quasi-Galois over K. This field is unique

up to isomorphism and we call N the quasi-Galois closure of L over K.

In this dissertation, we adapt the above ideas to the context of (commutative,

separable) ring objects in symmetric monoidal categories. The generalisation

of Galois theory from fields to rings originated with Auslander and Goldman

in [AG60, App.]. They considered commutative separable algebras S that are

projective over the base ring R. For a finite group Γ of ring automorphisms of S

1see Bourbaki [Bou81, §9]. In the literature, a quasi-Galois extension is sometimes called
normal or Galois, probably due to the fact that these notions coincide when L/K is separable.
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fixing R, the extension S/R is called Galois with group Γ if the maps R ↪→ SΓ

and

S ⊗R S −→
∏
γ∈Γ

S : x⊗ y 7−→ (x · γ(y))γ∈Γ (0.0.1)

are isomorphisms. Five years later, Chase, Harrison and Rosenberg gave six char-

acterisations of Galois extensions of commutative rings [CHR65]. Further gener-

alisations are aplenty [Kre67, CS69, KT81, Hes09]. In particular, Rognes [Rog08]

introduced a Galois theory up-to-homotopy. The objects of study are brave new

rings: commutative monoids in categories of structured spectra. The maps in the

definition of Auslander and Goldman are now required to be isomorphisms in the

stable homotopy category.

In our version, the analogue of a separable field extension will be a commutative

separable ring A in a symmetric monoidal idempotent-complete category K, with

special emphasis on tensor-triangulated categories. Here, A is called separable if

the multiplication map A ⊗ A → A has a right inverse A → A ⊗ A which is an

A,A-bimodule morphism. Throughout the rest of the introduction, we assume all

ring objects are commutative. Consider the following two examples:

Algebraic Geometry If V → X is an étale morphism of schemes, we can

understand the derived category of V as the category of A-modules for some

separable ring A in the derived category of X (see [Bal14a, Th.3.5, Rem.3.8]).

Modular Representation theory Let H < G be finite groups and k a field.

Consider the ring object AGH := k(G/H) in K := kG−mod with all [g] ∈ G/H

being orthogonal idempotents. Then, Balmer ([Bal15]) shows that AGH is separable

and there is an equivalence AGH−ModK
∼= kH−mod such that extension-of-scalars

coincides with the restriction ResGH . We can consider the ring AGH in any category

that receives kG−mod, say the derived category K = Db(kG−mod) or stable

category K = kG−stab, and the equivalence will still hold. Likewise, extension-

of-scalars along a suitable separable ring recovers restriction to a subgroup in
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equivariant stable homotopy theory, in equivariant KK-theory and in equivariant

derived categories ([BDS14]). In particular, sometimes results obtained for an

opportune subgroup H can be extended to the whole group G by performing

descent along the ring AGH . This technique was most notably used in [Bal15] to

describe the kernel and image of the restriction homomorphism T (G) → T (H),

where T (G) denotes the group of endotrivial kG-modules and [G : H] is invertible

in k.

Separable ring objects allow a sound notion of degree [Bal14b], and our first

Galois-flavoured result shows that the degree of A provides a bound for the number

of ring endomorphisms of A in K (Theorem 2.2.4). Another reason we turn

to separable rings is that the category of A-modules in K remains symmetric

monoidal. We can therefore consider algebras over a separable ring, meaning ring

objects in the module category.

The condition R
∼=−→ SΓ in Auslander and Goldman’s definition is delicate in

a category without equalizers and is the topic of further work. As it turns out,

the second condition 0.0.1 is interesting in its own right. Let (K,⊗,1) be an

idempotent-complete symmetric monoidal category and A a ring object in K with

multiplication µ : A ⊗ A → A and unit η : 1 → A. We think of A as a ring

extension of 1 and consider a group Γ of ring automorphisms of A in K. We then

define the ring homomorphism

λΓ : A⊗ A −→
∏
γ∈Γ

Aγ

by prγ λΓ = µ(1⊗ γ).

Definition. We call (A,Γ) quasi-Galois in K if λΓ : A ⊗ A →
∏

γ∈ΓA is an

isomorphism.

To illustrate, let R be a commutative ring and S a commutative R-algebra.

Suppose (S,Γ) is a Galois extension of R in the sense of Auslander and Goldman,
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where Γ is some finite group of ring automorphisms of S over R. In particular,

S is projective and separable as an R-module. Then, (S,Γ) is quasi-Galois in the

symmetric monoidal categories R−Mod and Dperf(R). If S is an indecomposable

ring, it moreover follows that Γ contains all ring endomorphisms of S over R:

Theorem. (3.1.2). Let A be a nonzero separable indecomposable ring object of

finite degree in K. Let Γ be the set of ring endomorphisms of A in K. The

following are equivalent:

(i) |Γ| = deg(A).

(ii) A⊗ A ∼= A×t as left A-modules for some t ∈ N .

(iii) Γ is a group and (A,Γ) is quasi-Galois in K.

Following classical field theory, we introduce splitting rings (compare to (a)):

Definition. Let A and B be ring objects in K and suppose B is indecompos-

able. We say B splits A if B ⊗ A ∼= B× deg(A) as (left) B-algebras. We call B a

splitting ring of A if B splits A and any ring morphism C → B, where C is an

indecomposable ring object splitting A, is an isomorphism.

Under mild conditions on K, Corollary 3.2.7 shows B is quasi-Galois if and

only if B is a splitting ring of some nonzero ring object A in K; our terminology

matches up with classical field theory. Moreover, Proposition 3.2.6 shows that

every separable ring object in K has (possibly multiple) splitting rings.

If in addition, we assume that K is tensor-triangulated, we can say more about

the way splitting rings arise. Examples of tensor-triangulated categories appear

in many different shapes, be it in algebraic geometry, homological algebra, sta-

ble homotopy theory or modular representation theory. Paul Balmer [Bal05] has

introduced the spectrum of an (essentially small) tensor-triangulated category K,

providing an algebro-geometric approach to the study of triangulated categories.
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In short, the spectrum Spc(K) of K is the set of all prime thick ⊗-ideals P ( K.

The support of an object x in K is the subset supp(x) = {P ∈ Spc(K) | x /∈

P} ⊂ Spc(K). The complements of these supports form a basis for a topology on

Spc(K). A complete description of the spectrum can come from a classification

of the thick ⊗-ideals in the category, as in modular representation theory, alge-

braic geometry and stable homotopy theory. Still, classifying the thick ⊗-ideals

remains an open challenge for many tensor-triangulated categories. When such

a classification is unknown, for instance in the derived category of G-equivariant

vector bundles over a scheme, new information about the spectrum could mean

progress in the classification problem.

Extension-of-scalars along separable ring objects can play a central role in this

endeavor. When A is a separable ring in a tensor-triangulated category, the cate-

gory of A-modules in K remains tensor-triangulated [Bal11, Cor.4.3]. We can thus

consider algebras over a separable ring without leaving the tensor-triangulated

world or descending to a model category. In particular, we can study the contin-

uous map

Spc(FA) : Spc(A−ModK) −→ Spc(K) (0.0.2)

induced by the extension-of-scalars functor FA : K→ A−ModK.

Thus motivated, we translate our quasi-Galois theory to the tensor-triangular

setting. We assume K is nice (say, Spc(K) is Noetherian or K satisfies Krull-

Schmidt). Proposition 5.2.8 provides an analogue to (c):

Proposition. Let A be a separable ring in K such that the spectrum Spc(A−ModK)

is connected, and suppose B is an A-algebra with supp(A) = supp(B). If B is

quasi-Galois in K, then B splits A.

With one eye on future applications of the theory, we are on the lookout for

separable rings whose Galois theory and geometry interact well. That is, we would

like to control the support of the splitting rings. Recall that the local category
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KP at the prime P ∈ Spc(K) is the idempotent-completion of the Verdier quo-

tient K�P. We say a separable ring A has constant degree if its degree as a ring in

KP is the same for every prime P ∈ supp(A) ⊂ Spc(K). Finally, Proposition 5.2.6

and Theorem 5.2.9 provide a version of (b) and (d):

Theorem. If A has connected support and constant degree, there exists a unique

splitting ring A∗ of A. Furthermore, supp(A) = supp(A∗) and A∗ is the unique

quasi-Galois closure of A in K. That is, any A-algebra morphism B → A∗ with

B quasi-Galois and indecomposable in K, is an isomorphism.

Initially, we were motivated to consider rings that behave �Galois�as a means

to study the map 0.0.2. We note that any group Γ of ring automorphisms of A

acts on A−ModK and on its spectrum Spc(A−ModK). Then,

Theorem. (5.2.2). If (A,Γ) is quasi-Galois in K,

supp(A) ∼= Spc(A−ModK)/Γ.

In particular, we recover Spc(K) from Spc(A−ModK) when supp(A) = Spc(K).

This happens exactly when A is nil-faithful, that is when A ⊗ f = 0 implies f

is ⊗-nilpotent. In fact, when the functor A ⊗ − is faithful and (A,Γ) is quasi-

Galois, we find that K ∼= (A−ModK)Γ. Here, the category (A−ModK)Γ has

objects (x, (δγ : x→ xγ)γ∈Γ), where x is an A-module in K, we write xγ for x with

γ-twisted A-action, and (δγ)γ∈Γ is a family of A-linear isomorphisms satisfying

some cocycle condition. More generally, if (A,Γ) is quasi-Galois, Corollary 6.3.3

shows

DescK(A) ∼= (A−ModK)Γ,

where DescK(A) is the descent category of A in the sense of [Mes06].

In the last chapter of the dissertation, we compute degrees and splitting rings

for the separable rings AGH := k(G/H) from above. The degree of AGH in Db(kG−

mod) is simply [G : H], and AGH is quasi-Galois if and only if H is normal in G.
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Accordingly, the quasi-Galois closure of AGH in the derived category Db(kG−mod)

is the ring AGN , where N is the normal core of H in G (Cor. 7.0.13). On the other

hand, Theorem 7.0.15 shows that the degree of AGH in kG−stab is the greatest

0 ≤ n ≤ [G : H] such that there exist distinct [g1], . . . , [gn] in H\G with p dividing

|Hg1∩. . .∩Hgn|. In that case, the splitting rings of AH are exactly the AGHg1∩...∩Hgn

with g1, . . . , gn as above. Finally, AGH is quasi-Galois in kG−stab if and only if p

does not divide |H ∩Hg ∩Hgh| for g ∈ G−H and h ∈ H −Hg.
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CHAPTER 1

Preliminaries: Rings in monoidal categories

In this dissertation, we interpret the notion of Galois extensions of rings in a

broader context. Our playing field will be symmetric monoidal idempotent-

complete categories and the main characters are objects that behave like rings. In

this first chapter, we give a short overview of these concepts. For the definition

of a symmetric monoidal category, we refer to [Mac98, Section XI.1].

Throughout this chapter, (K,⊗,1) will denote a symmetric monoidal

additive category.

Notation 1.0.1. For objects x1, . . . , xn in K and a permutation τ ∈ Sn, we will

write τ : x1⊗. . .⊗xn → xτ(1)⊗. . .⊗xτ(n) to denote the isomorphism that permutes

the tensor factors.

Definition 1.0.2. A ring object A ∈ K is a triple (A, µ, η) with associative

multiplication µ : A⊗ A→ A and two-sided unit η : 1→ A. That is,

A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗1

1⊗µ µ

µ

and

A⊗ 1 A⊗ A 1⊗ A

A

1⊗η

∼=
µ

∼=

η⊗1

commute. We call a ring object commutative when µ(12) = µ. If (A, µA, ηA) and

(B, µB, ηB) are ring objects, we call a morphism α : A→ B in K a ring morphism

if the diagrams

A⊗ A A

B ⊗B B

µA

α⊗α α

µB

and
1 A

B

ηA

ηB
α

commute.
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Convention 1.0.3. We will often call A a ring in K instead of a ring object. All

rings are assumed commutative.

Definition 1.0.4. Let (A, µ, η) be a ring object in K. A left A-module is a pair

(x ∈ K, % : A⊗x→ x) such that the action % is compatible with the ring structure

in the usual way. That is, the diagrams

A⊗ A⊗ x A⊗ x

A⊗ x x

µ⊗1

1⊗%

%

%

and
1⊗ x A⊗ x

x

η⊗1

∼=
%

commute. Right modules are defined analogously. Every object x ∈ K gives rise

to a free A-module A⊗x with action given by % : A⊗A⊗x µ⊗1−−→ A⊗x. If (x, %1)

and (y, %2) are left A-modules, a morphism α : x→ y is said to be A-linear if the

diagram

A⊗ x x

A⊗ y y

%1

1⊗α α

%2

commutes.

Definition 1.0.5. A ring A in K is called separable if the multiplication map

µ : A ⊗ A → A has an A,A-bilinear section. That is, there exists a morphism

σ : A→ A⊗ A such that µσ = 1A and the diagram

A⊗ A

A⊗ A⊗ A A A⊗ A⊗ A

A⊗ A

σ⊗1 1⊗σ
µ

1⊗µ
σ

µ⊗1

commutes.

Notation 1.0.6. Let A and B be ring objects in K. We write A × B for the

ring A ⊕ B with component-wise multiplication. We will also consider the ring

structure on A⊗B given by (µA⊗ µB)(23) : (A⊗B)⊗2 → (A⊗B). We write Ae

9



for the enveloping ring A⊗Aop. If A and B are separable, then so are Ae, A⊗B

and A×B. Conversely, A and B are separable whenever A×B is separable.

Remark 1.0.7. Of course, left Ae-modules are just A,A-bimodules. Furthermore,

any A-linear morphism A → A is Ae-linear because A is assumed commutative.

Finally, any two A-linear morphisms A→ A commute.

Example 1.0.8. Let R be a commutative ring. The category of R-modules forms

a symmetric monoidal category (R−Mod,⊗R, R). The (commutative, separable)

ring objects in this category are just (commutative, separable) R-algebras.

Example 1.0.9. Let G be a finite group and let k be a field. We write kG−Mod

for the category of left kG-modules. For any kG-modules M and N , the tensor

product M⊗kN inherits the structure of a kG-module by letting G act diagonally.

Then, (kG−Mod,⊗k,k) is symmetric monoidal, and the ring objects are k-

algebras equipped with an action of G via algebra automorphisms.

1.1 The Eilenberg-Moore category of modules

We study the category of A-modules for a ring (A, µ, η) in K. The results in this

section all appear in [Bal14b, §1].

Definition 1.1.1. The Eilenberg-Moore category A−ModK has A-modules as

objects and A-linear morphisms. We will write FA : K → A−ModK for the

extension-of-scalars, given by FA(x) = (A⊗x, µ⊗1), and write UA : A−ModK → K

for the forgetful functor UA(x, %) = x. The adjunction

K

a

A−ModK

FA UA

is also called the Eilenberg-Moore adjunction, see [EM65].

The Kleisli category A−FreeK is the full subcategory ofA−ModK on freeA-modules.

10



In other words, the objects are the same as K, writing FA(x) ∈ A−FreeK for x ∈ K,

with morphisms HomA(FA(x), FA(y)) := HomK(x,A⊗y). Let’s write f : FA(x)→

FA(y) for the morphism corresponding to f : x → A ⊗ y in K. The Eilenberg-

Moore adjunction restricts to FA : K A−FreeK : UA, see [Kle65].

Example 1.1.2. Let R be a commutative ring and A a commutative finite étale

(flat and separable) R-algebra. Then K := Dperf(R), the homotopy category

of bounded complexes of finitely generated projective R-modules, is a symmet-

ric monoidal category. Since A is R-flat, the object A = A[0] in K keeps its

ring structure. Then A is a separable ring object in K and the category of A-

modules A−ModK is equivalent to Dperf(A) [Bal11, Th.6.5].

Definition 1.1.3. We say K is idempotent-complete if every idempotent mor-

phism splits. That is, for all x ∈ K, any morphism e : x→ x with e2 = e yields a

decomposition x ∼= x1 ⊕ x2 under which e becomes ( 1 0
0 0 ).

Remark 1.1.4. Every additive category K can be embedded in an idempotent-

complete category K\ in such a way that K ↪→ K\ is fully faithful and every

object in K\ is a direct summand of some object in K. We call K\ the idempotent-

completion of K.

Remark 1.1.5. If K is idempotent-complete, the module category A−ModK is

idempotent-complete too. When A is moreover separable, A−ModK is equivalent

to the idempotent-completion of A−FreeK, see [Bal11]. In particular, any A-

module x is a direct summand of the free module FA(UA(x)).

