Automorphisms of Coxeter Groups

William N. Franzsen

School of Mathematics and Statistics
University of Sydney
January, 2001

i

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy.






Dedicated to

R. A. Franzsen
V. T. Franzsen
F. A. Wawryk

and the memory of

A. B. Franzsen (1930-1995)



Acknowledgements

Firstly I must thank my friend, colleague and supervisor Bob Howlett for his constant help
and support and criticism when I needed it.

Secondly, thanks to my friends and colleagues at the Australian Catholic University
for their support and encouragement. Especially to John Murray for reading this thesis and
correcting my (frequent) grammatical mistakes.

Thanks also to the people who have supported me emotionally during this time. In
particular Bill Unger (who also asked “why” whenever I said “clearly”) and Peter Lawrie
(who introduced me to Rosemary).

Finally, thanks to my father, mother and sister, sorry it took so long. And to my wife
Rosemary for her unfailing love and support and for turning up when least expected.

This thesis contains no material which has been accepted for the award of any other degree or
diploma. All work in this thesis, except where duly attributed to another person, is believed
to be original.



Contents

Introduction
Chapter 1  Properties of Coxeter Groups
1.1  Some Basic Facts
1.2 Longest Elements
1.3  Finite Subgroups of Infinite Coxeter Groups
1.4 Automorphisms That Preserve Reflections
Chapter 2 Automorphisms of Finite Coxeter Groups
2.1 Type A
2.2 Types B and D
2.3 Type E
2.4 TypeF
2.5 Type H
2.6 The Dihedral Groups
2.7 Automorphisms of Infinite Coxeter Groups
Chapter 3  Nearly Finite Coxeter Groups
3.1 Automorphisms That Preserve Reflections
3.2 Reflections and Components
3.3 Graph Automorphisms and Unusual Labels
3.4 Nearly Finite Coxeter Groups
3.5 Some Examples
Chapter 4  Affine Weyl Groups, Hyperbolic Groups and
Other Infinite Coxeter Groups
4.1 Preliminaries
4.2  Affine Weyl Groups
4.3 Hyperbolic Coxeter Groups
4.4  Automorphisms
4.5 Other Simple Diagrams

Tables I to V

11
14

18

20
21
28
30
31
33
34

35

35
39
43
92
95

60

60
61
62
66
68
70



Chapter 5 Rank 3 Coxeter Groups

5.1  Groups with Finite Bonds
5.2  Groups With Infinite Bonds

References

Index and Notation

7

7
7

89

90



Introduction

There are surprisingly few results known about the automorphisms of infinite Coxeter groups.
The only complete results are for finite rank graph universal Coxeter groups. A Coxeter
group is graph universal if the labels on all edges in the Coxeter diagram are co. In the paper
[Jam88], James found the automorphism groups of graph universal Coxeter groups whose
diagrams have the form:

(o ele o] o0
. . . . .

This result was extended by Tits, [Tit88], to include all irreducible graph universal Coxeter
groups whose diagrams do not contain triangles. Finally Miihlherr, [Mii98], found the au-
tomorphism group of any graph universal Coxeter group. In that paper Miihlherr gives a
presentation for this automorphism group.

For the most part I will be looking at the automorphism group of a Coxeter group
with finite labels. The only paper that I could find that deals with the finite label case is
[HRT97]. In this paper Howlett, Rowley and Taylor show that the outer automorphism group
of a Coxeter group of finite rank whose diagram has no infinite bonds is itself finite. The
automorphisms of the finite irreducible Coxeter groups are well known.

In the following it will be shown that for a large class of finite rank Coxeter groups
all automorphisms are inner by graph. That is Aut(W), the automorphism group of the
Coxeter group W, is generated by the inner automorphisms and automorphisms arising from
symmetries of the Coxeter diagram. Indeed, in most cases, Aut(W) is the semidirect product
of Inn(W) and the group of graph automorphisms.

In the first chapter some basic properties of Coxeter groups are established. In particu-
lar it is shown that maximal finite standard parabolic subgroups are maximal finite subgroups.
Finally it is shown that if the diagram of a given infinite Coxeter group, W, is a forest with
labels in the set { 2,3,4,6 }, then any automorphism of W that preserves the set of reflections
is inner by graph.

The second chapter deals mainly with the automorphism groups of the irreducible fi-
nite Coxeter groups. In the finite case it is possible for a graph automorphism to be inner;
for example, conjugation by the longest element in type A,, induces the obvious graph au-
tomorphism. The final section in Chapter 2 shows that this cannot happen if the Coxeter
group has no finite irreducible components.

Nearly finite Coxeter groups are then defined; these are infinite Coxeter groups of rank
n that have a finite standard parabolic subgroup of rank n — 1. When W is a non-degenerate
irreducible nearly finite Coxeter group then all reflection-preserving automorphisms are inner
by graph. If this subgroup is of type A,—1 (n # 6), Dak11, Eg or Ey and W only has one
conjugacy class of reflections, then all automorphisms are inner by graph.

Chapter 4 deals completely with the affine Weyl groups and the hyperbolic groups (in
the sense of [Hum90]). Using the methods developed in previous chapters it is shown that
in all cases the automorphism group is the semidirect product of Inn(W) and the group of
graph automorphisms.

Finally the rank 3 Coxeter groups are considered in full. Having shown in Chapter 4
that if all the bonds are finite then the automorphisms are inner by graph the groups with
infinite bonds are considered. The automorphisms of the rank 3 graph universal Coxeter
groups are found. Finally the rank 3 groups with both finite and infinite bonds are considered.
The case of rank 3 Coxeter groups with finite bonds is also covered in [FH].






Chapter 1

Properties of Coxeter Groups

We recall that a Coxeter group is a group with a presentation of the form
W =gp{{re|a €I} | (rgry)™ =1 for all a,b € II)

where 11 is some indexing set, whose cardinality is called the rank of W, and the parameters
myqyp satisfy the following conditions: mgp = Mpq, Maep = 1 if and only if a = b and each mygy
lies in the set {m € Z | m > 1} U {oco}. The relation (r,ry)"* = 1 is omitted if my, = oco.

§1.1 Some Basic Facts

The (Coxeter) diagram of W is a graph with vertex set IT in which an edge (or bond) labelled
mgp joins a,b € II whenever my, > 3. We say that the group is irreducible if this graph is
connected.

Let V be the real vector space with basis IT and let B be a bilinear form on V' with

B(a,b) = — cos(m/map) if mgp # 00,
and
B(a,b) < —1 if mgp = oo.

for all a,b € II. There is clearly a unique such form with B(a,b) = —1 whenever mg, = 00
and unless otherwise stated we assume that B is defined in this manner. For each a € V
such that B(a,a) = 1 we define 0, : V. — V by o,v = v — 2B(a,v)a; it is well known
(see, for example, Corollary 5.4 of [Hum90]) that W has a faithful representation on V'
given by r, — o, for all a € II. We shall identify elements of W with their images in this
representation; thus r, = o, is the reflection in the hyperplane perpendicular to a. We also
call this the reflection along the root a. The action of W on V preserves the form B. If the
form B is degenerate, non-degenerate or positive definite then we will often just say that W
is degenerate, non-degenerate or positive definite respectively.

The elements of the basis II are called simple roots, and the reflections r, for a € II are
called simple reflections. We call ® = {wa|w € W, a € I1} the root system of W. Usually
the reflection along the simple root a; will be denoted by r; to simplify subscripts.

The following lemma collects together some facts which will be useful later.

1.1 Lemma Given the above representation of the Coxeter group W, the following are
true.

(1) Ifve®andv =7}, A0, then either \, > 0 for all a € TI or A\, < 0 for all
a € II. In the former case we call v a positive root, in the latter case a negative
root, and we define ®* and ®~ to be the set of all positive roots and the set of
all negative roots respectively.

(2) Ifw e W is a reflection, then w = r, for some a € ®. Furthermore, o = za for
some x € W and a € II, whence w = zr,x~" is conjugate to a simple reflection.

(3) W is a finite group if and only if the bilinear form B is positive definite.

Proof Section 5.4 in [Hum90] contains a proof of 1, while 2 appears as Proposition 1.14.
Theorem 4.1 in [Deo82] contains a proof of 3. 1
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Basic Facts

1.2 Definition If w is an element of the Coxeter group W, then the length of w is the
length of the shortest expression of w as a product of simple reflections. We denote this
length by I(w). Any expression of w as a product of [(w) simple roots will be called a reduced
expression for w.

Regarding w as a linear transformation of V' we see that det(w) = (—1)"*), since all
reflections have determinant —1.

It is easily seen that I(w) = 0 if and only if w = 1 and I(w™!) = I(w). If w can be
expressed as a product of [ simple reflections then it is obvious that for any a € II the element
w’ = wr, can be expressed as a product of [+ 1 simple reflections. So I(w’) < I(w)+ 1. Since
also w = w'r, the same reasoning shows that [(w) < [(w’) + 1. But since

(—=1)"®) = detw = (det w')(det ry) = — detw’ = (—1)Hw)+1

it follows that [(w’) # l(w). So we have proved.
1.3 Lemma Ifw e W anda €1l, then

l(wry) = l(w) £ 1.

1.4 Lemma Ifw,w € W, then

H(ww') = l(w) 4+ (w") (mod 2).

Proof We have (—1)1®%") = det(ww') = det w det w’ = (—1)Hw)+iw"), 1
1.5 Definition If w € W, then let
Nw)={a€® |wae® }.

Define also n(w) = |N(w)|, the cardinality of the set N(w). (It is shown below that the set
N(w) is always finite.)
1.6 Lemma Ifa €1l is a simple root, then N(a) = {r, }, in particular

ra(®\{a}) ="\ {a}.

Proof As r,a = —a it remains to show that

ra(@\{a}) ="\ {a}.