We can define a tensor product ⊗A on the Kleisli category A−FreeK by

FA(x)⊗A FA(y) := FA(x⊗ y)

on objects and f ⊗A g = (µ⊗ 1⊗ 1)(23)(f ⊗ g) for morphisms f : x → A ⊗ x′

and g : y → A⊗ y′ in K:

x⊗ y A⊗ x′ ⊗ A⊗ y′ A⊗ A⊗ x′ ⊗ y′ A⊗ x′ ⊗ y′.f⊗g (23) µ⊗1⊗1

11



The tensor ⊗A yields a symmetric monoidal structure on A−FreeK with unit

A = FA(1). If we moreover assume the ring A is separable and K is idempotent-

complete, idempotent-completion conveys the tensor ⊗A from A−FreeK to A−

ModK.

We could also define a tensor product ⊗′ directly on objects (x, %) in A−ModK;

the following lemma is key. As A is commutative, we let % denote both the left

and right action of A on x.

Lemma 1.1.6. Let (A, µ, η, σ) be a separable ring in K and suppose (x, %1) and

(y, %2) are A-modules. Consider the endomorphism

vx,y = v : x⊗ y x⊗ A⊗ y x⊗ A⊗ A⊗ y x⊗ y.1⊗η⊗1 1⊗σ⊗1 %1⊗%2

Then, v(%1⊗ 1) = v(1⊗ %2) = (%1⊗ %2)(1⊗ σ⊗ 1) : x⊗A⊗ y −→ x⊗ y, and any

morphism f : x⊗y → z with z ∈ K such that f(%1⊗1) = f(1⊗%2) : x⊗A⊗y → z,

satisfies fv = f . In particular, v is idempotent.

Proof. First, note that v(%1 ⊗ 1) = (%1 ⊗ %2)(1⊗ σ ⊗ 1) follows from

x⊗ A⊗ y x⊗ A⊗2 ⊗ y x⊗ y

x⊗ y x⊗ A⊗3 ⊗ y x⊗ A⊗2 ⊗ y

x⊗ A⊗ y x⊗ A⊗2 ⊗ y x⊗ A⊗ y,

1⊗σ⊗1 %1⊗%2

1⊗η⊗1 %1⊗1⊗1⊗1

1⊗µ⊗1⊗1

%1⊗%2

%1⊗1

1⊗1⊗η⊗1

1

1⊗1⊗σ⊗1

1⊗µ⊗1

1⊗σ⊗1

in which the lower right square commutes because σ is A,A-bilinear. A similar

diagram shows v(1 ⊗ %2) = (%1 ⊗ %2)(1 ⊗ σ ⊗ 1). Finally, for morphisms f as in

the lemma, we see that the diagram

x⊗ A⊗ y x⊗ A⊗2 ⊗ y x⊗ A⊗ y x⊗ y

x⊗ y x⊗ A⊗ y x⊗ y z

1⊗σ⊗1 %1⊗1⊗1

1⊗µ⊗1

1⊗%2

%1⊗1 f

1

1⊗η⊗1

1⊗η⊗1 %1⊗1 f

commutes.
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Seeing how v : x⊗ y → x⊗ y is idempotent and K is idempotent-complete, we

can define x⊗′ y as the direct summand im(v) of x⊗ y, with projection px,y = p

and inclusion jx,y = j:

v : x⊗ y x⊗′ y x⊗ y.p j
(1.1.7)

By Lemma 1.1.6, we get a split coequaliser in K,

x⊗ A⊗ y x⊗ y x⊗′ y,
%1⊗1

1⊗%2

p
(1.1.8)

and A acts on x⊗′ y by

A⊗ x⊗′ y A⊗ x⊗ y x⊗ y x⊗′ y.1⊗j %1⊗1 p

For f : x→ x′ and g : y → y′ in A−ModK, we consider the commutative diagram

v : x⊗ y x⊗ A⊗ y x⊗ A⊗ A⊗ y x⊗ y

v′ : x′ ⊗ y′ x′ ⊗ A⊗ y′ x′ ⊗ A⊗ A⊗ y′ x′ ⊗ y′

1⊗η⊗1

f⊗g

1⊗σ⊗1

f⊗1⊗g

%1⊗%2

f⊗1⊗1⊗g f⊗g

1⊗η⊗1 1⊗σ⊗1 %′1⊗%′2

and get a map

f ⊗′ g : im(v) = x⊗′ y im(v′) = x′ ⊗′ y′.

Remark 1.1.9. The diagram

A⊗ x⊗ y x⊗ y x⊗ A⊗ y x⊗ A⊗2 ⊗ y

A⊗ x⊗ A⊗ y A⊗ x⊗ A⊗2 ⊗ y A⊗ x⊗ y x⊗ y

%1⊗1

1⊗1⊗η⊗1

1⊗η⊗1 1⊗σ⊗1

%1⊗%2

1⊗1⊗σ⊗1 1⊗%1⊗%2 %1⊗1

commutes. In fact, v is Ae-linear and x ⊗′ y is a direct summand of x ⊗ y as

Ae-modules.

Proposition 1.1.10. Suppose K is idempotent-complete and (A, µ, η, σ) is a sep-

arable ring in K. The tensor products ⊗′ and ⊗A on A−ModK are naturally iso-

morphic. They yield a symmetric monoidal structure ⊗A : A−ModK×A−ModK →

A−ModK on the Eilenberg-Moore category under which FA becomes monoidal. We

will write 1A := A for the unit object in A−ModK.
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Proof. It is not hard to see that ⊗A defines a symmetric monoidal structure on the

Kleisli category A−FreeK, with unitA = FA(1). What is more, extension-of-scalars

FA : K→ A−FreeK is monoidal by construction. After idempotent-completion, the

symmetric monoidal structure carries over to A−ModK. Thus, the proposition

follows if we show that ⊗′ and ⊗A agree on A−FreeK. Given free A-modules

FA(x) = A⊗ x and FA(y) = A⊗ y, we can identify FA(x)⊗ FA(y) ∼= x⊗A⊗2 ⊗ y

and note that the endomorphism from Lemma 1.1.6,

v : FA(x)⊗ FA(y) −→ FA(x)⊗ FA(y),

is given by the first row of the commuting diagram

x⊗ A⊗2 ⊗ y x⊗ A⊗3 ⊗ y x⊗ A⊗4 ⊗ y x⊗ A⊗2 ⊗ y

x⊗ A⊗2 ⊗ y x⊗ A⊗3 ⊗ y x⊗ A⊗2 ⊗ y.

x⊗ A⊗ y

1⊗1⊗η⊗1⊗1 1⊗1⊗σ⊗1⊗1

1⊗µ⊗1⊗1 1⊗µ⊗1⊗1⊗1

1⊗µ⊗µ⊗1

1⊗σ⊗1⊗1

1⊗µ⊗1

1⊗1⊗µ⊗1

1⊗σ⊗1

In other words, the following diagram commutes

FA(x)⊗ FA(y) FA(x)⊗′ FA(y) FA(x)⊗ FA(y)

A⊗ A⊗ x⊗ y A⊗ x⊗ y A⊗ A⊗ x⊗ y

v

p

∼=

j

∼=
µ⊗1⊗1 σ⊗1⊗1

and FA(x)⊗′ FA(y) = im(v) is isomorphic to A⊗ x⊗ y in K.

Recall that the A-action on FA(x)⊗′ FA(y) is given by

A⊗ FA(x)⊗′ FA(y) A⊗ A⊗ x⊗ A⊗ y FA(x)⊗ FA(y)

FA(x)⊗′ FA(y),

1⊗j µ⊗1⊗1⊗1

p

which, under the isomorphism FA(x)⊗′ FA(y) ∼= A⊗ x⊗ y, corresponds to

A⊗ A⊗ x⊗ y A⊗ A⊗ A⊗ x⊗ y A⊗ A⊗ x⊗ y

A⊗ A⊗ x⊗ y A⊗ x⊗ y.

1⊗σ⊗1⊗1

1⊗µ⊗1⊗1

µ⊗1⊗1⊗1

µ⊗1⊗1

µ⊗1⊗1

14



Hence, FA(x)⊗′FA(y) is isomorphic to FA(x⊗y) = FA(x)⊗AFA(y) as A-modules.

For morphisms f : FA(x) → FA(x′) and g : FA(y) → FA(y′) in A−FreeK corre-

sponding to f : x→ A⊗ x′ and g : y → A⊗ y′ in K, the tensor product f ⊗′ g is

given by

FA(x)⊗′ FA(y) FA(x)⊗ FA(y) FA(x′)⊗ FA(y′) FA(x′)⊗′ FA(y′),
j f⊗g p

where f ⊗ g is the map

A⊗ x⊗ A⊗ y A⊗2 ⊗ x′ ⊗ A⊗2 ⊗ y′ A⊗ x′ ⊗ A⊗ y′.1⊗f⊗1⊗g µ⊗1⊗µ⊗1

Under the correspondence FA(x)⊗′ FA(y) ∼= A⊗ x⊗ y, we get a diagram

A⊗ x⊗ y

A⊗2 ⊗ x⊗ y A⊗ x⊗ y A⊗2 ⊗ x′ ⊗ A⊗ y′ A⊗3 ⊗ x′ ⊗ y′

A⊗ x⊗ A⊗ y A⊗2 ⊗ x′ ⊗ y′

A⊗2 ⊗ x′ ⊗ A⊗2 ⊗ y′ A⊗ x′ ⊗ A⊗ y′ A⊗2 ⊗ x′ ⊗ y′ A⊗ x′ ⊗ y′

1
σ⊗1⊗1

(23)

µ⊗1⊗1 1⊗f⊗g (34)

1⊗µ⊗1⊗1

1⊗f⊗1⊗g µ⊗1⊗1

µ⊗1µ⊗1 (23) µ⊗1⊗1

so f ⊗′ g is given by the bar of

x⊗ y A⊗ x′ ⊗ A⊗ y′ A⊗ A⊗ x′ ⊗ y′ A⊗ x′ ⊗ y′.f⊗g (23) µ⊗1⊗1

We conclude that

FA(x)⊗′ FA(y) A⊗ x⊗ y

FA(x′)⊗′ FA(y′) A⊗ x′ ⊗ y′

∼=

f⊗′g (µ⊗1⊗1)(23)(f⊗g)=f⊗Ag
∼=

commutes so that ⊗′ and ⊗A are naturally isomorphic.

Remark 1.1.11. Let (x, %) be an A-module. The canonical A-linear isomorphism

A⊗A x
∼=−→ x is given by the map

A⊗A x A⊗ x x,
j %
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with inverse

x A⊗ x A⊗A x.
η⊗1x p

Indeed, %jp(η⊗ 1x) = %v(η⊗ 1x) = %(η⊗ 1x) = 1x by Lemma 1.1.6. On the other

hand, the diagram

A⊗A x A⊗ x x

A⊗ A⊗A x A⊗ A⊗ x A⊗ x

A⊗A x A⊗ x A⊗A x

1

j

η⊗1⊗A1

%

η⊗1

1⊗j

µ⊗A1

1⊗%

µ⊗1 p

1

j p

commutes because p is an A,A-bimodule morphism.

Remark 1.1.12. Recall that the endomorphism ring of the unit object in a sym-

metric monoidal category is commutative, and composition coincides with the

tensor product. See [Bal10a], for instance. In particular, any two A-linear endo-

morphisms A→ A commute.

Proposition 1.1.13. (Projection Formula). Suppose K is idempotent-complete

and let (A, µ, η) be a separable ring in K. For all x ∈ A−ModK and y ∈ K, there

is a natural isomorphism UA(x⊗A FA(y)) ∼= UA(x)⊗ y in K.

Proof. Proving this for free modules x ∈ A−FreeK is sufficient, so let x = FA(z)

with z ∈ K. We show that

UA(x⊗AFA(y)) = UA(FA(z)⊗AFA(y)) = UA(FA(z⊗ y)) ∼= A⊗ z⊗ y ∼= UA(x)⊗ y

naturally in x and y. For x′ = F (z′) ∈ A−FreeK and f : x → x′ in A−FreeK

corresponding to f : z → A⊗ z′ in K, we note that f ⊗A 1FA(y) = f ⊗A η ⊗ 1y is

the bar of

z ⊗ y A⊗ z′ ⊗ A⊗ y A⊗ A⊗ z′ ⊗ y A⊗ z′ ⊗ y,f⊗η⊗1 (23) µ⊗1⊗1
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so f ⊗A 1FA(y) = f ⊗ 1y. Therefore, the required diagram

UA(FA(z)⊗A FA(y)) = UA(FA(z ⊗ y)) ∼= A⊗ z ⊗ y ∼= UA(x)⊗ y

A⊗ A⊗ z ⊗ y

UA(FA(z′)⊗A FA(y)) = UA(FA(z′ ⊗ y)) ∼= A⊗ z′ ⊗ y ∼= UA(x′)⊗ y

UA(f⊗A1) UA(f⊗1)

1⊗f⊗1

UA(f)⊗1

µ⊗1⊗1

commutes. Naturality in y follows easily.

Remark 1.1.14. Explicitly, the isomorphism UA(x ⊗A FA(y)) ∼= UA(x) ⊗ y from

Proposition 1.1.13 is given by

φx,y : x⊗A (A⊗ y) x⊗ (A⊗ y) A⊗ x⊗ y x⊗ y,j (12) %

where % : A⊗ x→ x is the action of A on x. In particular, φx,y is left A-linear.

1.2 Rings in the Eilenberg-Moore category

This section contains a haphazardous collection of results on algebras over a ring

object. Again, all of the results can be found in [Bal14b, §1].

Let (A, µA, ηA) and (B, µB, ηB) be rings in K. We say that B is an A-algebra if

there is a ring morphism h : A → B in K. In that case, we can consider the

A-module structure on B given by

A⊗B B ⊗B B,
h⊗1 µB

(1.2.1)

making µB into an Ae-linear morphism. We define a functor Fh : A−FreeK →

B−FreeK on the Kleisli category by setting

Fh(FA(x)) = FB(x) and Fh(f) = (h⊗ 1x)f

for FA(x) in A−FreeK and f : x → A ⊗ x′ in K. It is not hard to check that Fh

is monoidal, with

Fh(FA(x)⊗A FA(y)) = Fh(FA(x⊗ y)) = FB(x⊗ y) = FB(x)⊗B FB(y).

17



Indeed, for morphisms f : x → A ⊗ x′ and g : y → A ⊗ y′ in K we know that

f ⊗A g = (µA ⊗ 1⊗ 1)(23)(f ⊗ g) and

Fh(f)⊗B Fh(g) = (µB ⊗ 1⊗ 1)(23)(h⊗ 1⊗ h⊗ 1)(f ⊗ g),

and the following diagram commutes:

x⊗ y A⊗ x′ ⊗ A⊗ y′ A⊗ A⊗ x′ ⊗ y′ A⊗ x′ ⊗ y′

A⊗ x′ ⊗ A⊗ y′ B ⊗ x′ ⊗B ⊗ y′ B ⊗B ⊗ x′ ⊗ y′ B ⊗ x′ ⊗ y′.

f⊗g

f⊗g h⊗1⊗h⊗1

(23) µA⊗1⊗1

h⊗h⊗1⊗1 h⊗1⊗1

h⊗1⊗h⊗1 (23) µB⊗1⊗1

If K is moreover idempotent-complete and the rings A and B are separable,

idempotent-completion yields an additive monoidal functor Fh : A−ModK −→

B−ModK.

Alternatively, if x is an A-module, we can consider the B-module structure on

B ⊗A x given by

B ⊗B ⊗A x B ⊗A x
µB⊗A1

and define a functor F ′h : A−ModK −→ B−ModK by setting

F ′h(x) = B ⊗A x and F ′h(f) = 1B ⊗A f

for A-linear morphisms f .

Proposition 1.2.2. Suppose that K is idempotent-complete and (A, µA, ηA) and

(B, µB, ηB) are separable rings in K. If there is a ring morphism h : A→ B in K,

then the functors Fh and F ′h defined above are naturally isomorphic.

Proof. It suffices to show that Fh and F ′h agree on A−FreeK, so let FA(x) be the

free A-module on x ∈ K. By the Projection Formula 1.1.13, we have a natural

isomorphism

F ′h(FA(x)) = B ⊗A FA(x) B ⊗ x = FB(x) = Fh(FA(x)),
φB,x
∼=

18



in K, which is B-linear seeing how

(B ⊗B)⊗A FA(x) B ⊗B ⊗ x

B ⊗A FA(x) B ⊗ x.

µB⊗A1FA(x)

φB⊗B,x

µB⊗1x

φB,x

commutes by naturality of φ. In fact, Remark 1.1.14 shows that φB,x is given by

φB,x : B ⊗A FA(x) B ⊗ A⊗ x B ⊗B ⊗ x B ⊗ x,j 1⊗h⊗1 µB⊗1

with j defined as in 1.1.7. Let f : FA(x) → FA(y) be a morphism in A−FreeK,

corresponding to f : x→ A⊗ y in K. Then, F ′h(f) = 1⊗A f is given by

F ′h(f) : B ⊗A (A⊗ x) B ⊗A (A⊗ A⊗ y) B ⊗A (A⊗ y)
1⊗A1⊗f 1⊗AµA⊗1

and Fh maps f to Fh(f) = (h⊗ 1)f :

Fh(f) : B ⊗ x B ⊗ A⊗ y B ⊗B ⊗ y B ⊗ y.1⊗f 1⊗h⊗1 µB⊗1

So, it suffices to show

B ⊗A (A⊗ A⊗ y) B ⊗A (A⊗ y)

B ⊗ A⊗ y B ⊗B ⊗ y B ⊗ y

φB,A⊗y

1⊗AµA⊗1

φB,y

1⊗h⊗1 µB⊗1

commutes, which follows because φ is left A-linear (Remark 1.1.14).

Remark 1.2.3. Suppose (A, µA, ηA) and (B, µB, ηB) are separable rings in K and

h : A→ B is a ring morphism.

1. The following diagram commutes up to isomorphism:

K

A−ModK B−ModK .

FA FB

Fh

Indeed, Fh(FA(x)) ∼= FB(x) for every x ∈ K, and for morphisms f : x → y

in K we see that

Fh(FA(f)) = Fh(ηA ⊗ f) ∼= (h⊗ 1)(ηA ⊗ f) = ηB ⊗ f = FB(f)

in B−ModK.
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2. If k : B → C is another ring morphism then Fkh ∼= FkFh. As before, it

suffices to check this on the Kleisli category. For FA(x) ∈ A−FreeK, clearly

Fk(Fh(FA(x))) = Fk(FB(x)) = FC(x), and

Fk(Fh(f)) = Fk((h⊗ 1)f) = (k ⊗ 1)(h⊗ 1)f = Fkh(f)

for every morphism f : x→ A⊗ y in K.

Proposition 1.2.4. Suppose K is idempotent-complete and let A be a separable

ring in K. There is a one-to-one correspondence between A-algebras B in K and

rings B in A−ModK. Under this correspondence, B is separable if and only if B

is separable.

Proof. If B is a ring in K and h : A→ B a ring morphism, we can equip B with

an Ae-module structure as in 1.2.1. We will write % for both the left and right

action of A on B, and (B, %) for the corresponding object in A−ModK. As before,

we will write j and p for the inclusion and projection maps of the direct summand

B ⊗A B in B ⊗B,

v : B ⊗A B B ⊗B B ⊗A B.
j p

Since µB(%⊗ 1) = µB(1⊗ %) : B ⊗A⊗B → B, the coequaliser 1.1.8 gives a map

µ : B ⊗A B −→ B such that µp = µB:

B ⊗B B ⊗A B

B.

p

µB
µ

In fact, we have that µ = µBj, seeing how µB = µBv = µBjp by Lemma 1.1.6.

This shows that µ isA-linear, and we can define the commutative ring (B, µ, η := h)

in A−ModK. To show that µ(1B ⊗A η) = 1B, for instance, note that

B B ⊗ A B ⊗B B

B B ⊗A A B ⊗A B B

1⊗ηA

1⊗ηB

1⊗h

p

µB

p

∼= 1⊗Aη µ

(1.2.5)
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commutes. Now, suppose B is separable. The section σB : B → B⊗B is A-linear,

seeing how the diagram

A⊗B B ⊗B B

A⊗B ⊗B B ⊗B ⊗B B ⊗B

h⊗1

1⊗σB

µB

1⊗σB σB

h⊗1⊗1 µB⊗1

commutes. Then, the ring B in A−ModK is separable with section pσB : B →

B ⊗A B for µ. Indeed, µpσB = µBjpσB = µBvσB = µBσB = 1B and pσB is (left)

B-linear because the following diagram commutes:

B ⊗A B B ⊗A B ⊗B B ⊗A B ⊗A B

B ⊗B B ⊗B ⊗B B ⊗B ⊗A B

B B ⊗B B ⊗A B.

µ

1⊗AσB

j

1⊗Ap

j⊗1

µ⊗A1

j⊗A1

1⊗σB

µB µB⊗1

1⊗p

µB⊗A1

σB p

Right B-linearity follows similarly.

Conversely, for any ring (B, µ, η) in A−ModK, write h := UA(η) : A → B.

One easily verifies that B := UA(B) is a commutative ring in K with unit

ηB : 1 A B
ηA h and multiplication

µB : B ⊗B B ⊗A B B.
p µ

In particular, the commuting diagram 1.2.5 shows that µB(1B ⊗ ηB) = 1B. If we

moreover assume that B is separable in A−ModK with section σ for µ, it follows

that B is separable in K with section jσ : B → B ⊗ B. That is, µBjσ = µpjσ =

µ σ = 1B and jσ is (left) B-linear because the following diagram commutes:

B ⊗B B ⊗B ⊗A B B ⊗B ⊗B

B ⊗A B B ⊗A B ⊗A B B ⊗A B ⊗B

B B ⊗A B B ⊗B.

µB

1⊗σ

p

1⊗j

p⊗A1

µB⊗1

p⊗1

1⊗Aσ

µ µ⊗A1

1⊗Aj

µ⊗1

σ j
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Right B-linearity follows similarly. Finally,

A⊗ A B ⊗ A B ⊗B B

A⊗A A B ⊗A A B ⊗A B B

A B B

h⊗1

p

µ

1⊗h

p

µB

p

η⊗A1

∼=

1⊗Aη

∼=

µ

h

commutes so h = UA(η) is a ring morphism.

Proposition 1.2.6. Suppose K is idempotent-complete, A is a separable ring in

K and B is a separable A-algebra, say B ∈ L := A−ModK. There is an equivalence

B−ModK ' B−ModL such that

K L

B−ModK B−ModL,

FA

FB FB

'

commutes up to isomorphism.

Proof. Consider the commutative diagram

K L

B−FreeK B−FreeL,

FA

FB FB

where the bottom row is defined on objects by sending FB(x) to FB(FA(x)). On

morphisms, it is defined by the sequence of natural isomorphisms

HomB(FB(x), FB(y)) = HomK(x,B ⊗ y) = HomK(x, UA(B)⊗ y) ∼= HomK(x, UA(B ⊗A FA(y))

∼= HomA(FA(x), B ⊗A FA(y)) = HomB(FB(FA(x)), FB(FA(y))),

where the first isomorphism is given by the Projection Formula 1.1.13. Seeing

how FB(x) is a direct summand of FB(FA(x)) for every x ∈ L, it follows that
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the bottom row is an equivalence up to direct summands. After idempotent-

completion, the diagram

K L

B−ModK B−ModL,

FA

FB FB

'

commutes up to isomorphism and the bottom row is an equivalence.

Proposition 1.2.7. Suppose K and L are symmetric monoidal idempotent-complete

categories, F : K → L is an additive monoidal functor and A is a separable

ring in K. Then, B := F (A) is a separable ring in L and there exists an ad-

ditive monoidal functor F : A−ModK → B−ModL such that FFA ∼= FBF and

UBF = FUA,

K A−ModK

L B−ModL .

FA

F
UA

F
FB

UB

Proof. If (A, µA, ηA) is a separable ring in K, it is not hard to see that B := F (A) is

a separable ring in L with multiplication µB : B⊗B ∼= F (A⊗A)
F (µA)−−−→ F (A) = B

and unit ηB : 1L
∼= F (1K)

F (ηA)−−−→ F (A) = B. We define the additive monoidal

functor F on objects (x, %) ∈ A−ModK by F (x) = F (x) with B-module structure

given by B ⊗ F (x) ∼= F (A ⊗ x)
F (%)−−→ F (x). On morphisms, F is given by

F (f) = F (f). Now, UBF = FUA follows immediately and we can check that

F (FA(x)) = F (A⊗ x) ∼= B ⊗ F (x) = FB(F (x)).

The restricted functor F : A−FreeK → B−FreeL is clearly monoidal, and therefore

so is F : A−ModK → B−ModL.
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CHAPTER 2

Separable rings

In this chapter, we collect some concepts and results on separable rings. In partic-

ular, we define the degree deg(A) of a separable ring A in K and study its relation

to the number of ring morphisms A→ B.

Throughout this chapter, (K,⊗,1) will denote an idempotent-complete

symmetric monoidal category.

Definition 2.0.1. Let us call a ring A in K indecomposable when A is nonzero and

the only idempotent A-linear morphisms A → A in K are the identity 1A and 0.

In other words, A is an indecomposable ring if it doesn’t decompose as a direct

sum of nonzero Ae-modules, or as a product of nonzero rings (see Lemma 2.1.2).

Remark 2.0.2. Let A be a separable ring in K. Recalling the one-to-one correspon-

dence between A-algebras B in K and rings B in A−ModK, from Proposition 1.2.4,

the ring B is indecomposable if and only if B is.

Lemma 2.0.3. Let (A, µ, η) be a separable ring in K.

(a) For every ring morphism α : A → 1, there exists a unique idempotent A-

linear morphism e : A→ A such that αe = α and eηα = e.

(b) If 1 is indecomposable and αi : A → 1 with 1 ≤ i ≤ n are distinct ring

morphisms with corresponding idempotent morphisms ei : A→ A as above,

then eiej = δi,jei and αiej = δi,jαi.

Proof. For (a), consider the right A-linear morphism e := (α⊗1)σ : A→ A, where

σ is a separability morphism. Since A is commutative, it is also a left A-linear

24



morphism. Idempotence follows from the commutativity of

A A⊗ A A

A⊗ A⊗ A A⊗ A

A⊗ A A

σ

σ

α⊗1

1⊗σ σ

α⊗1⊗1

µ⊗1 α⊗1

α⊗1

and αe = α(α ⊗ 1)σ = αµσ = α is clear. Finally, eηα is the top row of the

commuting diagram

A⊗ 1 1⊗ 1 1⊗ A 1⊗ A⊗ A 1⊗ A

A⊗ 1 A⊗ A A⊗ A⊗ A A⊗ A 1⊗ A

A A⊗ A

α⊗11 11⊗η 11⊗σ 11⊗α⊗1A

1A⊗η 1A⊗σ

µ

1A⊗α⊗1A

µ⊗1A

α⊗1A

σ
α⊗1A

so eηα = e indeed. Now, for any other A-linear morphism e′ such that αe′ = α

and e′ηα = e′, we see that e = eηα = eηαe′ = ee′ = e′e = e′ηαe = e′ηα = e′

by Remark 1.1.12.

For (b), let 1 ≤ i, j ≤ n and consider the commuting diagram

A 1 A

A⊗ A A⊗ A A

A A 1,

αi

1⊗η

η

ej

1⊗ej

µ µ

αi⊗1

αi

ej αi

which shows that αiejηαi = αiej. Then, (αiejη)(αiejη) = αiejejη = αiejη so

αiejη : 1 → 1 is idempotent and therefore 0 or 11. In the first case, αiej =

αiejηαj = 0. If αiejη = 11, we get αiej = αiejηαi = αi by the above diagram and

also αiej = αiejηαj = αj, thus i = j. Hence, αiej = δi,jαi and eiej = eiηαiej =

eiηαiδi,j = eiδi,j.

Remark 2.0.4. The above idempotent morphism e : A → A is not given by A
α−→

1
η−→ A. Both morphisms reveal 1 is a direct summand of A in K, but only e

gives 1 as a direct summand of A in Ae−ModK.
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Proposition 2.0.5. Let A be a separable ring in K and suppose A decomposes as

a product of indecomposable A-algebras A ∼= A1× . . .×An. This decomposition is

unique up to (possibly non-unique) isomorphism.

Proof. Let A be as above, with decomposition A ∼= A1 × . . . × An for some

indecomposable A-algebras A1, . . . , An. We show that for any two rings B,C

with A ∼= B × C, we can find 0 ≤ k ≤ n such that B ∼= A1 × . . . × Ak and

C ∼= Ak+1 × . . .× An as A-algebras, possibly after reordering the Ai. The propo-

sition then follows immediately. The category A−ModK decomposes as

A−ModK
∼= A1−ModK× . . .× An−ModK,

under which 1A corresponds to (1A1 , . . . ,1An). Accordingly, the A-algebras B

and C can be written as (B1, . . . , Bn) and (C1, . . . , Cn) respectively, with Bi, Ci ∈

Ai−ModK for every i. Given 1A
∼= B × C, we see 1Ai

∼= Bi × Ci for every i.

The indecomposability of 1Ai then gives Bi = 0 or Bi = 1Ai . Without loss of

generality, we can assume (B1, . . . , Bn) ∼= (1A1 , . . . ,1Ak , 0, . . . , 0) in A−ModK for

some 0 ≤ k ≤ n. We conclude B ∼= A1 × . . . × Ak and C ∼= Ak+1 × . . . × An as

A-algebras.

Remark 2.0.6. The above argument moreover shows that if a ring A ∼= B × C in

K has an indecomposable ring factor A1, then A1 is a ring factor of B or C.

2.1 Degree of a separable ring

In this section, we recall Balmer’s definition of the degree of a separable ring in

a tensor-triangulated category, see [Bal14b], and show the definition still holds

in a non-triangulated setting. Unless stated otherwise, we only assume K is an

idempotent-complete symmetric monoidal category. Whenever A is a ring and B

is an A-algebra in K, we will write B for the corresponding ring object in A−ModK

(as in Proposition 1.2.4).
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Lemma 2.1.1. Let (A, µA, ηA) and (B, µB, ηB) be separable rings in K and sup-

pose f : A → B and g : B → A are ring morphisms such that g ◦ f = 1A.

Equipping A with the structure of Be-module via the morphism g, there exists a

Be-linear morphism f̃ : A→ B such that g ◦ f̃ = 1A. In particular, A is a direct

summand of B as a Be-module.

Proof. First, consider the A-module structure on B given by f and note that

g : B → A is A-linear:

A⊗B B ⊗B B

A⊗B A⊗ A A.

f⊗1 µB

g⊗g g

1⊗g µA

We can then apply Lemma 2.0.3 to the ring morphism ḡ : B → 1A in A−ModK

to find an idempotent Be-linear morphism ē : B → B such that ḡē = ḡ and

ēηB̄ ḡ = ē. Forgetting the A-action, we are left with an idempotent Be-linear

morphism e such that ge = g and efg = e. Let f̃ := ef . Now we equip A with a

Be-module structure via the morphism g and show that f̃ is indeed Be-linear. It

is left B-linear because the diagram

B ⊗ A A⊗ A A

B ⊗B B

B ⊗B B ⊗B B

g⊗1

1⊗f

µA

f⊗f f

µB

e⊗1 e

efg⊗1=e⊗1

1⊗e

µB

commutes, where µB(1⊗e) = eµB = µB(e⊗1) in the last row since e is Be-linear.

By a similar argument, f̃ is also right B-linear. Finally, gf̃ = gef = gf = 1A.

Lemma 2.1.2. ([Bal14b, Lem.2.2]). Let A be a ring in K, A1 and A2 two

Ae-modules and h : A
∼−→ A1 ⊕ A2 an Ae-linear isomorphism. Then A1 and

A2 admit unique ring structures under which h becomes a ring isomorphism h :

A
∼−→ A1 × A2.
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Theorem 2.1.3. Let A and B be separable rings in K and suppose f : A → B

and g : B → A are ring morphisms such that g ◦ f = 1A. Then there exists a

separable ring C and a ring isomorphism h : B
∼−→ A × C such that pr1 h = g.

Equipping C with an A-module structure via the morphism pr2 hf , it is unique up

to isomorphism of A-algebras.

Proof. Most of the proof in [Bal14b, Th.2.2] still holds, adjusting to the non-

triangulated case by way of Lemma 2.1.1.

For a separable ring (A, µ, η) in K, we can apply Theorem 2.1.3 to the mor-

phisms f = 1A⊗η : A→ A⊗A and g = µ : A⊗A→ A. Thus we find a separable

ring A′ and a ring isomorphism h : A ⊗ A ∼−→ A × A′ such that pr1 h = µ. The

resulting A-algebra A′ is unique up to isomorphism.