Assuming that ¢ € @1\ {a}, then ¢ = Y ; \yb where A\, > 0 for all b, and there is a by # a
such that A\p, > 0, as the only multiples of a in ® are +a. Then

rqoc=c—2B(a,c)a
= ()\a - 2B(CL,C))G + )\bobO + Z )\bb.
H/

Now Ap, > 0 and so r,c € &1 and is clearly not a. ]

1.7 Lemma Ifw e W anda €1l, then
(a) Ifwa € ®F, then N(wr,) =r,N(w)U{a}.
(b) Ifwa e @, then N(wr,) =r.(N(w)\{a}).
(¢) Ifw'ae®", then N(row) = N(w) U{w ta}.
(d) Ifwla€®, then N(row) = N(w)\{-w'a}.
(Here the symbol U stands for the disjoint union.)
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Proof Let w € Wanda € II. If wa € @ then a ¢ N(w), while wr,a = w(—a) = —wa € ¢,
and so a € N(wr,). By Lemma 1.6, 7, N(w) C &1 and wr,(r,N(w)) = wN(w) C &~ and
so 1o N(w) C N(wry). Now, if b € N(wr,) and b # a, then b € @ but w(r,b) = wr,b € &~
and so 7,0 € N(w). Hence

N(wry) =reN(w)U{a}.

A similar argument proves the second claim.

Looking at the last claim, we have been given that w™'a € ®~ and so —w ™ 'a € &7,
but w(—w~ta) = —a € ®~. Thus —w~ta € N(w). Notice however, that

raw(—wta) =r.(—a) =a €

and so —w~la ¢ N(r,w). Now if b € N(r,w), then r,wb = —c € ®~ where ¢ € ®*. Observe
that ¢ # a, since ¢ = a would imply that b = w~'a, contrary to the fact that w—'a € ®~ and
b€ ®*. Thus

wb=—r,ce d.

Therefore b € N(w). Now b # —w™'a and so we have
N(rqw) € N(w)\ { —w'a}.
The reverse inclusion is clear, since if b € N(w)\ { —w™'a }, then
rawb € ry(P"\{a})=d \{—a}

and so b € N(r,w). Thus:
N(rqw) = N(w)\ { —w'a }.

A similar argument proves the third claim. ]

Suppose that w = riry ... 7, where l[(w) = t. Using Lemma 1.7, if we build up N(w)
starting from N (rq), then

N(rira) CroN(ry)U{ag } = {rqay,as}

where qa; is the simple root associated with the reflection r;. An induction proof completes
the proof of the following.

1.8 Corollary Ifw e W, thenn(w) <t =I(w). In particular N(w) is always a finite set.

The following is Theorem 1.7 of [Hum90], Part 3 being called the Deletion Condition
there.

1.9 Theorem Supposethatw =riry...r; andn(w) <t. Then we can find1 <i < j <t
such that

(1) a;=riy1...75_10;.

(2)  TipaTig2.. T =TT T

() w=ri...F. T Ty
As before r; denotes the reflection along the simple root a;.

Proof Following the steps in the proof of Corollary 1.8, it can be seen that if n(w) < t, then
we can find a j such that riry...7;_1a; € 7. Now a; € ®* and so we can find an index %
such that

+
Titl...Tj—105 € d
TiTiy1...Tj—10a5 cod.

But N(r;) = {a; } and so

Qi =Ti41...Tj—1G5.

3
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It is easily seen that wr,w™!' = r,, and so

(Ti—‘,-l e Tj—l)rj(rj—l e T’H—l) = Tri+1...Tj71aj =Tq; = T4-

Thus rj41...7; =r;...7j—1 and therefore r; ...7; = r;;q1...7;_1. Using this equation in the
expression for w:

wW="r1... (1. Tj). T
:Tl"'(ri+1---rj—l)"'rt

=Try...Ty...T5 ... T¢.

1.10 Corollary Ifw € W, then n(w) = l(w).

Proof If [(w) = t, then by the above we cannot have n(w) < t or else we can shorten a
reduced expression for w as a product of simple reflections. Thus n(w) > I(w) and hence, by
Corollary 1.8,

1.11 Lemma The Coxeter group W is finite if and only if the associated root system, ®,
is also finite.

Proof If W is finite then the set of simple reflections is finite, and so II is finite. As
¢ ={wa|we W,a €lIl} it follows that ® is also finite.

Conversely, suppose that ¢ is finite. For w € W define p,, € Sym(®) by
Pw @ wa.
If pu = pur, then w=tw’ fixes all roots a € @, in particular all positive roots. Thus
l(w ') =n(w tw') =0
and so w™lw’ = 1. Thus p: W — Sym(®) is injective. Hence, if ® is finite,

W] < | Sym(®)| = |1
|

For each I C II we define W; = gp({ra.|a € I}); these subgroups are called the
standard parabolic subgroups of W. Clearly Wy preserves the subspace Vi spanned by [;
furthermore it acts on this subspace as a Coxeter group with root system &; = dNV;. A
parabolic subgroup of W is any subgroup of the form wWjrw ! for some w € W and I C II.

To save space in our later calculations we shall write s(6) for sinf and c(6) for cos .
We shall also use 7y, for w/k (for any positive integer k) and w - v for B(u,v). It is readily
checked that if I = {a,b} is a two-element subset of I, then ®; consists of all vectors v of

the form
S((h= D)), 8 (hmn)
ai
S(Tm) s(7m,)
where h € Z. Observe that v-a; = —c (hmy,) and v - as = ¢((h — 1)m,,). Replacing h by

m — h + 1 gives the equivalent formula

s (hmym) " s((h — 1)my)
) T Sl

az, (1.12)

ag, (1.13)

where now v-a = ¢((h — 1)) and v - b = —c (hm,,). The positive roots in ®; are the
vectors of the form 1.12 or 1.13 with 1 < h < m. We see that positive numbers appearing as
coefficients of a or b in roots v € <I>+a7b} are never less than 1. This result in fact extends to
the entire root system. First a technical lemma.
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1.14 Lemma Suppose that v € ® and w = riry...r; has minimal length such that
w v =beIl. Then r;...rb is positive for all i.

Proof Suppose, to the contrary, that r;...rb € ®~ for some j. Then we can find ¢ such
that r,.1...mb € @ but x = r;...mb € ®*. So, z € & while 7,z € &, and therefore
x € N(r;) ={a; }. Hence

a;=(ri...ri_1) txcll
which contradicts the minimality of . ]

1.15 Lemma (Brink [Bri98]) Suppose that v = Y .y Aqa € ®T. For each a € II, if
Ay >0, then A, > 1.

Proof Choose w with minimal length such that w='v = b € II, say [(w) = I. We prove this
lemma by induction on .

If | =0, then v € II and the result is trivial. If [ = 1, then
v=rb=b-2(a-b)a

where a-b = —1 or — cos(m,,) for some m > 2. (Note that this formula corresponds to h = 2
in 1.12.) If m = 2, then r,b = b. Otherwise the coefficient of @ in v is either 2 or

2cos(mpy,) > 2cosmy = 1.

Assuming that [ > 2, let 179 ...7; be a reduced expression for w. Thus v = riry...7b. By
Lemma 1.14, ro...7b € T, say r9...7b = > o1 pea. By induction the p’s are all zero or
at least 1. Then

v="1ry...7b

=T Z,U*aa

a€cll

= Z HaT1G.

a€cll

The only coefficient we need to check is the coefficient of a; which is

Mg, + Z (-2(@‘0,1)).

a€ll—{a1}

Now g, is zero or at least 1, as are all the terms of the form —2(a - a1), and so the result
follows. ]

1.16 Definitions In a Coxeter group W let Ref(W) denote the set of reflections in W.

Clearly symmetries of the Coxeter diagram give rise to automorphisms which permute
the simple reflections; we call these graph automorphisms. Let Gr(W) denote the group of
graph automorphisms of W.

1.17 Lemma Let W be a rank n Coxeter group with simple roots Il. If I and J are
disjoint subsets of Il such that no edge of the Coxeter diagram joins a root in I with a root
in J, then

Ref(WIUJ) = Ref(W[)U Ref(WJ).

5
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Proof It is clear that
Ref(W[) @] Ref(WJ) - Ref(W[UJ).

Suppose that r is a reflection in Wy ;. Then r is conjugate to a simple reflection by
Lemma 1.1. Without loss we can find w € Wy and a; € I such that

r= wriw_l.

Now Wrus = Wi x Wy and so w = w;w; = w;w; for some w; € Wy and w; € W;. Thus
_ -1
r = wWr;w
= Ww;Tw; W,

= ’U)Z‘Ti’wi_l e Wry.

Hence r is a reflection in W7y.

Now if r € Ref (W) NRef(W;), then following the above proof we can find r;, w; € Wi
and rj,w; € Wy such that

wiriw; T =T = WiTW;

and hence r; = wj_lmwj =w; lrjwi = r;, which contradicts the fact that I and J are disjoint.

|
1.18 Corollary If W is a rank n Coxeter group, I C Il and we can find a simple root
a € II\I such that a-b=0 for all b € I, then

Ref(WIU{a}) = Ref(W[)U{Ta}.

§1.2 Longest Elements

Let W be a finite Coxeter group and w € W have maximal length in W. If N(w) # @7,
then we can find a simple root a ¢ N(w). (If I C N(w), all positive linear combinations
of TI which are roots will be in N(w), by Lemma 1.1, and this means ®* C N(w).) Thus
wa € ®* and so, by Lemma 1.7, l[(wr,) = n(wr,) = n(w) + 1 = I(w) + 1, which contradicts
the maximality of [(w). Hence if w has maximal length, then I(w) = |®7|.