Definition 2.1.4. ([Bal14b]). The splitting tower of a separable ring A

1 = A[0] η−→ A = A[1] → A[2] → . . .→ A[n] → A[n+1] → . . .

is defined inductively by A[n+1] = (A[n])′, where we consider A[n] as a ring in

A[n−1]−ModK. If A[d] 6= 0 and A[d+1] = 0, we say the degree of A is d and write

deg(A) = d. We say A has infinite degree if A[d] 6= 0 for all d ≥ 0.

Remark 2.1.5. Regarding A[n] as a ring in A[n−1]−ModK, we have (A[n])[m] ∼=

A[n+m−1] for all m,n ≥ 1 by construction. Thus, degA[n−1]−ModK
(A[n]) = degK(A)−

n+ 1 if 1 ≤ n ≤ degK(A) + 1.

Example 2.1.6. Let R be a commutative ring with no idempotents but 0 and 1.

SupposeA is a commutative projective separableR-algebra. By [DI71, Prop.2.2.1],

A is finitely generated as an R-module. The degree of A as a separable ring in

K = Dperf(R) (see Example 1.1.2) recovers its rank as an R-module.

Proposition 2.1.7. Let A and B be separable rings in K.
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(a) Let F : K→ L be an additive monoidal functor. For every n ≥ 0, the rings

F (A[n]) and F (A)[n] are isomorphic. In particular, degL(F (A)) ≤ degK(A).

(b) Suppose A is a B-algebra. Then degB−ModK
(FB(A)) = degK(A).

(c) For n ≥ 1, we have FA[n](A) ∼= 1
×n
A[n] × A[n+1] as A[n]-algebras.

Proof. (a) and (c) are proved in [Bal14b]. To prove (b), observe that A[n] is

a B-algebra and therefore a direct summand of FB(A[n]) ∼= FB(A)[n]. Hence,

FB(A)[n] 6= 0 when A[n] 6= 0 and degB−ModK
(FB(A)) ≥ degK(A).

Lemma 2.1.8. ([Bal14b, Lem.3.11]). Let n ≥ 1. For A = 1
×n ∈ K, we have

A[2] ∼= A×(n−1) as A-algebras.

Proof. We prove there is an A-algebra isomorphism λ : A ⊗ A
∼−→ A × A×(n−1)

with pr1 λ = µ. Let’s write A =
∏n−1

i=0 1i, A⊗ A =
∏

0≤i,j≤n−1 1i ⊗ 1j and A×n =∏n−1
k=0

∏n−1
i=0 1ik with 1 = 1i = 1ik for all i, k. Define λ : A⊗A→ A×n by mapping

the factor 1i ⊗ 1j identically to 1i(i−j), where we take the indices to be in Zn. It

is not hard to see that λ is an A-algebra isomorphism and prk=0 λ = µA.

Corollary 2.1.9. Let n ≥ 1. The degree of 1×n ∈ K is n and (1×n)[n] ∼= 1
×n!

in K.

Proof. Write A := 1
×n. The result is clear for n = 1, and we proceed by induction

on n, using Lemma 2.1.8. Applying the induction hypothesis to A[2] ∼= 1
×(n−1)
A

in A−ModK, we get degA−ModK
(A[2]) = n − 1 and A[n] ∼= (A[2])[n−1] ∼= 1

×(n−1)!
A

∼=

(1×n)×(n−1)! ∼= 1
×n!.

Corollary 2.1.10. Let A be a separable ring of finite degree in K. Then deg(A×

1
×n) ≥ deg(A) + n.

Proof. Let B := A[deg(A)]. By Proposition 2.1.7(c), we know FB(A × 1
×n) ∼=

FB(A)×FB(1×n) ∼= 1
× deg(A)
B × 1×nB . So, deg(FB(A× 1×n)) = deg(A) + n and the

result follows from Proposition 2.1.7(a).
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Definition 2.1.11. We call K nice if every separable ring A of finite degree has a

decomposition A ∼= A1× . . .×An for some indecomposable rings A1, . . . , An in K.

Example 2.1.12. The categories kG−mod, Db(kG−mod) and kG− stab (see

Section 7) are nice categories. More generally, every essentially small idempotent-

complete symmetric monoidal category that satisfies Krull-Schmidt is nice.

Example 2.1.13. Let X be a Noetherian scheme. Then Dperf(X), the derived

category of perfect complexes over X, is nice (see Lemma 5.0.1).

2.2 Counting ring morphisms

Lemma 2.2.1. Let A be a separable ring in K. If 1 is indecomposable and there

are n distinct ring morphisms A → 1, then A has 1
×n as a ring factor. In

particular, there are at most degA distinct ring morphisms A→ 1.

Proof. Let αi : A→ 1, i = 1, . . . , n be distinct ring morphisms with corresponding

idempotent A-linear morphisms ei : A→ A as in Lemma 2.0.3. Since Ae−ModK is

idempotent-complete, e1 yields a decomposition A ∼= A1⊕A′1 of Ae-modules under

which e1 = ( 1 0
0 0 ). In fact, since the ei are orthogonal idempotents, they yield a

decomposition A ∼= A1 ⊕ A2 ⊕ · · · ⊕ An ⊕ A′ of Ae-modules. By Lemma 2.1.2,

the Ai and A′ admit unique ring structures such that A ∼= A1 × A2 × · · · ×

An × A′. The first claim follows because every factor Ai is ring isomorphic to 1

via αi inclAi . The statement about the degree is now an immediate consequence

of Corollary 2.1.10.

Let A be a separable ring in K and n ≥ 1. The property FA[n](A) ∼= 1
×n
A[n] ×

A[n+1] from Proposition 2.1.7(c) characterises the ring A[n] in the following way:

Proposition 2.2.2. Let B be an indecomposable separable ring in K. The fol-

lowing are equivalent:
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(i) 1
×n
B is a ring factor of FB(A) in B−ModK.

(ii) There exists a ring morphism A[n] → B in K.

(iii) There exist (at least) n distinct ring morphisms A→ B in K.

Remark 2.2.3. When K is nice (Def. 2.1.11), (i) and (ii) remain equivalent even

for decomposable rings B.

Proof. (i)⇒(iii) Suppose 1
×n
B is a ring factor of FB(A) in B−ModK and write

pri : B ⊗ A → B with i = 1, . . . , n for the corresponding projections in K. The

ring morphisms

αi : A B ⊗ A B,
ηB⊗1A pri

satisfy µB(1B ⊗ αi) = pri(µB ⊗ 1A)(1B ⊗ ηB ⊗ 1A) = pri as pri is a B-algebra

morphism for i = 1, . . . , n. Hence, the αi are all distinct. For (iii)⇒(i), let

αi : A → B, i = 1, . . . , n be distinct ring morphisms. Seeing how αi = µB(1B ⊗

αi)(ηB ⊗ 1A) for every i, the B-algebra morphisms µB(1B ⊗ αi) : B ⊗A→ B are

also distinct. Having found n distinct ring morphisms FB(A)→ 1B in B−ModK,

Lemma 2.2.1 shows 1×nB is a ring factor of FB(A).

We show (i)⇒(ii) by induction on n. The case n = 1 is just (iii) and has

already been proven. Now suppose n > 1 and 1
×n
B is a ring factor of FB(A). By

the induction hypothesis, there exists a ring morphism A[n−1] → B. Thus B is an

A[n−1]-algebra, let us write B for the corresponding separable ring in A[n−1]−ModK.

By Proposition 2.1.7(c), we know

FB(FA[n−1](A)) ∼= FB(1
×(n−1)

A[n−1] × A[n]) ∼= 1
×(n−1)

B
× FB(A[n]).

On the other hand, the commuting diagram

K A[n−1]−ModK

B−ModK B−ModA[n−1]−ModK

F
A[n−1]

FB FB

'
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from Proposition 1.2.6 shows that FB(A) is mapped to FB(FA[n−1](A)) under the

equivalence B−ModK ' B−ModA[n−1]−ModK
. So, FB(FA[n−1](A)) has 1×n

B
as a ring

factor. Remark 2.0.6 shows that we can compare indecomposable factors and it

follows that 1B is a ring factor of FB(A[n]). By the induction hypothesis, there

exists a ring morphism A[n] → B in A[n−1]−ModK and therefore in K. To show

(ii)⇒(i), we suppose B is an A[n]-algebra and write B for the corresponding sep-

arable ring in A[n]−ModK. Using Proposition 1.2.6 again, FB(A) is mapped to

FB(FA[n](A)) under the equivalence B−ModK ' B−ModA[n]−ModK
. By Proposi-

tion 2.1.7(c), FB(FA[n](A)) ∼= FB(1×n
A[n] × A[n+1]) ∼= 1

×n
B
× FB(A[n+1]), so 1

×n
B is a

ring factor of FB(A) in B−ModK.

Theorem 2.2.4. Let A and B be separable rings in K and suppose A has finite

degree and B is indecomposable. There are at most deg(A) distinct ring morphisms

from A to B.

Proof. Suppose there are n distinct ring morphisms from A to B. By Proposi-

tion 2.2.2, we know 1
×n
B is a ring factor of FB(A). Then, n ≤ degB−ModK

(FB(A)) ≤

degK(A) by Corollary 2.1.10 and Proposition 2.1.7(a).

Remark 2.2.5. Let A and B be separable rings in K.

• Theorem 2.2.4 is evidently false when B is not indecomposable, say A =

B = 1
×n. Indeed, deg(A) = n but A has at least n! ring endomorphisms.

• When K is nice and A,B are separable rings of finite degree in K, the number

of ring morphisms from A to B is finite even when B is decomposable, since

B can be written as a finite product of indecomposable rings.

32



CHAPTER 3

Finite quasi-Galois theory

As before, (K,⊗,1) denotes an idempotent-complete symmetric monoidal

category. For now, we only assume (A, µ, η) is a nonzero ring in K and Γ is a finite

set of ring endomorphisms of A containing 1A. Consider the ring
∏

γ∈ΓA, writing∏
γ∈ΓAγ to keep track of the different copies of A, and define ϕ1 : A→

∏
γ∈ΓAγ

by prγ ϕ1 = 1A and ϕ2 : A →
∏

γ∈ΓAγ by prγ ϕ2 = γ for all γ ∈ Γ. Thus, ϕ1

renders the (standard) left A-algebra structure on
∏

γ∈ΓAγ and we can introduce

a right A-algebra structure via ϕ2.

Definition 3.0.1. We define the ring morphism

λΓ = λ : A⊗ A
∏

γ∈ΓAγ

by prγ λ = µ(1⊗ γ). Note that λ(1⊗ η) = ϕ1 and λ(η ⊗ 1) = ϕ2,

A

A⊗ A
∏

γ∈ΓAγ,

1⊗η

η⊗1

ϕ1

ϕ2

λ

(3.0.2)

so λ is an Ae-algebra morphism.

Lemma 3.0.3. Suppose λΓ : A⊗ A→
∏

γ∈ΓAγ is an isomorphism.

(a) There is an Ae-linear morphism σ : A → A ⊗ A with µ(1 ⊗ γ)σ = δ1,γ for

every γ ∈ Γ. In particular, A is separable.

(b) Let γ ∈ Γ. If there exists a nonzero A-linear morphism α : A → A with

αγ = α, then γ = 1.
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(c) Let γ ∈ Γ. If there exists a nonzero ring B and ring morphism α : A → B

with αγ = α, then γ = 1.

(d) The ring A has degree |Γ| in K.

Proof. To prove (a), define the Ae-linear morphism σ := λ−1 incl1 : A → A ⊗ A.

The following diagram shows that µ(1⊗ γ)σ = δ1,γ:

A A⊗ A A⊗ A A.

∏
γ∈ΓAγ

∏
γ∈ΓAγ

σ

incl1

1⊗γ

λ

µ

λ−1 prγ

For (b), suppose αγ = α and σ : A → A ⊗ A as in (a). Then α = αµσ =

µ(1 ⊗ α)σ = µ(1 ⊗ α)(1 ⊗ γ)σ = αµ(1 ⊗ γ)σ = αδγ,1. Hence, α = 0 or γ = 1.

For (c), suppose αγ = α and σ : A → A ⊗ A as in (a). Then α = αµσ =

µ(α ⊗ α)σ = µ(α ⊗ α)(1 ⊗ γ)σ = αµ(1 ⊗ γ)σ = αδγ,1. Again, α = 0 or γ = 1.

Finally, let d = |Γ| be the order of the set. Given that FA(A) ∼= 1
×d
A in A−ModK,

Proposition 2.1.7(b) shows deg(A) = d.

Definition 3.0.4. We say (A,Γ) is quasi-Galois in K when A is a nonzero ring,

Γ is a finite group of ring automorphisms of A and λΓ : A ⊗ A →
∏

γ∈ΓAγ is an

isomorphism. We also call FA : K −→ A−ModK a quasi-Galois extension with

group Γ.

Example 3.0.5. Let A := 1
×n and Γ = {γi | 0 ≤ i ≤ n − 1} ∼= Zn where γ1 is

the permutation matrix corresponding to (12 · · ·n) and γi := γi1. Then (A,Γ) is

quasi-Galois. Indeed, in the notation of the proof of Lemma 2.1.8, γi sends the

summand 1j identically to 1j+i ↪→ A and the isomorphism λ is precisely the λΓ

from above.

More generally, let Γ be any finite group and let A :=
∏

γ∈Γ 1γ, with 1 = 1γ for

every γ ∈ Γ and component-wise structure. Then (A,Γ) is quasi-Galois, where

γ ∈ Γ acts on A by sending 1γ′ ↪→ A identically to 1γγ′ ↪→ A. In particular, this

example shows that Γ does not always contain all ring automorphisms of A.

34



Example 3.0.6. Let R be a commutative ring, A a commutative R-algebra and Γ a

finite group of ring automorphisms of A over R. Suppose A is a Galois extension

of R with Galois group Γ in the sense of Auslander and Goldman ([AG60]). In

particular, A is a finitely generated projective R-module and A is separable as an

R-algebra by [DI71, Prop.3.1.2]. Then, A is quasi-Galois with group Γ as a ring

object in the symmetric monoidal categories R−Mod and Dperf(R) (see Exam-

ple 1.1.2).

Lemma 3.0.7. Suppose (A,Γ) is quasi-Galois of degree d in K and F : K→ L is

an additive monoidal functor with F (A) 6= 0. Then F (A) is quasi-Galois of degree

d in L with group F (Γ) = {F (γ) | γ ∈ Γ}. In particular, being quasi-Galois is

stable under extension-of-scalars.

Proof. Seeing how

F (λΓ) : F (A)⊗ F (A) ∼= F (A⊗ A) −→
∏
γ∈Γ

F (A)

is an isomorphism in L, it is enough to show λF (Γ) = F (λΓ). Recall that λΓ

is defined by prγ λΓ = µA(1A ⊗ γ), hence prγ F (λΓ) = µF (A)(1F (A) ⊗ F (γ)). In

particular, the morphisms µF (A)(1F (A)⊗F (γ)) with γ ∈ Γ are all distinct, therefore

so are the F (γ). This shows that F (
∏

ΓA) ∼=
∏

F (Γ) F (A) and λF (Γ) = F (λΓ).

3.1 Quasi-Galois theory for indecomposable rings

Proposition 3.1.1. Suppose (A,Γ) is quasi-Galois in K.

(a) If B is a separable indecomposable A-algebra, Γ acts faithfully and transi-

tively on the set of ring morphisms from A to B. In particular, there are

exactly deg(A) distinct ring morphisms from A to B.

(b) If A is indecomposable, any ring endomorphism of A is an automorphism

and belongs to Γ.
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Proof. The set of ring morphisms from A to B is non-empty, as B is an A-algebra,

and Γ acts on it by precomposition. Faithfulness follows from Lemma 3.0.3(c).

The action is transitive because the set of ring morphisms from A to B has no

more than degA = |Γ| elements by Theorem 2.2.4. This proves (a). For (b), note

that the ring A has at most degA = |Γ| ring endomorphisms by Theorem 2.2.4,

so Γ must provide all of them.

So, for an indecomposable ring A of finite degree, we can simply say A is

quasi-Galois, with the understanding that the Galois group Γ contains all ring

endomorphisms of A.

Theorem 3.1.2. Let A be a nonzero separable indecomposable ring of finite de-

gree. Let Γ be the set of ring endomorphisms of A. The following are equivalent:

(i) |Γ| = deg(A).

(ii) FA(A) ∼= 1
×t
A as rings in A−ModK, for some t > 0.

(iii) λΓ is an isomorphism.

(iv) Γ is a group and (A,Γ) is quasi-Galois in K.

Proof. Let d := deg(A). (i)⇒(ii) Lemma 2.2.2 shows that |Γ| = deg(A) implies

1
×d
A is a ring factor of FA(A). Since deg(FA(A)) = d, Corollary 2.1.10 shows

FA(A) ∼= 1
×d
A . To prove (ii)⇒(iii), first note that t = d follows from Proposi-

tion 2.1.7(b). Let l : A ⊗ A
∼=−→ A×d be an A-algebra isomorphism. Consider the

ring morphisms

αi : A A⊗ A A×d A,
η⊗1 l pri i = 1, . . . , d,

and note that µ(1A ⊗ αi) = pri l(µ ⊗ 1A)(1A ⊗ η ⊗ 1A) = pri l for every i, so the

αi are all distinct. Now, Γ = {αi | 1 ≤ i ≤ d} by Theorem 2.2.4 and l = λΓ in the

notation of Definition 3.0.1. For (iii)⇒(iv), it is enough to show that every γ ∈ Γ
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is an automorphism. By Lemma 3.0.3 (a), we can find an Ae-linear morphism

σ : A → A ⊗ A such that µ(1 ⊗ γ)σ = δ1,γ for every γ ∈ Γ. Let γ ∈ Γ and note

that (1 ⊗ γ)σ : A → A ⊗ A is nonzero since γ = µ(γ ⊗ 1)(1 ⊗ γ)σ is nonzero.

Hence there exists γ′ ∈ Γ such that prγ′ λΓ(1 ⊗ γ)σ = µ(1 ⊗ γ′)(1 ⊗ γ)σ = δ1,γ′γ

is nonzero. This means γ′γ = 1 and γ′(γγ′) = γ′ so γγ′ = 1 by Lemma 3.0.3(c).

(iv)⇒(i) is the last part of Lemma 3.0.3.

Corollary 3.1.3. Quasi-Galoisness is stable under passing to indecomposable fac-

tors. De facto, if A,B and C are separable rings in K with A ∼= B × C as rings,

FA(A) ∼= 1
×d
A as A-algebras and B is indecomposable, then B is quasi-Galois.

Proof. Under the decomposition A−ModK
∼= B−ModK×C−ModK, the iso-

morphism FA(A) ∼= 1
×d
A corresponds to (FB(B × C), FC(B × C)) ∼= (1×dB ,1×dC ).

Given that 1B is indecomposable and that 1×dB has FB(B) as a ring factor, we see

FB(B) ∼= 1
×t
B for some 1 ≤ t ≤ d by Proposition 2.0.5 and Remark 2.0.6. The

result now follows from Theorem 3.1.2.

Corollary 3.1.4. Let A be a separable ring in K and B an indecomposable A-

algebra. If B is quasi-Galois in K, then the ring B is quasi-Galois in A−ModK.

Proof. This follows immediately from Lemma 3.0.7 and Corollary 3.1.3, seeing how

B is an indecomposable ring factor of the quasi-Galois ring FA(B) in A−ModK.

3.2 Splitting rings

Definition 3.2.1. Let A and B be separable rings in K. We say B splits A if

FB(A) ∼= 1
× deg(A)
B in B−ModK. We call an indecomposable ring B a splitting ring

of A if B splits A and any ring morphism C → B, where C is an indecomposable

ring splitting A, is an isomorphism.
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Remark 3.2.2. Let A be a separable ring in K with deg(A) = d. The ring A[d] in

K splits itself by Proposition 2.1.7(a),(c) and Corollary 2.1.9:

FA[d](A[d]) ∼= (FA[d](A))[d] ∼= (1×d
A[d])

[d] ∼= 1
×d!
A[d] .

Lemma 3.2.3. Let A be a separable ring in K that splits itself. If A1 and A2

are indecomposable ring factors of A, then any ring morphism A1 → A2 is an

isomorphism.

Proof. Suppose A splits itself and let A1, A2 be indecomposable ring factors of A.

Suppose there exists a ring morphism f : A1 → A2 and write A2 for the corre-

sponding ring in A1−ModK. Then, A2 is an indecomposable ring factor of FA1(A2)

and hence of FA1(A). On the other hand, FA1(A) ∼= 1
× deg(A)
A1

because A splits it-

self. By Proposition 2.0.5, this means we have an isomorphism of rings A2
∼= 1A1

or, forgetting the A1-action, a ring isomorphism g : A2

∼=−→ A1 in K. Note that

A1 is quasi-Galois by Corollary 3.1.3, so the ring morphism gf : A1 → A1 is an

isomorphism by Proposition 3.1.1(b). The lemma now follows.

Lemma 3.2.4. Suppose K is nice (see Def. 2.1.11) and let A, B be separable

rings in K. If B is indecomposable and there exists a ring morphism A → B

in K, then there exists a ring morphism C → B for some indecomposable ring

factor C of A.

Proof. Since K is nice, we can write A ∼= A1× . . .×An with Ai indecomposable for

1 ≤ i ≤ n. If there exists a ring morphism A→ B in K, Proposition 2.2.2 shows

that 1B is a ring factor of FB(A) ∼= FB(A1)× · · · ×FB(An). Since 1B is indecom-

posable, it is a ring factor of some FB(Ai) with 1 ≤ i ≤ n by Proposition 2.0.5.

The lemma now follows from Proposition 2.2.2.

The following lemma is an immediate consequence of Proposition 2.2.2:

Lemma 3.2.5. Let A and B be separable rings in K and suppose B is indecom-

posable. Then B splits A if and only if B is an A[deg(A)]-algebra.

38



Proposition 3.2.6. Suppose K is nice and let A be a separable ring in K. An

indecomposable ring B is a splitting ring of A if and only if B is a ring factor

of A[deg(A)]. In particular, any separable ring in K has a splitting ring and at most

finitely many.

Proof. Let d := deg(A) and suppose B is a splitting ring of A. By the above

lemma, B is an A[d]-algebra and there exists a ring morphism C → B for some

indecomposable ring factor C of A[d] by Lemma 3.2.4. Since C splits A, the ring

morphism C → B is an isomorphism.

On the other hand, suppose B is a ring factor of A[d]. Then B splits A. Let C be an

indecomposable separable ring splitting A and suppose there is a ring morphism

C → B. As before, C is an A[d]-algebra and there exists a ring morphism C ′ → C

for some indecomposable ring factor C ′ of A[d]. The composition C ′ → C → B is

an isomorphism by Remark 3.2.2 and Lemma 3.2.3. This means B is a ring factor

of the indecomposable ring C, so C ∼= B.

Corollary 3.2.7. Suppose K is nice. An indecomposable separable ring B in K

is quasi-Galois if and only if there exists a nonzero ring A in K such that B is a

splitting ring of A.

Proof. If B is indecomposable and quasi-Galois of degree t, then B[2] ∼= 1
×(t−1)
B .

Hence B is the unique splitting ring of B:

B[t] ∼= (B[2])[t−1] ∼= (1
×(t−1)
B )[t−1] ∼= B×(t−1)!.

Now suppose B is a splitting ring for some A in K, say with deg(A) = d > 0. By

Proposition 3.2.6, FB(B) is a ring factor of FB(A[d]) ∼= FB(A)[d] ∼= (1×dB )[d] = 1
×d!
B ,

so FB(B) ∼= 1
×t
B for some t > 0. Hence, B is quasi-Galois by Theorem 3.1.2.
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CHAPTER 4

Tensor-triangulated categories

Many everyday triangulated categories come equipped with a symmetric monoidal

structure ⊗, from algebraic geometry and stable homotopy theory to modular

representation theory. Using the ⊗-structure, Paul Balmer [Bal05] has introduced

the spectrum of a tensor-triangulated category, providing an algebro-geometric

approach to the study of triangulated categories. In this chapter, we review some

of the main concepts from tensor-triangular geometry, and recall some bits and

pieces on separable rings that we will need later. In particular, we by no means aim

to provide a complete overview of the theory. We refer to [Nee01] for an extensive

account of triangulated categories, to [Kra10] for a summary on localizations and

to [Bal10b] for a great introduction to tensor-triangular geometry.

Definition 4.0.1. Let K be a triangulated category. We call a subcategory replete

if it is closed under isomorphisms. A triangulated subcategory of K is a full replete

additive subcategory L ⊂ K which is closed under (de)suspension and taking

cones. That is, whenever x→ y → z → Σx is an exact triangle of K and x, y ∈ L,

then also z ∈ L. A thick subcategory is a triangulated subcategory that is closed

under direct summands.

Proposition 4.0.2. ([BS01, Prop.3.2]). Let K be a triangulated category. The

idempotent-completion K\ (see Remark 1.1.4) admits a unique triangulated cate-

gory structure such the embedding K ↪→ K\ is exact.

Definition 4.0.3. A tensor-triangulated category is a triangulated category K,

equipped with a symmetric monoidal structure (⊗,1) that is compatible with
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the triangulation. In particular, the bifunctor ⊗ : K × K → K is exact in each

variable. For a more precise account, we refer to [San14]. We call a functor

tensor-triangulated when it is exact and monoidal.

Remark 4.0.4. If K is a tensor-triangulated category, then the idempotent-completion

K\ remains tensor-triangulated and the embedding K ↪→ K\ is a tensor-triangulated

functor.

Definition 4.0.5. Let K be a tensor-triangulated category. A triangulated sub-

category J ⊂ K of K is said to be ⊗-ideal if x ∈ K and y ∈ J implies that

x⊗ y ∈ J.

Remark 4.0.6. Let K be a tensor-triangulated category and J ⊂ K a thick ⊗-ideal.

Recall that the Verdier quotient K/J has the same objects as K and morphisms

obtained by calculus of fractions, inverting those morphisms whose cone is in J.

Then, K/J inherits a canonical tensor-triangulated structure making the localiza-

tion functor q : K→ K/J tensor-triangulated.

Definition 4.0.7. We call a tensor-triangulated category K strongly closed if

there exists a bi-exact functor hom : Kop ×K → K with a natural isomorphism

HomK(x⊗ y, z) ∼= HomK(x, hom(y, z)) and such that every object in K is strongly

dualizable, that is the natural morphism hom(x, 1)⊗ y ∼−→ hom(x, y) is an isomor-

phism for all x, y in K.

Example 4.0.8. [Bal07, Prop.4.1] Let X be a Noetherian scheme. Then Dperf(X),

the derived category of perfect complexes over X, is a strongly closed tensor-

triangulated category, with derived tensor product −⊗LOX . The internal hom is

given by the derived Hom sheaf RHomOX .
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4.1 Tensor-triangular geometry

In this section, we briefly recall some tensor-triangular geometry and refer the

reader to [Bal05] for precise statements and motivation.

Throughout the rest of this section, (K,⊗,1) will denote an essentially

small tensor-triangulated category.

Definition 4.1.1. A prime ideal of K is a thick ⊗-ideal P with the property that

x ⊗ y ∈ P implies that either x ∈ P or y ∈ P. The spectrum Spc(K) of K is the

set of all prime ideals P ( K.

Remark 4.1.2. The spectrum Spc(K) is indeed a set because K is assumed essen-

tially small.

Definition 4.1.3. The support of an object x in K is

supp(x) := {P ∈ Spc(K) | x /∈ P} ⊂ Spc(K).

The complements U(x) := Spc(K)− supp(x) of these supports form an open basis

for what we call the Balmer topology on Spc(K). The study of tensor-triangulated

categories and their spectrum is called tensor-triangular geometry.

Remark 4.1.4. The Balmer topology on Spc(K) appears to be a “reverse”version

of the familiar Zariski topology on the prime spectrum of a commutative ring.

Indeed, the closed sets in Spc(K) have the form

Z(E) := {P ∈ Spc(K)|E ∩ P 6= ∅},

for some family of objects E ⊂ K. This is not what one would expect in algebraic

geometry, and familiar notions from algebraic geometry may take on surprising

new meanings in tensor-triangular geometry. For instance, the closed points in

Spc(K) are the minimal primes, and K is local if Spc(K) has a unique minimal

prime.
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Theorem 4.1.5. ([Bal05, Prop.3.2]). The support supp(−) assigns a closed subset

supp(x) ⊂ Spc(K) to any object x ∈ K and satisfies the following properties:

1. supp(0) = ∅ and supp(1) =Spc(K)

2. supp(x⊕ y) = supp(x) ∪ supp(y)

3. supp(Σx) = supp(x), where Σ : K→ K denotes the suspension.

4. supp(z) ⊂ supp(x)∪ supp(y) if there is an exact triangle x→ y → z → Σx.

5. supp(x⊗ y) = supp(x) ∩ supp(y)

The pair (Spc(K), supp) is in some sense the universal such assignment satisfying

the above properties. For a more precise statement, see [Bal05, Prop.3.2].

Remark 4.1.6. ([Bal05, Cor.2.4]). An object x ∈ K is called ⊗-nilpotent if x⊗n = 0

for some n ≥ 1. Then, x is ⊗-nilpotent if and only if supp(x) = ∅. What is more,

a separable ring A in K is nilpotent if and only if A = 0, seeing how A is a direct

summand of A⊗ A.

Definition 4.1.7. Every tensor-triangulated functor F : K → L induces a con-

tinuous map

Spc(F ) : Spc(L) −→ Spc(K),

defined by Spc(F )(Q) := F−1(Q).

Most of the results in this dissertation only hold for idempotent-complete

categories. The following proposition, together with Remark 4.0.4, shows this

is a mild condition. Indeed, we can idempotent-complete categories when needed,

without affecting their spectrum.

Proposition 4.1.8. ([Bal05, Cor.3.14]). The embedding i : K→ K\ of K into its

idempotent-completion induces a homeomorphism Spc(i) : Spc(K\)
∼=−→ Spc(K).
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Proposition 4.1.9. ([Bal05, Prop.3.11]). Let J ⊂ K be a thick ⊗-ideal and

let q : K → K/J denote the Verdier quotient functor. The map Spc(q) in-

duces a homeomorphism Spc(K/J) V (J) ⊂ Spc(K)
∼= where V (J) := {P ∈

Spc(K)|P ⊃ J}.

Definition 4.1.10. ([Bal10a]). We call a tensor-triangulated category K local if

any of the following equivalent conditions is satisfied:

1. Spc(K) is a local topological space: for every open cover Spc(K) =
⋃
i∈I Ui,

there exists i ∈ I with Ui = Spc(K).

2. Spc(K) has a unique closed point.

3. K has a unique minimal prime.

4. For all x, y ∈ K, if x⊗ y = 0 then x or y is ⊗-nilpotent.

Remark 4.1.11. For any prime ideal P ∈ Spc(K), the Verdier quotient K/P is

local because the ideal (0) = P/P is prime in K/P.

Definition 4.1.12. The local category KP at the prime P ∈ Spc(K) is the

idempotent-completion of the Verdier quotient K/P. We write qP for the canonical

(exact, monoidal) functor K � K�P ↪→ KP.

4.2 Separable rings in tensor-triangulated categories

Definition 4.2.1. A tt-category K is an essentially small, idempotent-complete

tensor-triangulated category. A tt-functor K → L is an exact monoidal functor.

We call a commutative, separable ring in K a tt-ring, after [Bal13, Bal14b].

Throughout the rest of this chapter, K will denote a tt-category.

Theorem 4.2.2. ([Bal11, Cor.5.18]). Suppose A is a (not necessarily commu-

tative) separable ring in K. Then the category of A-modules A−ModK has a
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unique triangulation such that the extension-of-scalars FA : K → A−ModK and

the forgetful functor UA : A−ModK → K are exact.

The above theorem shows that tt-rings preserve tt-categories:

Remark 4.2.3. If A is a tt-ring in K, then (A−ModK,⊗A,1A) is a tt-category,

extension-of-scalars FA becomes a tt-functor and UA is exact.

Example 4.2.4. Let R be a commutative ring and A a commutative finite étale

(flat and separable) R-algebra. Then K := Dperf(R), the homotopy category of

bounded complexes of finitely generated projective R-modules, is a tt-category.

We already saw in Example 1.1.2, that the category of A-modules A−ModK is

equivalent to the tt-category Dperf(A). What is more, Spc(K) and Spc(A−ModK)

recover Spec(R) and Spec(A), respectively.