Furthermore, if v € W is any element, then using an appropriate simple root at each
step we may find an element v € W such that uv has maximal length and I(uv) = I(u) 4+ (v).
We denote by wg the element of maximal length in the finite Coxeter group, W.
1.19 Lemma The element of maximal length in a finite Coxeter group is uniquely defined
and is an involution.
Proof Suppose that u,v € W have maximal length. Then N(u) = N(v) = ®*. If a € II,
then va € —®* and wva € ®*. Thus [(uv) = 0 and therefore uv = 1. If we note that
I(u™t) = I(u) is also maximal we can see that «~1v = 1 implying that v = v. Similarly, if wy
is the (unique) element of maximal length, then wywy = 1, and therefore wy is an involution.

|

1.20 Lemma IfW is finite with longest element wq, then for w € W

l(wwp) = l(wp) — l(w).
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Proof We have seen that for any w € W we can find a u € W such that uvw = wy = wq !

and l(wg) = l(u) + l(w). But, then

Hwwp) = 1(u™) = I(u) = l(w) — L(w).
1

1.21 Definition If W is a possibly infinite Coxeter group and I C II such that the

parabolic subgroup W7 is finite, then we denote the longest element of Wy by wy.
Now consider the the irreducible finite Coxeter groups.

Ay Let W be a Coxeter group of type A,, with diagram

. . o e e .
1 2 3 n—1 n

It is well known that the number of positive roots is n(n + 1)/2. Let w; = ryro---r; where
r; is the reflection in the hyperplane perpendicular to the simple root a;. Then

Wy = WpWp—1 - WaW1.

Observe that this expression for wg has length n(n + 1)/2 which is equal to |®T|. Therefore
this will be a reduced expression for wy if it does equal wy. Note that if j < ¢ — 1, then
wja; = a;, thus

WpWp—1 ° - WW1A; = WpWp—1 - Wi—104

provided ¢ > 1. Now

Wi—1G; = T1T2 " Tj—-104
=Ty rimo(ai—1 + a;)
=a;+ag+---+a,
by induction, and therefore

wiwi—1a; = wi(ar + - - a;)
:?”1?”2"'?”1‘(@1 —I——i-az)
=ry-riei(an + o aio)
= ria; (by induction)

= —ay.
Thus wpwp—1 ... w1a; = WuWp_1 - - - W;116;. Note that this is also valid for ¢ = 1. Then

wi+1(_a1) = 7”17”2(—611)
= Tl(—al - az)

= —a2

and another induction will show that w, - - - wowia; = —a,—_;+1. Therefore w, - --w; does
indeed send each positive root to a negative root and so must equal wg. Unless n = 1 the
longest element wyq is not central, in fact conjugation by wg is the graph automorphism that
interchanges r; and r,,_;y1.

By: Let W be a Coxeter group of type B,, with diagram

7
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In this case |®T| = n2. This time we let w; = 7;7;_1 -+ ror179 - - - 7;. Observe that this is the
reflection along the root b; = r;7;_1 -+ -r2(a1). A short calculation shows that

bi:a1+\/§a2+~~+\/§ai.

Now if 7 > j > 1 we find that
bi - b; = (bj + V2a41 + -+ V2a;) - by

=1+ (V24501 + - +V2a;) - b

=1+ (V2a;41) - (V24))

=1-1=0,
and a similar calculation also shows that b;-b; = 0 for ¢ > 1. So the n roots by, b, ..., b, form
an orthonormal basis for V, and it follows that w,w, _1 --- w1, the product of the reflections
along the b;, is the negative of the identity transformation on V. So wyw,_1 - wi(a) = —a
for all positive roots a, and it follows that w,w,_1---w; = wq, the longest element. Fur-
thermore, the given expression for w; has length 2¢ — 1, and so the resulting expression for

wp has length > (2 — 1) = n? = |®7T|. So this expression is reduced. In these groups wy
is central.

D,: Let W be a Coxeter group of type D,, with diagram

2

. o e e .
1e 3 4 n—1 n

In this case || = n(n—1). Let w; = ryr;_q---rorirsry---r; for i > 2, we = ro and wy = rq
let w}, = wpwy,—1 -+ wy. Then the following lemma holds.
1.22 Lemma Given the notation from above, w(, acts as follows on the simple roots

a —ay Ifn is even
1 . .
—ay Ifn is odd

0y s 4 7@ if n is even
2 e
—ay; Ifn is odd

aj — —aj if j > 2.

Proof We first prove that w; interchanges a; and as if 7 > 2 and fixes a; for i > j > 2.

Wiy = T4 -T2l T307
:Ti"'?”g?”l(a1+a3)
=Ti - T37203
:Ti"'Tg(CL2+a3)
=7 Th09
= as.

As w? = 1 we can also see that w;az = ay. If i > j > 2, then
wiaj =T --T3rar1rg - 'rj+1aj
:Ti"'rl"'rj(aj‘Faj-s-l)
=T Tio1G541
=7 Tia41
=7 rivi(a; +ajp)

_7"1-...74]._,’_20/].
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Now we look at the cases w;a; and w;_1a;, where i > 3.

Wi—1Q; = Tij—1""T1 Ti—10Q4
=ri—1r1Tica(aio1 + a;)
=Ti—10; + Ti—1Wi—20;—1
=a; +a;—1+ (a;—1 +2a;—2 + -+ + 2a3 + az + a1) by induction
=a; +2a;_1+ -+ 2a3 +as + a;.

If we now observe that a; - (a; + 2a;,_1 + -+ - + 2a3 + az + a1) = 0, then

Wil; = TiW; 1T304
= —Trw;—10;
= —W;—1a4

and hence W Wi —1Q; = — 0.

If follows that if 7 > 3

The same is true for ¢ = 3, as is readily checked. Finally note that

WpWp—1 - WW1A] = —Wp - W3a1

= —Wp - Waa2

and an induction proof finishes this argument. Similar calculations apply for as. ]

Thus w{ = wy is central if n is even, while if n is odd, then conjugation by wy is the
graph automorphism that interchanges r; and r5. We shall see in Chapter 2 that when n is
even this graph automorphism is an outer automorphism. A simple calculation will confirm
that the expression given for wy is reduced.

Iy(m): Let W be a Coxeter group of type I(m) with diagram

m
. .
1 2

In all cases a reduced expression for the longest element is 175 - - - where the product extends
to m terms. If m is even, then this element is the half-turn n and so is central. If m is
odd, then rirs - - - is a reflection and so is not central, in fact conjugation by wy is the graph
automorphism that interchanges r; and rs.

The longest element and its effect upon the simple roots is merely stated for the
remaining finite Coxeter groups.

Fg: Let W be a Coxeter group of type Eg with diagram

9
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Longest Elements
The longest element has length 36 and can be written, for example, as:

Wo = TeT1T2T1T3T2T 1747312717513 2T 1743125131465 T3T2T1TAT3T2T5T3T4T6T5T3T2,

Wwopa1 — —ag
Wol2 = —as
Wopasz — —Aas
Wolyg — —Ay
Wols = —Aa2
wopaeg — —Aay.

Thus conjugation by wg induces the obvious graph automorphism.

FEr: Let W be a Coxeter group of type F7 with diagram

The longest element has length 63 and can be written as:

Wo = T7T1T2T 1737271743721 5T 3T 2T 174312513146 T5T3T2T1T4T3T2T5T3T4T6T5T3T2T1

X T7reT5T3T2T174T3TaT5T3T4T6 5732176573124 T3576,
wg is central.

FEg: Let W be a Coxeter group of type Fg with diagram

The longest element has length 120 and can be written as:

Wo = TgriTar1r3rarir4r3rarirsT3rer1r4r3rarsr3rarersT3r2r1Tar3r2rsT3rare'sr3rary
X TrrersT3rar174T3rorsT3TAT6 532177 rg 5731727435678 765737211
X 1rgr3rorsr3rarersr3ror1rrrgls13r2r4r3rs el 78T TeT51312T 1741372757374

X TgrsT3rar1T7reT573r2r4r3r57677,
wg is central.

Fy: Let W be a Coxeter group of type Fy with diagram

The longest element has length 24 and can be written as:
Wo = T4T1TeT1T3Tar1T3Trar3r4r3reT173rer3rar3rariryrars,

wg is central.
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Hs: Let W be a Coxeter group of type Hs with diagram

. 5 . .
1 2 3
The longest element has length 15 and can be written as:
Wo = T3rir2rirarir3rerirarir3rarirs,

wg is central.
Hy: Let W be a Coxeter group of type H4 with diagram

5
1 2 3 4
The longest element has length 60 and can be written as:
Wo = T4T1T2T1T2T 173721721731 TT3T4AT3T T 1T 1 T3 T2 T1T2T3T4T3T2T 12717321112

X Tr3rarararirarir3rar1rar3rararerirarir3rerirars,

wg is central.

§1.3 Finite Subgroups of Infinite Coxeter Groups

If a is an automorphism of an infinite Coxeter group, W, then the image of a finite subgroup
of W is again finite. In particular a maximal finite subgroup of W must be mapped to a
maximal finite subgroup. In this section we characterise these subgroups.

Suppose that W is any Coxeter group with Il as the set of simple roots. We shall make
use of the following result, which is due to Tits and appears in [Bou68|, Exercise 2d, p. 130.

1.23 Lemma IfW is a Coxeter group and H < W is finite, then H is contained in a finite
parabolic subgroup of W.

Let V* be the dual space of V and { d, | @ € II } the basis of V* such that for all a, b € II
1 ifa=b
5a(b)_{0 if a # b.

((f)={ved™|flv)<0},
and let C be the set of all f € V* for which {(f) = 0; equivalently,
C={feV*|f(a) >0forallaclIl}.
For each w € W and f € V*, define fw: V — R by v +— f(wv); this gives a right action of
W on V*.