Proposition 4.2.5. ([Bal14b, Th.3.8]). Suppose A is a tt-ring in K. If the tt-ring

qP(A) has finite degree in KP for every P ∈ Spc(K), then A has finite degree and

deg(A) = maxP∈Spc(K) deg(qP(A)).

Proposition 4.2.6. ([Bal14b, Cor.3.12]). Let K be a local tt-category and A,B

tt-rings of finite degree in K. Then the rings A⊗B and A×B have finite degree

with deg(A×B) = deg(A) + deg(B) and deg(A⊗B) = deg(A) · deg(B).

Remark 4.2.7. Suppose A is a tt-ring of finite degree d in K. Propositions 4.2.5

and 4.2.6 show that A×t has degree dt.

Lemma 4.2.8. ([Bal14b, Th.3.7]). Suppose B is a tt-ring in K with supp(A) ⊆

supp(B). Then degB−ModK
(FB(A)) = degK(A).

Definition 4.2.9. For any tt-ring A in K, we can consider the continuous map

fA := Spc(FA) : Spc(A−ModK) −→ Spc(K)

induced by the extension-of-scalars FA : K→ A−ModK.
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The study of fA is the topic of [Bal13]. We recall some of its properties here.

Lemma 4.2.10. For any tt-ring A in K,

(a) f−1
A (supp(x)) = supp(FA(x)) ⊂ Spc(A−ModK) for every x ∈ K.

(b) fA(supp(y)) = supp(UA(y)) ⊂ Spc(K) for every y ∈ A−ModK.

(c) The image of fA is supp(A).

Theorem 4.2.11. ([Bal13, Th.2.14]). Let A be a tt-ring of finite degree in K.

Then

Spc((A⊗ A)−ModK) Spc(A−ModK) supp(A)
f1

f2

fA
(4.2.12)

is a coequaliser, where f1, f2 are the maps induced by extension-of-scalars along

the morphisms 1⊗ η and η ⊗ 1 : A→ A⊗ A respectively.
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CHAPTER 5

Quasi-Galois theory for tt-categories

In this chapter, we consider Galois extensions in a tt-category K, and study how

our results from Chapter 3 interact with the geometry of Spc(K). Recall that a

topological space is called Noetherian if its closed subsets satisfy the descending

chain condition.

Lemma 5.0.1. Any tt-category K with Noetherian spectrum Spc(K) is nice (see

Def. 2.1.11).

Proof. Let A be a separable ring of finite degree in K. If A is not indecomposable,

we can find nonzero Ae-modules A1, A2 ∈ K with A ∼= A1 ⊕ A2 as Ae-modules.

By Lemma 2.1.2, A1 and A2 admit ring structures so that A ∼= A1 × A2 as

rings. We prove that any ring decomposition of A in K has at most finitely

many nonzero factors. Suppose there is a sequence of nontrivial decompositions

A = A1 × B1, B1 = A2 × B2,. . . , with Bn = An+1 × Bn+1 for n ≥ 1. Seeing

how supp(Bn) ⊇ supp(Bn+1) and Spc(K) is Noetherian, there exists k0 ≥ 1 with

supp(Bn) = supp(Bn+1) whenever n ≥ k0. By Proposition 4.2.6, we moreover

know that deg(qP(Bn)) ≥ deg(qP(Bn+1)) for every P ∈ Spc(K). In other words,

supp(B
[i]
n ) ⊇ supp(B

[i]
n+1) for every i ≥ 0. So, there exists k ≥ 1 with supp(B

[i]
n ) =

supp(B
[i]
n+1) for every i ≥ 0 and n ≥ k. In particular, this means deg(qP(Bk)) =

deg(qP(Bk+1)) for every P ∈ Spc(K). Proposition 4.2.6 shows that qP(Ak+1) = 0

for all P ∈ Spc(K). In other words, supp(Ak+1) = ∅ and Ak+1 is ⊗-nilpotent.

In fact, Ak+1 = 0 seeing how every ring is a direct summand of its ⊗-powers, a

contradiction.
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Example 5.0.2. Let X be a Noetherian scheme. Then Dperf(X), the derived cate-

gory of perfect complexes over X, is nice.

5.1 Rings of constant degree

In what follows, K denotes a tt-category. We will only consider tt-rings

of finite degree. As of now, we have not met a tt-ring of infinite degree and it

is unclear if they actually exist.

Definition 5.1.1. We say a tt-ring A in K has constant degree d ∈ N if the degree

degKP
qP(A) equals d for every P ∈ supp(A) ⊂ Spc(K).

Remark 5.1.2. For any tt-ring A, we know supp(A[2]) ⊆ supp(A) because A[2] ∼=

A⊗ cone(ηA) in K. Now, a tt-ring A of degree d has constant degree if and only if

supp(A[d]) = supp(A), seeing how P ∈ supp(A[d]) if and only if qP(A) has degree d.

Example 5.1.3. Let R be a commutative ring with no idempotents but 0 and 1.

If A is a commutative projective separable R-algebra (see Example 2.1.6), then A

has constant degree in K = Dperf(R) by [DI71, Th.1.4.12].

Lemma 5.1.4. Let A be a tt-ring in K and F : K→ L a tt-functor with F (A) 6= 0.

If A has constant degree d, then F (A) has constant degree d. Conversely, if F (A)

has constant degree d and supp(A) ⊂ im(Spc(F )), then A has constant degree d.

Proof. By Proposition 2.1.7(a), we know that deg(F (A)) ≤ deg(A). Now, if A

has constant degree d,

supp(F (A)[d]) = supp(F (A[d])) = Spc(F )−1(supp(A[d])) = Spc(F )−1(supp(A))

= supp(F (A)) 6= ∅

shows that F (A) has constant degree d. On the other hand, suppose supp(A) ⊂

im(Spc(F )) and F (A) has constant degree d. Seeing how supp(A[d+1]) ⊂ im(Spc(F )),
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∅ = supp(F (A[d+1])) = Spc(F )−1(supp(A[d+1])) implies supp(A[d+1]) = ∅, so A has

degree d. Moreover,

Spc(F )−1(supp(A[d])) = supp(F (A[d])) = supp(F (A)[d]) = supp(F (A)) = Spc(F )−1(supp(A))

together with supp(A) ⊂ im(Spc(F )) shows supp(A[d]) = supp(A), so A has

constant degree d.

Remark 5.1.5. Let A and B be tt-rings in K with supp(A) ∩ supp(B) 6= ∅. The

above lemma shows that if A has constant degree d, then FB(A) has constant

degree d. Conversely, if FB(A) has constant degree d and supp(A) ⊂ supp(B),

then A has constant degree d by Lemma 4.2.10(c).

Lemma 5.1.6. Let A be a tt-ring in K. Then A has constant degree d if and

only if there exists a tt-ring B in K with supp(A) ⊂ supp(B) and such that

FB(A) ∼= 1
×d
B .

Proof. IfA has constant degree d, we can letB := A[d] and use Proposition 2.1.7(c).

The other direction follows from Remark 5.1.5.

Proposition 5.1.7. Suppose the tt-ring A has constant degree, supp(A) is con-

nected and there are nonzero rings B and C such that A = B × C. Then B and

C have constant degree too and supp(A) = supp(B) = supp(C).

Proof. Assuming A has constant degree d, we claim that for every 1 ≤ n ≤ d,

supp(A) = supp(B[n])
⊔

supp(C [d−n+1]).

Fix 1 ≤ n ≤ d and suppose P ∈ supp(B[n]) ⊂ supp(A). This means that

deg(qP(B)) ≥ n. By Proposition 4.2.6, deg(qP(C)) ≤ d − n and hence P /∈

supp(C [d−n+1]). On the other hand, if P ∈ supp(A)−supp(B[n]), we get deg(qP(B)) ≤

n− 1 and deg(qP(C)) ≥ d− n+ 1. So, P ∈ supp(C [d−n+1]) and the claim follows.

Now, if A has connected support, the case n = 1 and the case n = d

give supp(A) = supp(B) = supp(C). The case n = deg(B) gives supp(B) =
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supp(A) = supp(B[n]) so B and C have constant degree n and d − n respec-

tively.

Recall that for a tt-ring A and an A-algebra B in K, we write B for the

corresponding tt-ring in A−ModK. In other words, we have B = UA(B).

Proposition 5.1.8. Let A be a tt-ring and B an A-algebra with supp(B) =

Spc(A−ModK). If A and B have constant degree, then B has constant degree and

degK(B) = degA−ModK
(B) · degK(A).

Proof. We first prove the case A = 1
×d. Then, B ∈ A−ModK

∼= K × . . . × K

has the form (B1, . . . , Bd) for some Bi in K and B ∼= B1 × . . . × Bd. Suppose

B has constant degree t on its support Spc(A−ModK) ∼=
⊔

Spc(K). In other

words, Bi has support Spc(K) and constant degree t for every 1 ≤ i ≤ d. For

every P ∈ Spc(K), we then see that deg(qP(B)) =
∑d

i=1 deg(qP(Bi)) = dt by

Proposition 4.2.6. Hence B has constant degree dt.

Now, let A be any tt-ring of constant degree d. For C := A[d], we know

Â := FC(A) ∼= 1
×d
C by Proposition 2.1.7 (c). We also note that supp(B) =

fA(supp(B)) = fA(Spc(A−ModK)) = supp(A) = supp(C) by Lemma 4.2.10 (b), (c).

Remark 5.1.5 then shows that it is enough to show that B̂ := FC(B) ∈ K̂ :=

C−ModK has constant degree dt when B has constant degree t.

By Proposition 1.2.7, there exists a tt-functor FC : A−ModK → Â−Mod
K̂

such that UÂFC
∼= FCUA in the diagram

K A−ModK

K̂ Â−Mod
K̂
.

FA

FC

UA
FC

F
Â

U
Â

Writing B̂ := FC(B), we see that UÂ(B̂) ∼= FC
(
UA
(
B
))

= FC(B) = B̂. Lemma 5.1.4

shows that B̂ has constant degree t whenB does. Finally, supp(B̂) = (SpcFC)−1(supp(B)) =
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(SpcFC)−1(Spc(A−ModK)) = Spc(Â−Mod
K̂

). By the special case, B̂ has constant

degree dt indeed.

5.2 Quasi-Galois theory and tensor-triangular geometry

Lemma 5.2.1. Let A be a tt-ring in K and suppose (A,Γ) is quasi-Galois. Then

A has constant degree |Γ| in K.

Proof. Given that FA(A) ∼= 1
×|Γ|
A , the lemma follows from Lemma 5.1.6.

Let A be a tt-ring in K and Γ a finite group of ring morphisms of A. Re-

mark 1.2.3 shows Γ acts on A−ModK and on its spectrum.

Theorem 5.2.2. Suppose (A,Γ) is quasi-Galois in K. Then,

supp(A) ∼= Spc(A−ModK)/Γ.

Proof. Let (A,Γ) be quasi-Galois in K. Diagram 3.0.2 yields a diagram of spectra

Spc(A−ModK)

Spc((A⊗ A)−ModK) Spc(
∏

γ∈Γ Aγ−ModK)

f1

f2 ∼=
l

g1

g2

where f1, f2, g1, g2, l are the maps induced by extension-of-scalars along the mor-

phisms 1⊗η, η⊗1, ϕ1, ϕ2 and λ respectively (in the notation of Definition 3.0.1).

So, the coequaliser 4.2.12 becomes⊔
γ∈Γ Spc(Aγ−ModK) Spc(A−ModK) supp(A),

g1

g2

fA

where g1 inclγ is the identity and g2 inclγ is the action of γ on Spc(A−ModK).

Remark 5.2.3. We call a tt-ring A in K nil-faithful when any morphism f in K

with FA(f) = 0 is ⊗-nilpotent. This is equivalent to saying supp(A) = Spc(K),

see [Bal13, Prop.2.15]. The above proposition thus recovers Spc(K) as the Γ-orbits

of Spc(A−ModK) when (A,Γ) is nil-faithful and quasi-Galois in K.
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Remark 5.2.4. If the tt-ring A in K is faithful, that is if FA is a faithful functor,

being quasi-Galois really is being Galois over 1 in the sense of Auslander and

Goldman (see Introduction). Indeed, [Bal12, Prop.2.12], implies that

1 A A⊗ Aη 1⊗η

η⊗1

is an equaliser. Under the correspondence in diagram 3.0.2, this becomes

1 A
⊕

γ∈ΓAγ,
η ϕ1

ϕ2

where ϕ1 and ϕ2 were defined by prγ ϕ1 = 1A and prγ ϕ2 = γ for all γ ∈ Γ.

The following lemma is a tensor-triangular version of Lemma 3.2.3.

Lemma 5.2.5. Let A be a separable ring in K that splits itself. If A1 and A2 are

indecomposable ring factors of A, then supp(A1) ∩ supp(A2) = ∅ or A1
∼= A2.

Proof. Suppose A splits itself and let A1, A2 be indecomposable ring factors of A

with supp(A1)∩ supp(A2) 6= ∅. We know that FA1(A) ∼= 1
× deg(A)
A1

because A splits

itself, and thus FA1(A2) ∼= 1
×t
A1

for some t ≥ 0, seeing how FA1(A2) is a ring factor

of FA1(A). In fact t > 0, because supp(A1 ⊗ A2) = supp(A1) ∩ supp(A2) 6= ∅.

By Proposition 2.2.2, this means there exists a ring morphism f : A2 → A1.

Lemma 3.2.3 shows that f is an isomorphism.

Proposition 5.2.6. Suppose K is nice. When a tt-ring A in K has connected

support and constant degree, the splitting ring A∗ of A is unique up to isomorphism

(see Def. 3.2.1). What is more, supp(A) = supp(A∗) and A∗ is quasi-Galois in K.

Proof. Let d := deg(A) and write A[d] as a product of indecomposable rings

A[d] = A1 × . . . × An. Note that supp(A) = supp(A[d]) is connected and A[d]

has constant degree d! by Remark 3.2.2. Hence, Proposition 5.1.7 shows that

supp(A) = supp(Ai) for all 1 ≤ i ≤ n. By Lemma 5.2.5, it follows that Ai ∼= Aj

for all 1 ≤ i, j ≤ n, so the splitting ring A1 is unique (up to isomorphism) and

supp(A) = supp(A1). Corollary 3.2.7 shows A∗ is quasi-Galois in K.
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Remark 5.2.7. In the following proposition and theorem, we will consider a tt-

ring A with connected spectrum Spc(A−ModK), implying A is indecomposable.

When the tt-category A−ModK is strongly closed (see Def. 4.0.7), the spectrum

Spc(A−ModK) is connected if and only if A is indecomposable, see [Bal07, Th.2.11].

Proposition 5.2.8. Suppose K is nice and let A be a tt-ring in K with connected

spectrum Spc(A−ModK). Suppose B is an A-algebra with supp(A) = supp(B) ⊂

Spc(K). If (B,Γ) is quasi-Galois in K, then B splits A. In particular, the degree

of A in K is constant.

Proof. Since B is quasi-Galois, all of its indecomposable components are quasi-

Galois by Corollary 3.1.3. What is more, supp(B) = fA(Spc(A−ModK)) is con-

nected, so the indecomposable components of B have support equal to supp(B)

by Proposition 5.1.7. Thus it suffices to prove the proposition with B inde-

composable. Now, FA(B) is quasi-Galois by Lemma 3.0.7 and supp(FA(B)) =

f−1
A (supp(B)) = f−1

A (supp(A)) = Spc(A−ModK) is connected. Let d := deg(B)

and write B for the tt-ring in A−ModK that corresponds to the A-algebra B

in K. Since B is an indecomposable ring factor of FA(B), Proposition 5.1.7 and

Lemma 5.2.5 show that FA(B) ∼= B
×t

in A−ModK for some t ≥ 1. Forgetting

the A-action, we get A ⊗ B ∼= B×t in K and FB(A ⊗ B) ∼= FB(B×t) ∼= 1
×dt
B

in B−ModK. On the other hand, FB(A ⊗ B) ∼= FB(A) ⊗B 1×dB ∼= (FB(A))×d. It

follows that FB(A) ∼= 1
×t
B , with t = deg(A) by Lemma 4.2.8. Hence, B splits A

and Lemma 5.1.6 shows that the degree of A is constant.

Theorem 5.2.9. (Quasi-Galois Closure). Suppose K is nice and let A be a tt-ring

of constant degree in K with connected spectrum Spc(A−ModK). The splitting

ring A∗ (see Prop. 5.2.6) is the quasi-Galois closure of A. That is, A∗ is quasi-

Galois in K, supp(A) = supp(A∗) and any A-algebra morphism B → A∗ with B

quasi-Galois and indecomposable in K, is an isomorphism.