1.24 Lemma Let f € V* with |((f)| < co. Then fw € C for some w € W.

Proof Choose w € W with |((fw)| minimal, and let f’ = fw. Assume, for a contradiction,
that ((f") # 0; that is, f'(v) < 0 for some v € ®F. Writing v = > .1y Aqa, we see that
f(v) = > aell\,f(a), and since the coefficients A, are all non-negative we must have
f(a) < 0 for at least one a € II. Now

(f'ra)(a) = f'(raa) = f'(—a) = —f'(a) > 0,

and so a ¢ ((f,), writing f, for f'r,. It follows that r,c € ®* for all ¢ € ((f,), and
furthermore r,c € {(f’) since

For each f € V* define

f'(ra)(e) = (fa)(c) <O.
Therefore v — r,v is a one to one map from ((f,) to ((f’), and as a is not in the image of
this map we deduce that |((f.)|] < [C(f’)]|, contradicting the minimality of |{(fw)]. ]

11
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Finite Subgroups

1.25 Lemma Let f € C and define J ={a €II| f(a) =0}. Then W is the stabilizer of
finW.
Proof Let S={we W| fw= f}, the stabilizer of f. If a € J, then for all v € V,

(fra)(v) = f(rav) = f(v = 2(v-a)a) = f(v) = 2(v - a)f(a) = f(v),

and so fr, = f. Thus W; C S.
To prove the reverse inclusion, we use induction on /(w) to show that if w € S then

w e Wy If l(w) =0, then w € W trivially. If w # 1, let w’ € W and a € II be such that
w = w'r, and [(w') = [(w) — 1. This tells us, by Lemma 1.7, that w'a € ®*. Then

0 < f(a) = (fw)(a) = f(wa) = f(w'rea) = —f(w'a) <0

as w'a € ®* and f € C. Thus f(a) = 0; that is a € J. Now by the first part of the proof we
have r, € S, and so

fw,: (fw)ra :fra:f'
Hence w’ € W; by induction, and it follows that w = w'r, € Wj. ]

Proof (of 1.23) We use induction on |II|. If |IW| < co we have nothing to prove; so suppose,
without loss of generality, that W' is infinite. Let f = 64, so that f(a) =1 for all a € I
and thus f(v) > 0 for all v € ®T, and define f' = 3, _, fh. Note that f'h = f’ for all
h € H. Define also A = J,,cy N(h), observing that A is finite, since H is finite and N(h) is
finite for all h € H (as |N(w)| = l(w) for w € W, by Corollary 1.10).

Let v € ®T\A. Then hv € & for all h € H and so

Flwy="Y " (fMw) =" f(hw) > 0.

heH heH

Hence ¢(f') N (®T\A) = 0; that is (f’) € A. In particular, {(f’) is finite. By Lemma 1.24
there is a w € W such that f/ = f”w for some f” € C. Then for all h € H,

f”whw_l — ( //’U))h’ll)_l _ f/h’w_l _ (f/h)w_l _ f/w—l _ f//-
Thus, by Lemma 1.25, whw~ C W, where
J={aecll|f"(a)=0}.

Now ®T is infinite as W is infinite; so @\ A # (), and it follows in particular that f’ # 0,
since f(v) > 0 whenever v € T\ A. Hence f” # 0 also and thus J # II. Now by induction
there is I C J and u € W such that W is finite and u(whw=1)u=t C Wy. ]

One immediate consequence of Lemma 1.23 is that every maximal finite subgroup of a
Coxeter group is parabolic.

The following can be found as Theorem 2.7.4 of [Car85].

1.26 Lemma (Kilmoyer) Let I,J C II and suppose that d € W is the minimal length
element of W;dW ;. Then Wy NdW; d~' = Wy, where K =1 NdJ.

1.27 Corollary The intersection of a finite number of parabolic subgroups is a parabolic
subgroup.

Proof If H and K are parabolic subgroups of W, then we can find w € W such that w—!Hw
is a standard parabolic subgroup of W. Using the above lemma we can see that w='(HNK)w
is a standard parabolic subgroup of W and hence H N K is a parabolic subgroup. Induction
completes the proof. ]
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1.28 Corollary Let I, J CIl andt € W. Then for some u € Wy,
Wirn tWJt_l = UWKU_l

where K = I NdJ C I, with d the minimal length element of WitW ;.

Proof We can write t = udv where u € Wy and v € Wy, and d is the minimal length element
in W;tW;. By Lemma 1.26

WrntWit ™ =u(WrndWyd u™ = uWgu™ .

Suppose that I C II is such that |Wj| is finite while W is infinite for all J with
I'& J CII Then Wy is a mazimal finite standard parabolic subgroup of W.

1.29 Lemma Let W; be a maximal finite standard parabolic subgroup. Then W7 is not
conjugate to a subgroup of any other finite standard parabolic subgroup.

Proof Suppose that W; C tWgt~—! for some d € W and some K C II such that Wi is finite.
We may assume that t is of minimal length in W;tWp, and by Corollary 1.28 it follows that
I CtK. Since Wy is a maximal finite standard parabolic subgroup, t # 1. So we may choose
a simple root e such that t~le = f is negative. As t has minimal length in tWp it takes
positive roots in the root system of Wy to positive roots. But —f is a positive root while
t(—f) = —e is negative, and we conclude that f is not in the root system of Wy . Thus when
f =t le is expressed as a linear combination of simple roots some g ¢ K appears with a
negative coefficient. It follows that if A is any positive root in the root system of Wrye)
which is not in the root system of W7, then t~!h involves g with a negative coefficient. But
Wiugey is infinite, while Wy is not. So t~! takes an infinite number of positive roots to
negative roots, and hence has infinite length, which is a contradiction. ]

1.30 Corollary If W is any infinite Coxeter group, then all maximal finite standard
parabolic subgroups of W are maximal finite subgroups of W.

Proof If W; is a maximal finite standard parabolic subgroup but not a maximal finite
subgroup then by Lemma 1.23 W; < tW;t~! for some t € W and some J C II with
|Wi| < |Wjy| < co. But this contradicts Lemma 1.29. ]

1.31 Corollary If W is an infinite Coxeter group, H is a subgroup of W which can be
written as the intersection of a finite collection of maximal finite subgroups and « € Aut(W),
then a(H) is a parabolic subgroup of W.

Proof From Corollary 1.30 if H is the intersection of a finite collection of maximal finite
subgroups, then a(H) is the intersection of a finite collection of parabolic subgroups. The
result follows from Corollary 1.27. ]

1.32 Corollary IfW is an infinite Coxeter group, o € Aut(W') and r; is a simple reflection
such that (r;) can be written as an intersection of maximal finite subgroups, then «(r;) is a
reflection.

Proof By the above a(r;) is a parabolic subgroup of W of order 2. ]

Thus, if every reflection is conjugate to a simple reflection, r;, such that (r;) can
be written as an intersection of maximal finite subgroups, then every automorphism of W
preserves reflections.

13
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Automorphisms Preserving Reflections

§1.4 Automorphisms That Preserve Reflections

Let W be a Coxeter group with set of simple roots 1I, Coxeter diagram I" and let o be an
automorphism of W such that « preserves Ref(W), the set of reflections in W.

1.33 Lemma Let W be a Coxeter group of finite rank and o an automorphism of W that
preserves reflections, then

a(Ref(W)) = Ref(W),
and therefore a~! also preserves reflections.
Proof As each reflection is conjugate to a simple reflection, by Lemma 1.1, if W has rank
n, then there are at most n conjugacy classes of reflections. Say
If v is an automorphism of W with the property that a(r) € Ref(W) for all » € Ref(W), then
it is clear that for each i € {1,2,...,m} thereis a j € {1,2,...,m} such that «(C;) = C;.
As there are only finitely many conjugacy classes of reflections o merely permutes them. 1§

Given a reflection-preserving automorphism «, define a function ¢, : I — V as follows.
If a € II, then a(r,) = r, for some z € & C V, let ¢o(a) = z or —z making the choice
arbitrarily at present. If a;,a; € II and the bond joining the corresponding vertices in I' is
labelled with an m, then (r;r;)™ = 1. If ¢o(a;) = £2; and ¢4(a;) = fx;, then ry, 7y, also
has order m and hence
$a(ai) - Palay) = (£x;) - (£2;) = c(lmm)
for some [ coprime to m.

1.34 Lemma IfT is a forest, then we can choose signs so that ¢, is a function such that

balai) - palaj) <0
for all simple roots a; # a;.

Proof By induction on the rank of W. If W has rank 2, then we may choose the sign of
¢o(ar) at will, and then we can choose the sign of ¢, (az) so that

palar) - pa(az) <O0.

If W is any Coxeter group with I' a forest, then we choose a vertex, a; say, of degree
one. Look at the (parabolic) subgroup Wi\ {a;}; by induction we may choose ¢, such that
dalaj) - dolar) <0 for all aj,ar # a;. If a; is joined to aj, then we may choose the sign of
¢ala;) so that

balai) - palaj) <0

without affecting any of the other inner products. ]

Much of the time it will not be true that ¢o(a;) - ¢a(a;) = a; - a; even if they agree
in sign. However, if m = 2, 3, 4 or 6, then the only numbers [ € {1,2,...,m — 1} coprime
tom are | =1 and | = m — 1. If we note that ¢ ((m — 1)m,,) = —c(m,,) then we see that
bala;) - ¢ala;) = £c(my,). Hence we deduce the following:

1.35 Corollary IfW is a Coxeter group whose graph I' is a forest with labels in the set
{2,3,4,6}, then we can choose ¢, so that

Palai) - pala;) = a; - a;
for all simple roots a; and a;.