Proof. Proposition 5.2.6 shows that A∗ is quasi-Galois in K and supp(A) =

53



supp(A∗). Suppose there is an A-algebra morphism B → A∗ with B quasi-

Galois in K and indecomposable. Seeing how supp(A∗) ⊂ supp(B) ⊂ supp(A),

Proposition 5.2.8 shows that B splits A. Thus B → A∗ is an isomorphism by

definition (3.2.1) of the splitting ring A∗.

Remark 5.2.10. Proposition 5.2.8 shows that the assumption A has constant de-

gree is necessary for A to have a quasi-Galois closure A∗ as in Theorem 5.2.9.
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CHAPTER 6

Quasi-Galois theory and descent

In this chapter, we consider the theory of descent for ring objects, and look at

what happens when the ring is a quasi-Galois extension. We do not mean to

give an overview of the theory of descent and refer to [Mes06] (or [Bal12] in

the triangular setting) for some examples and a concise history. We will briefly

recount the terminology of monads, and refer to [Mac98] for more explanations and

related ideas. We assume (K,⊗,1) is an idempotent-complete symmetric

monoidal category.

6.1 Monads, comonads and descent

Definition 6.1.1. A monad (M,µ, η) on K is an endofunctor M : K → K

together with natural transformations µ : M2 → M (multiplication) and η :

idK →M (two-sided unit) such that the diagrams

M3 M2

M2 M

Mµ

µM µ

µ

and
M M2

M2 M

Mη

ηM µ

µ

commute. An M-module (x, %) in K is an object x in K together with a morphism

% : M(x)→ x (the M-action) in K such that the following diagrams commute:

M2(x) M(x)

M(x) x

M(%)

µx %

%

and
x M(x)

x.

ηx

%
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If (x, %1) and (y, %2) are M -modules, a morphism f : x→ y is said to be M-linear

if the diagram

M(x) x

M(y) y

%1

M(f) f

%2

commutes. We denote the category of M -modules and M -linear morphisms in

K by M−ModK. Every object x ∈ K gives rise to a free M -module FM(x) =

(M(x), %) with action given by % : M2(x)
µx−→ M(x). The extension-of-scalars

FM : K→M−ModK is left adjoint to the forgetful functor UM : M−ModK → K

which forgets the M -action. This adjunction

K

a

M−ModK .

FM UM

is called the Eilenberg-Moore adjunction.

Remark 6.1.2. If (A, µA, ηA) is a ring object in K, then (M,µ, η) = (A⊗−, µA ⊗

−, ηA ⊗−) defines a monad on K, with M−ModK = A−ModK.

Definition 6.1.3. A comonad (N, κ, ε) on K is an endofunctor N : K → K

together with comultiplication κ : N → N2 and counit ε : N → idK such that the

diagrams

N N2

N2 N3

κ

κ κN

Nκ

and
N N2

N2 N

κ

κ

Nε

εN

commute. An N-comodule (x, δ) is an object x in K together with a morphism

δ : x→ N(x) (the N-coaction) in K such that the following diagrams commute:

x N(x)

N(x) N2(x)

δ

δ N(δ)

κx

and
x N(x)

x.

δ

εx
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A morphism of N -comodules f : (x, δ1) → (y, δ2) is a morphism f : x → y in K

such that the diagram

x N(x)

y N(y)

δ1

f N(f)

δ2

commutes. We write N−ComodK for the category of N -comodules in K. The

free-comodule functor FN : K → N−ComodA−ModK
sends x to (N(x), κx). The

functor UN : N−ComodK → K which forgets the N -coaction is left-adjoint to FN .

We call this the co-Eilenberg-Moore adjunction:

N−ComodK

a

K.

UN FN

Remark 6.1.4. ([Mac98, Thm.VI.3.1]). Every adjunction L : K � L : R with unit

η : idK → RL and counit ε : LR→ idL induces a monad (M := RL, µ := RεL, η)

on K and a comonad (N := LR, κ := LηR, ε) on L. We say the adjunction L a R

realizes the monad M and comonad N . The (co-)Eilenberg-Moore adjunctions

in Definitions 6.1.1 and 6.1.3 show that any (co)monad can be realized by an

adjunction. Actually, FM ` UM and UN ` FN are the final adjunctions that

realize the monad M and comonad N , respectively. That is, given an adjunction

L : K � L : R realizing the monad M = RL on K and comonad N = LR on L,

there exist unique functors P : L → M−ModK and Q : K → N−ComodL such

that PL = FM , UMP = R, QR = FN and UNQ = L:

K

L M−ModK

M

L

FMR

P

UM
and

K N−ComodL .

L

Q

L

UN

N

R

FN

The functor P is given by P (x) = (R(x), R(εx)) and P (f) = R(f) for objects x
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and morphisms f in L. Similarly, Q(x) = (L(x), L(ηx)) and Q(f) = L(f) if x is

an object and f is a morphism in K.

Definition 6.1.5. Let (M,µ, η) be a monad on K. The descent category DescK(M)

for M in K is the category of comodules over the comonad LM on M−ModK,

where LM is realized by the adjunction FM a UM :

K DescK(M):= LM−ComodM−ModK

M−ModK

M
Q

FM

UL
M

LM :=FMUM

UM

FL
M

In the above picture, ULM ` FLM is the co-Eilenberg-Moore adjunction for the

comonad LM on M−ModK, and Q is the comparison functor from Remark 6.1.4.

In particular, ULMQ = FM and QUM = FLM .

Definition 6.1.6. [Mes06] Let M be a monad on K. We say M satisfies effective

descent when the comparison functor Q : K→ DescK(M) is an equivalence.

We refer to [Mes06, Section 3] for necessary and sufficient conditions for K to

satisfy effective descent. We simply herald the easy-to-state

Theorem 6.1.7. [Mes06, Cor.3.17] Let (M,µ, η) be a monad on K. If the natural

transformation η : idK → M is a split monomorphism, then M satisfies effective

descent.

Recall that we call a ring A in K faithful when FA is a faithful functor.

Theorem 6.1.8. [Bal12, Cor.3.1] Suppose K is an idempotent-complete tensor-

triangulated category and (A, µ, η) a ring object in K. Then A satisfies effective

descent if and only if A is faithful.

Remark 6.1.9. Let (A, µ, η) be a ring object in K, and consider the monad M :=

A ⊗ − : K → K. The comonad LA := LM : A−ModK → A−ModK has
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comultiplication given by A⊗x 1A⊗ηA⊗1x−−−−−−→ A⊗A⊗x and counit given by A⊗x %−→ x

for every (x, %) ∈ A−ModK. We can describe the descent category DescK(A) :=

DescK(M) explicitly. An object (x, %, δ) in DescK(A) is an object x in K, together

with an A-module structure % : A ⊗ x → x and descent datum δ : x → A ⊗ x, a

comodule structure on x, compatible with the A-module structure in the following

way:

A⊗ A⊗ x A⊗ x A⊗ A⊗ x

(a) (b)

A⊗ x x A⊗ x

(c)

x A⊗ x A⊗ A⊗ x

1⊗%

µ⊗1

1⊗δ

% µ⊗1

% δ

δ 1⊗η⊗1η⊗1

%
1⊗δ

(6.1.10)

commutes (see [Bal12, Rem. 1.4]). A morphism f : (x, %1, δ1) → (y, %2, δ2) in

DescK(A) is an A-linear morphism in K that is compatible with the descent datum:

x A⊗ x

y A⊗ y.

δ1

f 1A⊗f

δ2

The comparison functor Q : K −→ DescK(A) maps objects x ∈ K to (A⊗ x, µ⊗

1x, 1A ⊗ η ⊗ 1x) and maps morphisms f to 1A ⊗ f .

6.2 A comonad induced by ring automorphisms

Notation 6.2.1. Let (A, µ, η) be a ring in K and suppose Γ is a group of ring

automorphisms of A. Seeing how A is commutative, any left A-module (x, %) has

a right A-module structure given by x ⊗ A (12)−−→ A ⊗ x %−→ x. Let γ ∈ Γ. Recall

from Definition 3.0.1 that we write Aγ for the A,A-bimodule A with (standard)

left A-action A⊗A µ−→ A and right A-action A⊗A 1⊗γ−−→ A⊗A µ−→ A. On the other
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hand, for any left A-module (x, %), we can twist the left A-action on x as follows:

A⊗ x A⊗ x x
γ⊗1 %

and keep the (standard) right A-action x ⊗ A
(12)−−→ A ⊗ x

%−→ x. We will de-

note the resulting A,A-bimodule by xγ. In particular, we have an equality of

A,A-bimodules (xγ1)γ2 = xγ1γ2 for all γ1, γ2 ∈ Γ. Finally, for any A,A-bilinear

morphism f : x→ y, the morphism fγ := f : xγ → yγ is still A,A-bilinear.

Remark 6.2.2. Let (x, %) be an A-module in K. For every γ ∈ Γ, we note that the

maps γ : x→ xγ and % : Aγ ⊗ x→ xγ are left A-linear.

Proposition 6.2.3. Let (A, µ, η) be a ring in K and suppose Γ is a group of ring

automorphisms of A. The endofunctor

N = NΓ := (−⊗A
∏
γ∈Γ

Aγ) : A−ModK −→ A−ModK : x 7→
∏
γ∈Γ

xγ

defines a comonad (N, κ, ε) on A−ModK, with comultiplication

κx :
∏
γ∈Γ

xγ −→
∏

γ1,γ2∈Γ

(xγ1)γ2 ∼=
∏

γ1,γ2∈Γ

xγ1γ2

given by prγ1,γ2
κx = prγ1γ2

and with counit εx := pr1 :
∏

γ∈Γ x
γ → x.

Proof. Let x ∈ A−ModK. To check that comultiplication is coassociative, we

consider ∏
γ∈Γ

xγ
∏

γ′2,γ2∈Γ

(xγ
′
2)γ2

∏
γ1,γ′1∈Γ

(xγ1)γ
′
1

∏
γ1,γ3,γ2∈Γ

xγ1γ3γ2

xγ1γ3γ2 ,

κx

κx
∏
γ2∈Γ(κx)γ2 prγ1γ3,γ2

prγ1,γ3γ2

κ(
∏
γ1∈Γ x

γ1 )

prγ1,γ3,γ2

which shows that

prγ1,γ3,γ2
(κN(x))κx = pr(γ1γ3)γ2

= prγ1(γ3γ2) = prγ1,γ3,γ2
(N(κx))κx
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for every γ1, γ2, γ3 ∈ Γ. Furthermore, ε is a two-sided counit, because∏
γ∈Γ

xγ
∏

γ1,γ2∈Γ

xγ1γ2

∏
γ1,γ2∈Γ

xγ1γ2
∏
γ∈Γ

xγ

xγ

κx

κx

∏
γ2∈Γ(εx)γ2

pr1,γ

ε(
∏
γ1∈Γ x

γ1 )

prγ,1

prγ

shows that prγ(εN(x))κx = prγ1 = pr1γ = prγ(N(εx))κx for every γ ∈ Γ.

Definition 6.2.4. The category (A−ModK)Γ has objects (x, %, (δγ : x→ xγ)γ∈Γ),

where (x, %) is an A-module in K and (δγ)γ∈Γ is a family of left A-linear isomor-

phisms δγ : x→ xγ, with δ1 = 1x and satisfying the cocycle condition

x xγ1

xγ2γ1 = (xγ2)γ1

δγ1

δγ2γ1

(δγ2 )γ1

for any γ1, γ2 ∈ Γ. Morphisms f : (x, %1, (δγ)γ∈Γ)→ (y, %2, (βγ)γ∈Γ) in (A−ModK)Γ

are A-linear morphisms f : (x, %1)→ (y, %2) such that βγf = fγδγ for every γ ∈ Γ.

Proposition 6.2.5. Let (A, µ, η) be a ring in K and suppose Γ is a group of ring

automorphisms of A. The category (A−ModK)Γ is isomorphic to the category of

NΓ-comodules.

Proof. We define a functor N−ComodA−ModK
−→ (A−ModK)Γ by sending objects

((x, %), δ : x→ N(x)) ∈ N−ComodA−ModK
to (x, %, (δγ)γ∈Γ) ∈ (A−ModK)Γ, with

(δ : x→
∏

γ∈Γ x
γ) (δγ : x

prγ δ−−→ xγ)γ∈Γ.
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Suppose ((x, %), δ) ∈ N−ComodA−ModK
. The following diagram

x
∏
γ∈Γ

xγ xγ2

∏
γ∈Γ

xγ
∏

γ1,γ2∈Γ

xγ1γ2
∏
γ1∈Γ

xγ1γ2

xγ1γ2 xγ1γ2 xγ1γ2

δ

δ ∏
γ∈Γ(δ)γ

prγ2

δγ2

κx

prγ1γ2

prγ2

prγ1,γ2
prγ1

shows that (δγ)γ∈Γ satisfies the cocycle condition (δγ1)γ2δγ2 = δγ1γ2 . What is more,

we know
x

∏
γ∈Γ

xγ

x

δ

εx=pr1

and hence δ1 = 1x as desired. Now, suppose (x, %, δ) and (y, %′, δ′) areN -comodules

in A−ModK. An A-linear morphism f : x −→ y is a morphism of N -comodules if

x
∏

γ∈Γ x
γ

y
∏

γ∈Γ y
γ

δ

f
∏
γ∈Γ f

γ

δ′

commutes. This happens precisely when

x
∏

γ∈Γ x
γ xγ

y
∏

γ∈Γ y
γ yγ

δ

f
∏
γ∈Γ f

γ

prγ

fγ

δ′ prγ

commutes for every γ ∈ Γ, so f : x→ y is a morphism in (A−ModK)Γ.

6.3 Descent and quasi-Galois theory

Recall from Definition 3.0.4 that we have an A,A-bilinear map λ : A ⊗ A →∏
γ∈ΓAγ given by prγ λ = µ(1 ⊗ γ). Furthermore, we will write φ = φA,x :

A⊗x→ FA(A)⊗Ax for the Projection Formula isomorphism in K (Prop. 1.1.13).
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Lemma 6.3.1. Let (A, µ, η) be a ring in K and suppose Γ is a group of ring

automorphisms of A. The map λx : A⊗ x→
∏

γ∈Γ x
γ defined by

λx : A⊗ x FA(A)⊗A x
∏

γ∈ΓAγ ⊗A x ∼=
∏

γ∈Γ x
φ λ⊗A1x

is left A-linear for every x ∈ A−ModK.

Proof. Let (x, %) ∈ A−ModK. We note that λx is given by prγ λx = %(γ ⊗ 1):

A⊗ x (A⊗ A)⊗A x
∏

γ∈ΓAγ ⊗A x
∏

γ∈Γ x

A⊗ x (A⊗ A)⊗A x Aγ ⊗A x x,

φ

γ⊗1x

λ⊗A1x

(1⊗γ)⊗A1x prγ

∼=

prγ

%

φ µ⊗A1x ∼=

in which the left square commutes because φy,x is natural in y. It follows that

prγ λx : A⊗ x Aγ ⊗ x xγ
γ⊗1x %

is left A-linear for every γ ∈ Γ (see Remark 6.2.2).

Let (A, µ, η) be a ring in K. Recall that we defined the comonad L = LA =

FAUA on A−ModK, with comultiplication given by A ⊗ x 1A⊗ηA⊗1x−−−−−−→ A ⊗ A ⊗ x

and counit given by A ⊗ x
%−→ x for every (x, %) ∈ A−ModK (Def. 6.1.5). On

the other hand, for Γ a group of ring automorphisms of A, we defined the monad

(N = NΓ, κ, ε) on A−ModK in Proposition 6.2.3.

Proposition 6.3.2. Let (A, µ, η) be a ring in K and suppose Γ is a group of ring

automorphisms of A. Then,

λx : L(x) = A⊗ x
∏

γ∈Γ x
γ = N(x)

defines a morphism λ : L⇒ N of comonads on A−ModK:

A−ModK K

A−ModK .