We will see that if the labels are not all from the set { 2, 3,4,6 }, then B is not necessar-
ily preserved. For Coxeter groups of types H3 and H, in particular we will find automorphisms
that preserve the signs of the inner products but

1-V5

¢a(al) : ¢a(a2) = —C(27T5) = 1

instead of the original value of — ¢(m5) = (—1 —+/5)/4. In fact these are the only possibilities
we need to consider if m = 5.
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1.36 Definition From now on any label in a Coxeter diagram which does not come from
the set {2,3,4,6 } will be called unusual. Furthermore the phrase inner by graph will mean
that an automorphism lies in the subgroup of Aut(WW) generated by the inner and graph
automorphisms. The subgroup of inner automorphisms is a normal subgroup of Aut(WW),
therefore any inner by graph automorphism can be written as the product of an inner and
a graph automorphism. Finally we will denote by R(W) the subgroup of Aut(W) consisting
of all automorphisms that preserve reflections.

Now II is a basis for V' and so ¢, can be extended to a linear map V — V. If
ba(a;) - dalaj) = a; - aj for all a;,a; € II, then ¢, is an orthogonal transformation.

1.37 Lemma If « is an automorphism of W that preserves Ref(W') and ¢,, is defined as
above so that

balai) - dalaj) = a; - a;

for all a;,a; € II, then a(w) = powepyt for allw € W.

Proof It suffices to prove this when w is a simple reflection, since the general case then
follows by a straightforward induction on /(w). Now if @ € II and v € V' we find that

(¢arads’) (V) = ¢a(ra(ds" (v)))
= ¢a (05" (v) —2(a- 65" (v)a)
=V - 2(¢a(a) ) U)¢a(a)
= Tho(a) (U)
= a(ry)(v)

by the definition of ¢,. Since this holds for all v € V we conclude that a(r,) = ¢ar.¢5 ", as
desired. 1

Note If we have defined ¢, to satisfy the conditions of Lemma 1.37, then —¢,, also satisfies
those conditions.

The next result is Theorem 4.1 in [HRT97], the statement of which requires the fol-
lowing definition.

1.38 Definition Given a Coxeter group W with associated vector space V and bilinear
form B a subset P C V is a root basis (relative to B) if

(1) foralla,beP

B(a,b) = —cmp,, if mgp # 0o
B(a,b) < —1 if mgp = 00

(79)  the zero vector is not contained in the set

{ZAaa\Aaz()foraua, )\a;éOforsomea}.

a€P

In particular, notice that the set of simple roots of a Coxeter group forms a root basis which
is in fact linearly independent.

1.39 Theorem (Howlett, Rowley, Taylor [HRT97]) Let ®; and ®5 be irreducible root
systems spanning the spaces V; and Vo with root bases I1; and Il respectively. Suppose that
v : Vi — V5 maps @1 bijectively onto ®5 and takes the bilinear form on V; to that of V.
Then 11y = +pwlly for some w € Wy.

To deal with the problems associated with reducible Coxeter groups we make the
following definitions.

15
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Automorphisms Preserving Reflections

1.40 Definition If W is a Coxeter group with r; and ro any two simple reflections, then
we say that there is a chain joining r1 and ry if there is a path in the Coxeter diagram of
W joining the node corresponding to r; to the node corresponding to r,. Furthermore, if
r,r’ € Ref(W), then we say that there is a chain joining r and 7’ if there are simple roots
r1 and ro such that r is conjugate to r1, r’ is conjugate to 7o and there is a chain joining r;
and 75.

Let W be a Coxeter group of finite rank with diagram I', and suppose that the irre-
ducible components of T" are I'; for 1 < i < m, say Il = L{ULsU---UL,, is the corresponding
decomposition of II. Then, by Lemma 1.17

Ref(W) = Ref (W, )U---URef(Wy, )

and the following lemma is clear.

1.41 Lemma If r,v' € Ref(W), then there is a chain joining r and r’ if and only if
r,r’" € Ref(Wp,) for some i.

1.42 Lemma Let o be an automorphism that preserves Ref(W) and r,r" € Ref(W). Then
there is a chain joining r and r’ if and only if there is a chain joining «(r) and a(r’).

Proof Without loss we may assume that r = ry and r’ = ry are simple reflections. Suppose
that 1 and ro correspond to adjacent nodes in the diagram of W; then r; and r5 do not
commute and hence a(r1) and a(re) are reflections which do not commute. Therefore a(ry)
and a(r2) € Ref (W, ) for some i, as if they were in different components they would commute.
Hence there is a chain joining a(r;) and a(ry). Induction on the length of the chain joining
r1 and ro finishes the proof of one of the implications. The reverse implication follows by

applying the same argument to o~ 1. ]

1.43 Theorem Let W be a finite rank Coxeter group and suppose that « is an automor-
phism that preserves reflections and we can define ¢, so that ¢q(a;) - ¢o(aj) = a; - a; for all
t and j. Then « is inner by graph.

Proof Using the notation developed above, Il = L U---UL,, and
W:WLl ><VVL2 X o+ X WLm'

Let a(ry) € Ref(Wp,) where a; € Ly. Then for all a; € Ly there is a chain joining m and 7;
and so there is a chain joining a(ry) and «(r;) and hence

Oé(WLl) Q WLt-

If r € Ref(Wp,)\a(Wp,), then there is a chain joining r and «(r1) as both lie in Wp,,. But
a~1(r) ¢ Wy, and so there is no chain joining a~!(r) and r;, a contradiction, by Lemma 1.42.
Thus we have a(Wp,) = W,.
Looking at ¢als,, the conditions of Theorem 1.39 are satisfied and so there is a
w € Wy, such that
HLt = :|:¢awHL1.

Now we can change the sign of ¢, on L; without affecting the value of any inner products
and can therefore ignore the possible negative. Furthermore if L; # Ly, then wllz, =TI, is
fixed elementwise and so preceding o by conjugation by w~! we may assume

Hz, = ¢allr,.
Repeating this for each component we find that, up to inner automorphisms
P I =T1.

Thus ¢, is a permutation of II. Now if the nodes corresponding to a; and a; in I' are joined
by an edge labelled m, then a;-a; = —c¢(m,,) and hence ¢, (a;) - ¢ (a;) = — c(my,). Therefore
the nodes corresponding to ¢ (a;) and ¢4 (a;) must be joined by an edge labelled m. Thus
¢, induces an automorphism of I' and hence a graph automorphism of W. It is easily seen
that this automorphism is « which is therefore a graph automorphism. ]
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1.44 Proposition If W is a Coxeter group whose Coxeter diagram is a forest with no
unusual labels, then all automorphisms of W that preserve Ref(W') are the inner by graph

automorphisms.
Proof By Corollary 1.35 and Theorem 1.44. ]
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Automorphisms of Finite Coxeter Groups

Let W be a finite irreducible Coxeter group, then W has type A,, By, Dy, Fg, E7, Eg, Fy,
Hs, Hy or I;(m). In the following a will be an automorphism of W.

2.1 Lemma If wg, the longest element in the finite Coxeter group W, is central and
l(wyg) is even, then

YW —-W

w — (wo) W w

defines an automorphism of W which is an outer automorphism except in the case I5(4l).

Proof If w,w’ € W, then by Lemma 1.4 l(ww ) = l(w) + I(w") + 2k for some integer k. By
Lemma 1.19 wy is an involution and so wg¥ = 1. So

I(ww’ )

Y(ww') =

Wo
l(w)+l(w')+2k

)
)
)l(w) (wo)l(w )ww
wo)l(w) (wo )l(w)
= Y(w)p(w').

If (w) = (w'), then (wo)"®w = (we)"@)w’, and if I(w) + I(w') is even, it follows that
w = w’. Now suppose that {(w) 4+ {(w’) is odd in which case wow = w’. By Lemma 1.20

Wo

Wo

(
=
= (
=

(wow) = I(wo) — I(w)

and {(wp) is odd, contradicting the hypothesis that I(wg) is even. So ¥ is injective and hence
an automorphism. Note that the assumption that [(wg) is even is necessary, since otherwise

we would find that

a(wo) = wé](w()) = 17

whence « is not injective.

If a € ¢, then wor,wy = r,, as wq is central; so wga = *a. Since wy (<I>+) =~ we
deduce that wy(a) = —a for all a, and hence wy acts as —1 on V. So ¥(r,) = worqe = —74
which has an (n — 1)-dimensional —1-eigenspace and a 1-dimensional 1-eigenspace. Thus
1 (ry) is not a reflection unless n = 2. So we are finished unless W is of type Iy(m).

Suppose that W is a Coxeter group of type Iy(m); then I(wg) is even if and only if
m = 2k is even. In this case suppose the simple roots are a; and as with corresponding
simple reflections r; = r,, and ro = r,,. The longest element is

woy = (Tng)m/2 = (Tng)k.
Looking at the effect of ¥ on 71 and ro

¢(7‘1) = (w0)1T1
= (?”1T2)k?”1

= (?”1?”2 . ) X r; X (7“17”2 .. ')_1

18
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where r179 - -+ has k terms and

if k£ is even and
if k£ is odd.

Similarly ¢(re) = (ri7a---)'rj(rire - )’_1 where (rirg---)" has k — 1 terms and

if k£ is even and
if £ is odd.

Thus, if k is even,

?”1?”2) k/2 ?”1(7“17“2) k/2

(1) =
P(ra) =

-1
rire - )7”2(7“17“2 )/
-1
rire - )7”27”27”2(7“17“2 )/
?”1?”2) ?”2(7“17“2) k/2

(
(
= (
= (

and 1) is conjugation by (r179)¥/2. If k is odd a similar calculation shows that ¢ is the graph
automorphism that interchanges r; and ry followed by conjugation by (r172)*/2. Since
and ry are not conjugate (since m is even by Lemma 3.19) this automorphism is outer. ]

Thus 9 is an outer automorphism in the cases Bsy, Doy, Eg, Fy, Hy and I (2(2l + 1))
2.2 Lemma The automorphism 1 centralizes the inner automorphisms.

Proof Recall that [(wg) is even. Let « be the inner automorphism that conjugates by w,
and look at 1a).

Yarp(r;) = pa(wor;)
= @Z)(wwori _1)
2l(w)+l+l(w0)w VWT -1
= wr;w 1= ar;.
Hence vay = a. 1
Except for D4 the group of graph automorphisms has order 1 or 2. When it has order 2
we denote the non-identity graph automorphism by ~.

2.3 Proposition Let w € W be an involution, then there is an I C II such that w
is conjugate to the longest element, wy in the parabolic subgroup Wy. Furthermore wy is
central in Wj.

Proof Let L = {a€l|wa= —a}. First observe that ®; C N(w) is finite and so, by
Lemma 1.11, Wy, is finite. Let wy, be the longest element in W;. Note also that if a € L,
then

WrgW = Tyyg =T—q = Tq

and hence Wy, centralizes w.

If w = wy, then we are finished. So suppose wyw # 1 and let @ € N(wpw) NIL. If
wa € T, then, as wrwa € @~ we have wa € N(wr) = ®, but then

a=w(wa) € wbf =&,

which is a contradiction. Hence wa € ®~. Thus I(wr,) = l[(w) — 1, by Lemmas 1.7 and 1.10.
If wa = —a, then a € L and so

wrwa = wr,(—a) € w,®, = ¢}
a contradiction, implying that wa # —a. Hence wa = —b for some b € T\ {a }, and
(wrq) ta = rqwa = 14(—b) = —r,b € &,
Thus I(re(wre)) = l(wr,) — 1 and hence
l(rqwry) = l(w) —

and we may proceed by induction on I(w). 1
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Type A

There is, therefore, a one to one correspondence between the conjugacy classes of
involutions in W and the classes of I C II such that wy is central in W7.

We now look at the various types of finite irreducible Coxeter groups individually.

§2.1 Type A

If W is a Coxeter group of type A, it is well known that W = Sym, ,; the symmetric group
on n + 1 letters. Looking at W in this way, if w is an involution, then w = wy, is a product
of k disjoint 2-cycles for some 1 < k < L”T‘HJ All such products are conjugate, and so

| cl(wg )| = #products of k disjoint 2-cycles

_(n+1\[(n-1 n—2k+3 l
2 2 2 k!
= (n;l;l>1><3><5><~--><(2k—1)

where cl(wyg) is the conjugacy class of wg. Under the isomorphism mentioned the simple
reflections are (12), (23) and so on, up to (n — 1,n). These are all conjugate and so cl(wy) is
the only class of reflections and

) = ("5 1) -

If 2 <2k <n—1,then (";") > ("3') and hence |cl(wy)| > |cl(wy)].

If 2k = n — 1, then (”221) = (ZJ_F}) = (”'2"1), but for £k > 1 we have 1.3.5... > 1 and
again | cl(wg)| > | cl(wq)].

If 2k = n, n even, then

el (wg)| = <n;|;1)1><3><---><(n—1).

Thus |cl(wy)| = |cl(wy)| only if § =1 x 3 x --- x (n — 1). Ignoring the case n = 2, where
there is only one class of involutions, it is easily shown that n/2 <1 x3 x --- x (n —1).
If 2k =n+ 1, n odd, then |cl(wy)| = |cl(wq)| only if

n+1

=1x3x---x(n—2).

For n > 5 it is easily shown that the right hand side is bigger, while for n = 3 it is smaller.
If n = 5, then we have equality.

Hence, except possibly for n = 5, £ = 3, no other class of involutions has the same
size as the class of reflections. Hence, as the graph of A,, is a tree with no unusual labels
all automorphisms preserve reflections and so are inner by graph, by Proposition 1.44. As
we have seen earlier this graph automorphism is induced by conjugation by wqy the longest
element. Thus

Aut(A,) =2W/Z(W) =W,

except possibly for n = 5.
Suppose that W = Symy is of type As. Define £ : W — W by

€:(12) — (13)(24)(56) = 01
(23) — (16)(25)(34) = 09
(34) — (14)(23)(56) = o3
(45) — (16)(24)(35) = 04
(56) — (12)(34)(56) = o5.
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Looking at the possible products:

o109 = (145)(236) o903 = (153)(264) o304 = (125)(346)
0103 = (12)(34) 0904 — (23)(45) 0305 = (13)(24)
o104 = (15)(36) o905 = (15)(26) o306 = (154)(236)
0105 = (14)(23)

Hence ¢ is a homomorphism. Looking now at £2.

£2(12) = £((13)(24)(56))
= £((23)(12)(23) (34)(23)(34) (56))
= (64)(53)(21) (45)(36)(21) (12)(34)(56)
= (12).

Similar calculations for the other simple reflections show that £? = 1 and hence £ is an outer
automorphism of W. If « is any automorphism of W, then either the reflections are preserved,
in which case « is inner, or £« preserves reflections and hence is inner. Hence | Out(W)| = 2.

2.4 Proposition IfW is a Coxeter group of type A,,, then
Awt(W) =W

if n # 5, while
Aut(Symg) = Symg ().

So, for n # 5, any automorphism of a group of type A, maps reflections to reflections,
furthermore any automorphism of As that does preserve reflections is inner.

§22 Types B and D

In, for example, §2.10 of [Hum90| it is shown that groups of type B, are isomorphic to
&, x Sym,, where &, is an elementary abelian 2-group, say

En = (x1) X (ma) X -+ X ()

where Sym,, acts to permute the z;’s. Similarly, groups of type D, are isomorphic to
&), x Sym,, where &), is the subgroup of &, generated by elements of the form z;x;. Fol-
lowing the treatment in [Hum90] the following diagrams show the association of the elements
of the above groups to the simple reflections.

B, : B e )
zy (12) (23) (n—1,n)

(12) e
D, :

(12)xzyxo » (23) (34) (n—1,n)

Thus elements of a group W of type B,, or D,, have the form ox for some o € Sym,,
and x € & where &’ is &, or £, as appropriate. In much of the following B, and D,
are treated simultaneously. We assume that n > 2, it being easy to check that for By all
automorphisms are inner by graph.
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2.5 Lemma Suppose W is a Coxeter group of type By, or Dsj and let

0(ow) = ow(w)™,
where m(o) is 0 if o is even and 1 if o is odd. Then 6 is an outer automorphism of W.

Proof In all cases wp, the longest element in W is a central involution and so 6 is easily
seen to be a homomorphism. Also #2 = 1 and hence 6 is an automorphism. Finally, 8 does
not map reflections to reflections and so is not an inner automorphism. 1

It is worth noting ¢ = 0 if W is a group of type D,, (since elements of &/, have even
length).
2.6 Lemma Suppose that « is an automorphism of a group of type B,, for n > 3 or D,
for n > 4. Then «(E}) = &

Proof Suppose that a € Aut(W) where W is a group of type B, or D,,; then & <1 W and
hence a(E) <« W. Now if x € £, then 22 = 1 and so, if a(z) = oy, then

1=a(z?) = (oy)* = a*yy.

Thus 02 = 1 and y° = y. As 02 = 1, o is either 1 or a product of disjoint 2-cycles.

1. If 0 = (ab), then as a(E}) < W, for all (cd) € Sym,, there is a 3’ € &£’ such that

n

(cd)y’ € a(E). In particular, a(E) contains an element of the form (bc)y’, with ¢’ € £’ and
¢ # a, and we find that

(ab)y(be)y' = (ab)(be)y "Iy’ = (acb)y” € a(EL).

But (acb)y” has order a multiple of 3, which is a contradiction.

2. If o = (ab)(cd)(ef)o’ we can use the same argument with (ac)(be)(df)o’, where o’ is 1
or a further product of disjoint 2-cycles.

3. If 0 = (ab)(cd) and n > 4 we can again use the same argument, with (ae)(cd).

4. Finally, if W has type By, we may assume o = (12)(34). Now y(!2)3%) = 4 and so we
have

y=1, x1To, x3xy Or T{T2T3T4.
Given the normality of a(&,), and noting that
(12)(34) = 21 ((12)(34)z122) 21

= I3 ((12)(34)%3%4)3?3

T1T3 ((12)(34)x1x2x3x4)x1x3.

we deduce that (12)(34) and (12)(34)ziz2 are both in «a(&;). Hence zix2 € «(&,). By
normality again we deduce that a(€,;) contains all elements of the form (ab)(cd)z;x;. But
since there are 18 such elements this contradicts the fact that |£4] = 16. 1
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For all o € Sym,, write
a(o) = B(o)d(o)

where 3(c) € Sym,, and §(c) € E’. It is easy to see that 3 is an automorphism of Sym,,.
Hence, up to inner automorphisms, except possibly when n = 6, we may assume that g = 1.
So a(ox) = od(o)a(z). Now

a(zo) = a(ox?)
a(x)a(o) = od(o)a(x?)
a(x)od(o) = od(o)a(z?)
a(z)? = a(z?)

for all ¢ € Sym,, and = € &;.
Considering type B, if a(x1) = z1, then

a(z;) = a(xgu)) = a(z)*) = ;.

So suppose that for some j # 1:

_ .E1,.62 1 €
a(ry) = xy'ay? . xg T

Then, for i #£ 1, j

a(xy) = a(xgij)) =a7.xg

and so ¢; = 1. Hence a(z1) = 2] zo23 ... 7).
If a(x1) = z129 . .. Ty, then a(zy) = oz(:z:l)(u) = «(x1) which is a contradiction. Thus,
if a« # 1, then a(x1) = #1252 . .. 2, and hence

a(x;) = T1xo ... Ti ... Ty,

where the £; indicates that particular term is absent.
If n is odd and a|g, = 1, then

a(r12e ... xp) = (122 ... 2y) ... (T122 ... X)

= (r120...2,)" =1

contradicting the injectivity of a.. Thus if n is odd, a(x) = =.