UA

N
FA
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Proof. Recall that λx is given by prγ λx = %(γ ⊗ 1) : A ⊗ x → xγ for every

(x, %) ∈ A−ModK. To show that (λx)x∈A−ModK
is natural, we note that the

diagram

A⊗ x A⊗ x x

A⊗ y A⊗ y y

γ⊗1

1A⊗f

%1

1A⊗f f

γ⊗1 %2

commutes for every A-linear map f : (x, %1) → (y, %2). We still need to check

that (λx)x∈A−ModK
defines an morphism of monads. That is, we check that the

diagrams

A⊗ x
∏

γ∈Γ x
γ

x

λx

%
εx=pr1

and

A⊗ x A⊗ A⊗ x

∏
γ∈Γ x

γ
∏

γ1,γ2∈Γ x
γ1γ2

1A⊗η⊗1x

λx λN(x)(L(λx))=N(λx)λL(x)

κx

commute. Commutativity of the first diagram is clear, because pr1 λx = %(1⊗ 1).

To show the second diagram commutes, let us compute

N(λx)λL(x)(1⊗ η ⊗ 1) =
∏
γ∈Γ

(λx)
γλA⊗x(1⊗ η ⊗ 1) :

the diagram

A⊗ x A⊗ A⊗ x
∏

γ2∈Γ(A⊗ x)γ2
∏

γ1,γ2∈Γ x
γ1γ2

A⊗ x A⊗ A⊗ x (A⊗ x)γ2
∏

γ1∈Γ x
γ1γ2

(A⊗ x)γ2 xγ1γ2

1⊗η⊗1

γ2⊗1 γ2⊗1⊗1

λA⊗x

prγ2

∏
γ2∈Γ λ

γ2
x

prγ2

1⊗η⊗1

1

µ⊗1

(γ1⊗1)γ2

λ
γ2
x

prγ1

%γ2

commutes, which shows

prγ1,γ2
(
∏
γ2∈Γ

λγ2
x )λA⊗x(1⊗ η ⊗ 1) = %(γ1 ⊗ 1)(γ2 ⊗ 1).
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On the other hand, we compute κxλx and find

A⊗ x
∏

γ∈Γ x
γ

∏
γ1,γ2∈Γ x

γ1γ2

A⊗ x xγ1γ2 xγ1γ2

λx

γ1γ2⊗1

κx

prγ1γ2
prγ1,γ2

%

so that prγ1,γ2
(κx)λx = %(γ1γ2 ⊗ 1).

Corollary 6.3.3. Let (A,Γ) be quasi-Galois in K. The comonads LA and NΓ on

A−ModK are isomorphic and

DescK(A) ' NΓ−ComodA−ModK
' (A−ModK)Γ.

Proof. This follows immediately from Proposition 6.3.2 and Proposition 6.2.5.

Corollary 6.3.4. Let A be a faithful ring in K and suppose (A,Γ) is quasi-Galois.

Then K ' (A−ModK)Γ.

Proof. This follows from Theorem 6.1.8 and Corollary 6.3.3.
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CHAPTER 7

Quasi-Galois representation theory

Let G be a finite group and k a field with characteristic p dividing |G|. We write

kG−mod for the category of finitely generated left kG-modules. Its bounded de-

rived category Db(kG−mod) and stable category kG−stab are nice tt-categories;

both have tensor ⊗k with diagonal G-action and the unit is the trivial represen-

tation 1 = k. Rickard [Ric89] proved there is an equivalence of tt-categories

kG−stab ∼= Db(kG−mod)�Kb(kG− proj).

The Balmer spectrum Spc(Db(kG−mod)) of the derived category is homeomor-

phic to the homogeneous spectrum Spech(H•(G,k)) of the graded-commutative

cohomology ring H•(G,k). Accordingly, the Balmer spectrum Spc(kG−stab) of

the stable category is homeomorphic to the projective support variety VG(k) :=

Proj(H•(G,k)), see [Bal05].

Notation 7.0.1. Let H ≤ G be a subgroup. We define the kG-module AH =

AGH := k(G/H) to be the free k-module with basis G/H and left G-action given

by g · [x] = [gx]. We also define kG-linear maps µ : AH ⊗k AH −→ AH given for

every γ, γ′ ∈ G/H by

γ ⊗ γ′
γ if γ = γ′

0 if γ 6= γ′

and η : 1 −→ AH by sending 1 ∈ k to
∑

γ∈G/H γ ∈ k(G/H).

We will write K(G) to denote kG−mod, Db(kG−mod) or kG−stab and consider

the object AH in each of these categories.
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Theorem 7.0.2. ([Bal15, Prop.3.16, Th.4.4]). Let H ≤ G be a subgroup. Then,

(a) The triple (AH , µ, η) is a commutative separable ring object in K(G).

(b) There is an equivalence of categories φ : K(H)
'−→ AH−ModK(G) sending

V ∈ K(H) to kG⊗kH V ∈ K(G) with AH-action

% : k(G/H)⊗k (kG⊗kH V ) −→ kG⊗kH V

given for γ ∈ G/H, g ∈ G and v ∈ V by γ ⊗ g ⊗ v 7−→

g ⊗ v if g ∈ γ

0 if g /∈ γ
.

(c) The following diagram commutes up to isomorphism:

K(G)

K(H) AH−ModK(G) .

FAHResGH

φ

∼=

The above shows that subgroups H ≤ G provide indecomposable separable

rings AH in K(G), along which extension-of-scalars becomes restriction to the

subgroup.

Proposition 7.0.3. The ring object AH has degree [G : H] in kG−mod and

Db(kG−mod) .

Proof. We refer to [Bal14b, Cor.4.5] for K(G) = Db(kG−mod). The case K(G) = kG−

mod follows likewise from considering the fiber functor ResG{1}.

Lemma 7.0.4. Let K(G) denote Db(kG−mod) or kG−stab and consider the

subgroups K ≤ H ≤ G. Then supp(AH) = supp(AK) ⊂ Spc(K(G)) if and only if

every elementary abelian subgroup of H is conjugate in G to a subgroup of K.

Proof. This follows from [Eve91, Th.9.3.2 ], seeing how supp(AH) = (ResGH)∗(Spc(K(H)))

can be written as a union of disjoint pieces coming from conjugacy classes in G

of elementary abelian subgroups of H.
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Notation 7.0.5. For any two subgroups H,K ≤ G, we write H [g]K for the equiv-

alence class of g ∈ G in H\G/K, just [g] if the context is clear. We will write

Hg := g−1Hg for the conjugate subgroups of H.

Remark 7.0.6. Let H,K ≤ G be subgroups and choose a complete set T ⊂ G of

representatives for H\G/K. Consider the Mackey isomorphism∐
g∈T

G/(K ∩Hg)
∼=−→ G/K ×G/H,

sending [x] ∈ G/(K ∩ Hg) to ([x]K , [xg
−1]H). The resulting ring isomorphism

in K(G) (see [Bal13, Constr. 4.1]),

AK ⊗ AH
∼=−→
∏
g∈T

AK∩Hg (7.0.7)

sends [x]K ⊗ [y]H to [xk]K∩Hg , with g ∈ T such that H [g]K = H [y−1x]K and k ∈ K

such that y−1xkg−1 ∈ H. This yields an AK-algebra structure on AK∩Hy for every

y ∈ T , given by

AK
1⊗η−−→ AK ⊗ AH ∼=

∏
g∈T

AK∩Hg

pry−−→ AK∩Hy ,

which sends [x]K ∈ G/K to
∑

[k]∈K/K∩Hy

[xk]K∩Hy ∈ AK∩Hy . In the notation of

Theorem 7.0.2(b), this just means AK∩Hy = φ(AKK∩Hy) in AK−ModK(G).

Lemma 7.0.8. For x, y ∈ G we have H [x]Hy = H [y]Hy if and only if H [x] = H [y].

Proof. If [x] = [y] in H\G/Hy, there are h, h′ ∈ H with x = hy(y−1h′y) =

hh′y.

Corollary 7.0.9. Let x, g1, g2, . . . , gn ∈ G and 1 ≤ i ≤ n. Then H [x]H∩Hg1∩...∩Hgn =

H [gi]H∩Hg1∩...∩Hgn if and only if H [x] = H [gi].

Notation 7.0.10. We will write S ⊂ G to denote some complete set of repre-

sentatives for H\G/H. Likewise, for g1, g2, . . . , gn ∈ G we fix a complete set

Sg1,g2,...,gn ⊂ G of representatives for H\G/H ∩Hg1 ∩ . . . ∩Hgn .
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Lemma 7.0.11. Let 1 ≤ n < [G : H]. In K(G), there is an isomorphism of rings

A
[n+1]
H

∼=
∏

g1, ..., gn

AH∩Hg1∩...∩Hgn ,

where the product runs over all g1 ∈ S, g2 ∈ Sg1 , . . . , gn ∈ Sg1,g2,...,gn−1 with

H[1],H[g1], . . . ,H[gn] distinct in H\G.

Proof. By Remark 7.0.6,

AH ⊗ AH ∼=
∏
g∈S

AH∩Hg = AH ×
∏
g∈S

H[g]6=H[1]

AH∩Hg

so Proposition 2.0.5 shows A
[2]
H
∼=

∏
g∈S

H[g]6=H[1]

AH∩Hg . Now suppose

A
[n]
H
∼=

∏
g1, ..., gn−1

AH∩Hg1∩...∩Hgn−1

for some 1 ≤ n < [G : H], where the product runs over all g1 ∈ S, g2 ∈

Sg1 , . . . , gn−1 ∈ Sg1,g2,...,gn−2 with H[1],H[g1], . . . ,H[gn−1] distinct in H\G. Then

A
[n]
H ⊗ AH ∼=

∏
g1, ..., gn−1

AH∩Hg1∩...∩Hgn−1 ⊗ AH ∼=
∏

g1, ..., gn−1

∏
gn∈Sg1,g2,...,gn−1

AH∩Hg1∩...∩Hgn

by Remark 7.0.6. We note that every gn ∈ Sg1,g2,...,gn−1 with H [gn] = H [1] or

H [gn] = H [gi] for 1 ≤ i ≤ n − 1 provides a copy of A
[n]
H . By Corollary 7.0.9, this

happens exactly n times. Hence,

A
[n]
H ⊗ AH ∼=

(
A

[n]
H

)×n
×

∏
g1, ..., gn

AH∩Hg1∩...∩Hgn ,

where the product runs over all g1 ∈ S, g2 ∈ Sg1 , . . . , gn ∈ Sg1,g2,...,gn−1 with

H[1],H[g1], . . . ,H[gn] distinct in H\G, and the lemma now follows from Proposi-

tions 2.1.7(c) and 2.0.5.

Corollary 7.0.12. Let d := [G : H] and suppose K(G) is Db(kG−mod) or

kG−mod. There is an isomorphism of rings

A
[d]
H
∼=
(
AnormG

H

)× d!

[G:normG
H

] ,

where normG
H :=

⋂
g∈G

g−1Hg is the normal core of H in G.
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Proof. From the above lemma we know that A
[d]
H
∼=

∏
g1, ..., gd−1

AH∩Hg1∩...∩Hgd−1 ,

where the product runs over some g1, . . . gd−1 ∈ G with {H[1],H[g1], . . . ,H[gd−1]} = H\G.

So, A
[d]
H
∼= A×t

normG
H

for some t ≥ 1. Furthermore, deg(AnormG
H

) = [G : normG
H ] and

deg(A
[d]
H ) = d! by Remark 3.2.2 and Proposition 7.0.3, so t = d!

[G:normG
H ]

by Re-

mark 4.2.7.

Corollary 7.0.13. The ring AH in Db(kG−mod) has constant degree [G : H] if

and only if normG
H contains every elementary abelian subgroup of H. In that case,

its quasi-Galois closure is AnormG
H

. Furthermore, AH is quasi-Galois in Db(kG−

mod) if and only if H is normal in G.

Proof. The first statement follows immediately from Lemma 7.0.4 and Corol-

lary 7.0.12. By Proposition 3.2.6, the splitting ring of AH is AnormG
H

, so the

second statement is Theorem 5.2.9. Since AH is an indecomposable ring, it is

quasi-Galois if and only if it is its own splitting ring. Hence AH is quasi-Galois if

and only if AnormG
H

∼= AH , which yields normG
H = H by comparing degrees.

Remark 7.0.14. Let H ≤ G be a subgroup. Recall that AH ∼= 0 in kG−stab if and

only if p does not divide |H|. On the other hand, The Mackey Formula 7.0.7 shows

that ResGH IndGH(k) = k⊕ (proj) if and only if IndHH∩Hg(k) is projective for every

g ∈ G −H. Hence, AH ∼= k in kG−stab if and only if H is strongly p-embedded

in G, that is p divides |H| and p does not divide |H ∩Hg| if g ∈ G−H.

Theorem 7.0.15. Let H ≤ G and consider the ring AH in kG−stab. Then,

(a) The degree of AH is the greatest 0 ≤ n ≤ [G : H] such that there exist

distinct [g1], . . . , [gn] in H\G with p dividing |Hg1 ∩ . . . ∩Hgn|.

(b) The ring AH is quasi-Galois if and only if p divides |H| and p does not

divide |H ∩Hg ∩Hgh| whenever g ∈ G−H and h ∈ H −Hg.

(c) If AH has degree n, the degree is constant if and only if there exist distinct

[g1], . . . , [gn] in H\G such that Hg1 ∩ . . . ∩ Hgn contains a G-conjugate of
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every elementary abelian subgroup of H.

In that case, AH has quasi-Galois closure given by AHg1∩...∩Hgn .

Proof. For (a), recall that deg(AH) is the greatest n such that A
[n]
H 6= 0, thus such

that there exist distinct H[1],H[g1], . . . ,H[gn−1] with |H∩Hg1∩ . . .∩Hgn−1| divisible

by p. To show (b), we note that

FAH (AH) ∼=
∏
g∈S

AH∩Hg ∼= 1
× deg(AH)
AH

corresponds to
∏

g∈S A
H
H∩Hg

∼= k
×deg(AH) under the equivalence AH−ModkG−stab

∼=

kH− stab (see Remark 7.0.6). So, AH is quasi-Galois if and only if AH 6= 0

and for every g ∈ G, either AHH∩Hg = 0 or AHH∩Hg
∼= k. By Remark 7.0.14,

this means either p
∣∣- |H ∩ Hg|, or p

∣∣ |H ∩ Hg| but p
∣∣- |H ∩ Hg ∩ Hgh| when

h ∈ H − Hg. Equivalently, p does not divide |H ∩ Hg ∩ Hgh| whenever g ∈

G − H and h ∈ H − Hg. For (c), suppose AH has constant degree n. By

Proposition 5.2.6, any indecomposable ring factor of A
[n]
H is isomorphic to the

splitting ring A∗H , so Lemma 7.0.11 shows that the quasi-Galois closure is given

by A∗H
∼= AHg1∩...∩Hgn for all distinct H[g1], . . . ,H[gn] with |Hg1∩ . . .∩Hgn| divisible

by p. Then, supp(AH) = supp(A∗H) = supp(AHg1∩...∩Hgn ) so Hg1 ∩ . . . ∩ Hgn

contains a G-conjugate of every elementary abelian subgroup of H. On the other

hand, if there exist distinct [g1], . . . , [gn] in H\G such that Hg1∩ . . .∩Hgn contains

a G-conjugate of every elementary abelian subgroup of H, then supp(A
[n]
H ) =

supp(AHg1∩...∩Hgn ) = supp(AH), so the degree of AH is constant.

Example 7.0.16. Let p = 2 and suppose G = S3 is the symmetric group on 3

elements {1, 2, 3}. Consider the subgroup H := {(), (12)} ∼= S2 of permutations

fixing {3}. Its conjugate subgroups in G are the subgroups of permutations fixing

{1} and {2} respectively, so normG
H = {()}. Then, AH is a faithful ring of degree 3

in Db(kG−mod) with supp(AH) = Spc(Db(kG−mod)). On the other hand,

supp(A
[3]
H ) contains only one point, soAH does not have constant degree in Db(kG−
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mod). When considered in kG−stab however, the ring AH is quasi-Galois of degree

1, since H is strongly p-embedded in G.

Example 7.0.17. Let p = 2. Suppose G = S4 is the symmetric group on 4 elements

{1, 2, 3, 4} and H ∼= S3 is the subgroup 〈(12), (123)〉 of permutations fixing {4}.

The intersections H ∩ Hg with g ∈ G − H each fix two elements of {1, 2, 3, 4}

pointwise, so H ∩ Hg ∼= S2. Furthermore, the intersections H ∩ Hg1 ∩ Hg2 with

[1], [g1], [g2] distinct in H\G are trivial. So, the ring AH in kG−stab has constant

degree 2 and A
[2]
H is a faithful A-algebra. The quasi-Galois closure of AH in

kG−stab is AS2 , with S2 = {(), (12)} embedded in H.
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