Now suppose that n is even. Then ¢ : w — w(wo)l(w) is an involutory automorphism
of W. Now
x; = (1 —1,7)...(23)(12)x1(12)(23) ... (i — 1,1)

and from our previous discussion of the longest element wy we see that in fact
Wy = T1T -+ T
Now [(x;) is odd (since z; is a reflection) and so
(x;) = xi(xy - xp) = ).

It follows that (a)(x;) = x;. Furthermore,

for some . Thus, after replacing a by ©¥a we still have 5 = 1, and we now also have a|g, = 1.
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Thus, given a € Aut(W) where W is of type B,,, we may assume, up to inner and
that =1 and a = 1.

Now look at the type D, case. Using similar arguments either a(z;z;) = z;z; or
Ti...Ti...Tj...2,. If @ #1, then
a(r1T2) = T3Ty ... Ty
a(Tox3) = X124 ... Ty
a(r123) = ToTy ... Ty
But then a(xi23) # a(zi122)a(xaxs) which is a contradiction. Hence v = 1 in all cases for

groups of type D,,.
Therefore, up to ¢ in the By case, we may assume that

alox) =od(o)x.

2.7 Lemma Suppose that o € Aut(W), where W is of type B,, or D,, such that
a(ox) = 0d(o)x as above. Then a = 0 or the action of § on the simple reflections in Sym,,
is either

0(12) = zqx2 and 5(23) =4(34)=---=1

or

5(12) = mywowy  and  §(23) = 6(34) = --- = wp.

Proof Suppose y € &, let a¥ = iy, where i, is the inner automorphism of W induced by
y, and write a¥(ox) = '(0)d' (o)’ (z). Then

B'(0)d' (o) (x) = ya(ox)y
=0d(0)y’yz.

Thus 8/ =1, @ =1 and ¢’ = dy?y. Following automorphisms with conjugation by elements
of £’ only affects J. Also note that as a(1) = 1 we have §(1) = 1. Now

a(o)a(r)
o1d(oT) = 0d(0)Td(T)
d(oT) =6(0)7d(7).

In particular if ¢ is an involution.

Similarly for any 3-cycle (abc), 1 = §((abc)?) = §(abe) (@)’ §(abc) (@) §(abc). Thus if

d(abe) = H xh

then
— ateptec 3e;
1= (zqwpre)®oTerTe H x;
ig{abe)

and so g, +&p + €. =0 (mod 2) and &; = 0 otherwise. Hence

d(abc) =1, ToTh, Tale or TpTe-
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Suppose that § # 1. We first look at the case where d(abc) # 1 for some 3-cycle (abe),
without loss we may assume that 6(123) # 1, and conjugating by 2 or x3 as necessary (rax4
or x3z4 in D,,) we may assume that

5(123) = T1T2.

If there is an i > 3 such that §(i23) # 1, then conjugating by z; (or z;z4, or x;x5 for
D,,, n > 5) we may assume

0(123) = x124

0(i23) = wox3

Now (23)(12) = (123)

5(23)125(12) = zy 20

Conjugating by (12) 0(23)6(12) = x12s.

Similarly 5(23)6(i2) = z3x;
multiplying the last two 0(12)0(i2) = z1x0w374
conjugating by (i2) 6(12)26(i2) = zya0w3;
§(1i2) = zrxox3w;

This is a contradiction as §(1i2) = 1, z122, x12; or xox;. Thus §(i23) = 1 for all ¢ > 3.
Now (23)(i2) = (i23) and so

6(23)25(i2) = 6(i23) = 1.
Conjugating by (i2) we find that §(23) = 6(2¢) for all ¢ > 3. For i > 3 we have
5(23) = 6(2i) = 6(2i)3 = §(23)*)
and hence §(23) =1, z1, 2...2, Or 1Z3...x,. From earlier 6(12)§(23) = x125 and so
0(12) = z124, To, T1To ... Ty or TT4 ... Ty

We know that 6(12)(12) = §(12) and so we can only have the first or last alternatives. If
0(12) = xy29 then §(23) = 1, while if §(12) = z3- -z, then §(23) = z125 - - x,,. Hence

5(12) = zy25 and §(23) =6(24) =--- =1, or
5(12) =wx3---x, and §(23)=0(24) = - - =z129- - T,

(Note that the second case cannot occur in type Dogy1.)
If i, j > 3, then 6(ij) = &((2i)(25)(24)) = 6(24)*) () 5(25)29§(2i) and so

i(ig) =1 or Ty... Ty
respectively. Similarly §(1¢) = §((2i)(21)(2¢)) and so
0(1i) = zqx; or T1%o ... Lj... Ty
Thus there are two possibilities for 9.

5(12) =1z, and  6(23) =6(34) =--- =1
or
0(12) = z1z2w0 and 6(23) =6(34) = --- =wy
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Now suppose that ¢ # 1 but d(abc) = 1 for all 3-cycles (abc). Then without loss we
may assume that §(12) # 1. Suppose §(12) = (12)y for some 1 # y € E’. If §(2i) = (2i)y/,
then

a((12)(24)) = a(12) = (12i) = (12)(20).
But then

(12)(2i) = a((12)(2i))
= a(12)a(2i)

12)y(2i)y’

124)y 3y

(
= (

/

whence y(?Yy/ = 1. From earlier we know that §(2i)(" = §(2i) and hence g =y
Therefore (yy')?") = 1 and we deduce y = y'. Repeating this we may show that §(ij) = y for
all i and j. But this implies that y(*/) = y for all i and j, together with the fact that y # 1
we have shown that y = wg. Noting that this is not possible in the Dyy1 case. In the other
cases is it easily shown that

alor) = wa(r)n(a) =6f(ox).
1

In view of this lemma if «, or « followed by 6, is not inner we may assume that
0(12) = zq2 while 6(i,i+1) = 1 for ¢ > 2. It can be seen that the automorphism we are left
with is conjugation by the element x;. In type B,, this is clearly an inner automorphism.

In type Do we find

a(12) = (12)z124
a((12)x1x2) = (12)z1 207120 = (12)
aliyi+1) = (i,i+ 1)

and so « is the graph automorphism.

If this is an inner automorphism, then n is even and we can find oy such that
(i,i+1)7Y = (i,i+ 1)

for all . Hence 0 = 1. Now (i,7 + 1)¥ = (i,7 + 1) tells us that

y =" (z2...2,)"2.

But y(12)y = x1xo implies that €1 + &9 = 1 and hence
Yy =T or To...Tp

neither of which lie in Doy. Thus 6 is not an inner automorphism.
Hence, up to inner automorphisms we have:
If W has type Bogy1, then o € (6).
If W has type Bag, then a € () x (6).
If W has type Dog11, then a = 1.
If W has type Day, then « € (1) x (6).

(It is easily established that 1) commutes with 6 and the graph automorphisms as appropriate.)
It only remains to deal with the cases of n =6 and 3 # 1 and Dy,.
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Suppose that n = 6 and [ is an outer automorphism of Symg. Without loss we may
assume that

B (12) — (13)(24)(56)
(23) — (16)(25)(34)
(34) — (14)(23)(56)
(45) — (16)(24)(35)
(56) — (12)(34)(56).
Now z5x6 is not central in either Bg or Dg and so a(zsxg) cannot be central. Suppose
a(zsze) = [[25'; then
a(rsx6(12)) = a((12)x526)

B(12)6(12) (s 26)° 12 = 3(12)0(12) (25 2:6)

(H xft) (13)(24)(56) _ H xf

Thus €1 = €3, €2 = ¢4 and €5 = €¢. A similar argument with (23)z5x shows that ; = g,
€9 = €5 and €3 = 4. Hence
E1 =€ =€ = €9 =&4 =E€3
and a(zs5z6) = wg' is central, a contradiction. Thus we have no new automorphisms.
Finally suppose that W is of type D4. Looking for parabolic subgroups with longest
element central, to find the classes of involutions, we discover 6 possibilities:

(ry) longest element: 74
(ry,72) longest element: 7175
(ri,7r4) longest element: r174
(ro,r4) longest element: rory

(ri,m2,74) longest element: 717197y
w longest element: wy.

To see that ri7s, r1ry and ro74 are not conjugate observe that in the notation used above

rire = I122

12)(34)

Ty = (

are clearly not conjugate and, by the symmetry of the diagram, ror, must also belong to a
separate class. There are many places to find the sizes of these conjugacy classes, for example

[Car72]. We find:

The automorphism 1 does not preserve reflections and so cl(rqwg) # cl(ry).

| cl(ry)] =12
|cl(rira)| =6
|cl(riry)| =6
|cl(rary)| =6

|cl(rirers)| = 12
| cl(wp)] =1

This implies

cl(rywg) = cl(rirars). If a is any automorphism of W, then we may assume, up to v, that
« preserves reflections. Thus, by Proposition 1.44, « is inner by graph. We have seen above

that the graph automorphisms of order 2 are outer.
r3 > 13 and 74 — 71 is inner. Then (12)7% = (34) and ((12)zq22)""

(12) =

(12)° = (34)

Suppose that « :

1 T2, T2 P2 Ty,
= (12), and therefore

is a contradiction and all the graph automorphisms are outer automorphisms. Hence

Aut(W) =

(Inn(W) » Symg) x (¢) =

The following proposition summarizes what we have shown.

(W/(wo) > Syms)

x ().
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2.8 Proposition
(a) IfW is a group of type B,, for n odd, then

Aut(W) 2 (W (o))  (6).
(b)  If W is a group of type B,, for n even, then
Aut(W) = (W/{wo)) = (6)) x ().
(¢) IfW is a group of type D,, for n odd, then
Aut(W) = W.
(d) IfW is a group of type D,, for n even n > 4, then
Aut(W) = (W/{wo)) x (7)) x (),

where v is the graph automorphism.
(e)  If W is a group of type Dy, then

Aut(W) = (W/(wo) x Symg) x (1)).
In particular all automorphisms of Doy 11 map reflections to reflections. All automorphisms

of Bop11 map rq to a reflection while any automorphism of B,, that does preserve reflections
must be inner.

§2.3 Type E

Suppose that W is of type Eg with diagram

The following table lists representatives of the conjugacy classes of parabolic subgroups with
longest element central, and the sizes of the corresponding classes of involutions (see [Car72]).

Wi Type | cl(wy)]
<T1> Al 36
<’I”1,’I”3> Al X A1 270
<7”1,7“3,7“6> Al X A1 X A1 540
<7“2,?”3,?”4,?”5> D4 45.

Thus any automorphism must preserve reflections and so is inner by graph. We have seen
that the graph automorphism is inner, being conjugation by wg, and so

Aut(W) = W.

Suppose that W is of type E7 with diagram
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The following table lists representatives of the conjugacy classes of parabolic subgroups with
longest element central, and the sizes of the corresponding classes of involutions.

Wi Type | cl(wr)]
(r1) Ay 63
<’I”1,’I”3> A1 X A1 945
(r2,75,77) A x Ay x Ay 3780
(ra,rs,17) Ay X Ap x Ay 315
(ro,r4,75,77) Al x A] x A x Ay 3780
(r2,73,74,75) Dy 315
(ro,r3,m4,75,77) Ai x Dy 945
(r2,73,74,75,76,77) Deg 63
w E- 1

If r is a reflection, then rwgy is an involution and so the other class of size 63 must be
wo cl(r1) = cl(riwg). Now [(wg) = 63 and so [(riwg) = 62 is even. Therefore (cl(rwo)) # W
as all the elements on the left have even length. Thus all automorphisms of W preserve
reflections and hence are inner. W has no graph automorphisms.

Aut(W) =2 W/ (wy).
Finally suppose that W is of type Eg with diagram

The classes of involutions are as follows:

Wi Type | cl(wy)]
(r1) A 120
(r1,7s) Ay x Ay 3780
(r1,73,76) Ay x Ap x Ay 37800
(r1,73,76,78) Ay x Ap x Ay x Ay | 113400
(r2,73,74,75) Dy 3150
(ro,7r3,74,75,77) Dy x Ay 37800
(T2,73,74,75,76,77) Dg 3780
<?”1,?”2,7“3,7”4,7“5,7”6,7“7> E7 120
w Eg 1

In this case 1 is an automorphism that must interchange the classes of size 120. Thus, up to
1, automorphisms preserve reflections and hence are inner, by Proposition 1.44.

Aut(W) = (W/(wo)) % ().
The following proposition summarizes what we have shown.

2.9 Proposition

(a) If W is a group of type Fg, then
Aut(W) =2 W.
(b) IfW is a group of type E;, then
Aut(W) =2 W/{wy).
(¢) IfW is a group of type Eg, then
Aut(W) = (W/{wo)) x ().

Note that all automorphisms of groups of type Eg or Er are inner.

29
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§24 Type F

There is of course only one finite group of this type. Suppose that W is of type Fy with
diagram

By Lemmas 3.18 and 3.19 it can be seen that there are two classes of reflections with repre-
sentatives 71 and r4. In particular this proves that the graph automorphism is outer. The
classes of involutions are as follows:

Wi Type | |cl(wy)]

_[1 = <’I"1> Al ].2

_[2 = <’I”4> A1 12

I3 = (ro,73) I5(4) 18
I4 = <T1,T4> A1 X A1 72
I5 = <?”1,’I”2,?”3> B3 12
Is = (ra,73,74) Bs 12
I; =W o 1

Define by ¢; : 71 — riwg, 1o — rowp, 13 — r3 and r4 — r4. Similarly define v, by r1 — rq,
ro > T9, 3 — r3wg and r4 — rqwg. It is clear that ¢; and v, are automorphisms of W that
are outer as they do not map reflections to reflections. It can be seen that:

(1) ~ interchanges I; and Is and interchanges Is and Ig.

(1i) 1y fixes I and I5 while interchanging I; and Ig.

(13i) 4, fixes I; and I while interchanging I and I5.
Let C; be the conjugacy class containing the central element of W, . Then C; Uy generates
W, but it can be checked that C; U Cg does not. Indeed both C; and Cg are contained in the
kernel of the homomorphism W — {£1} given by r1,r2 — 1 and r3,r4 — —1.

So no automorphism maps { C1,Cs } +— {C1,Cg }. Similarly, there is no automorphism
that maps this set to {C2,C5 }. So the possible targets for (C1,Cs) are:

(C1,C2) —(Cq,Ca) 7
(C1,C5)  Yr =ty
(C2,C1) v
(C2,C6) b1y
(C5,C1) Y
(C5,C6)  ihry = Yiyihy
(Cs,Ca) (0
(C6,C5) by =Y = Yyyidry.

If automorphisms «; and as have the property that ay ({Cl, Cg}) = ({Cl,Cg}) then 042_1041
preserves reflections, and so is inner by graph (by Proposition 1.44). So, modulo inner auto-
morphisms the above 8 possibilities are the only ones. Thus Out(W) = (v,4;) is dihedral of
order 8. The following proposition summarizes what we have shown.

2.10 Proposition

Aut(W) = W/ (wo) x (v, )

where (v,1;) is a dihedral group of order 8.
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§2.5 Type H

Suppose W is of type Hs with diagram

The classes of involutions are as follows:

Wi | Type | |cl(w)]

<T1> Al ].5
<’I”1,’r3> Al X Al 15
w Hj 1

Now the elements in cl(r;r3) all have even length and so all automorphisms map reflections
to reflections. Unfortunately the graph of W contains an edge labelled with a 5 and so, up
to inner automorphisms, there are two possibilities:

where in the second case @/ - a, = —c(275) = —m/2 where m = (v/5 — 1)/2, recalling that
ay -as = —1/2 where [ = (/5 +1)/2.
Define ¢ : W — W by

£:m = Ta) = T2TT3T2T3 1217372731172
Ty F— T2

rg — T3

where a] = rorirsrarsrias = —(I + 1)a; — 2lag — lag. Then a) - ay = —m/2 = —c(275)
and so Ta/ T2 has order 5. Furthermore, a} - a3 = 0, and so T/ T3 has order 2. Thus € is a

homomorphism. It is easily checked that €2 = 1 and therefore ¢ is an outer automorphism
of W.

Now suppose that « is an outer automorphism of W. Then up to inner automorphisms
we may assume

QT Ty
T2|—>T,y

Ts —Ts
where §-y=-m/2, 3-d=0and -0 = —1/2. Then

OE LT T rgrsryrsrgy = T
To — T,y
Ts—Ts
where ' = (m —1)8 — 2m~y —md. Now 3’ -~v=—1/2, -6 =0 and -6 = —1/2 and hence

a is inner. Hence

Aut(W) 2 W/ (wo) x (€).
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Now suppose that W is of type Hy with diagram

The classes of involutions are as follows:

Wi Type | |cl(wy)]
<7“1> A1 60
<’I”1,’I”3> A1 X A1 450
<7”1,7“2,7“3> H3 60
w H4 1

In this case ¥ : & +— x(wp)"®) is an automorphism that interchanges the two classes of size
60 and so, up to ¥, we may assume that an automorphism « maps reflections to reflections.
Thus, up to inner automorphisms we have

As in the type Hj3 case there is an automorphism & such that

§:11 Ty,
Tog = To
rs — T3

Tq =Ty
where

a’l = T1raTr3rarirorarirarararirarsrarirorariag
= —(3l + 2)@1 — (3l + 3)@2 — 2([ + 1)@3 - (l + 1)a4.

A similar, but much longer, calculation shows that af is inner and hence
Aut(W) = W/ {wo) x (&, ¥) = (W/{wo) x (€)) x (¥).

The following proposition summarizes what we have shown.
2.11 Proposition
(a) If W is a group of type Hs, then

Aut(W) = W/ {uwo) x (€).
(b)  If W is a group of type Hy, then
Aut(W) = (W/(wo) x (€)) x ().

Any automorphism of a group of type Hz maps reflections to reflections.
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§2.6 The Dihedral Groups

Suppose that W is of type Iz(m) with diagram
. m

It is easily checked that the roots in ® have the form 1.12, namely:

s ((h—1)my,) " s(hmm)
) ()

Vp = ag

where 7, = 7/m and 0 < h < 2m. Observe that vg = —ay, v1 = as and vy, = —vp, for
all h. It is readily checked that vy - vg = c(hmy,), and the permutation of the root system
defined by vp, — vp41 corresponds to a rotation through m,,.

Since the reflections are precisely the non-central involutions in W it is trivial that
all automorphisms map reflections to reflections. Of course, an automorphism is completely
determined by its effect on r; and 73. Clearly there is an automorphism that takes r,, to
Tv,., for all h; we denote this automorphism by a. Since v, and vj 1, correspond to the
same reflection, o has order m. Note also that the group generated by « acts transitively on
the set of reflections in W.

2.12 Notation Let ab.". denote the product of the first n terms of the alternating sequence
a,b,a,b,....

Every reflection in W can be expressed in the form ryr;.*. for some odd integer n:
indeed, n = 2h — 1 gives the reflection along v,. It follows that ryr,, = (r;72)", which
has order m if and only if ged(h,m) = 1. It follows that there is an automorphism «,
such that vy — 7 and 73 — 7,, whenever gcd(h, m) = 1, and these are the only automor-
phisms that fix 1. So if we define Auty (W) = {ay, | ged(h,m) = 1}, then it follows that
Aut(W) = Auty (W)(a).

Observe that if ged(h,m) =1 and ged(k,m) = 1 then

(ahak)(r2) = ah(r2r1 ST ) = ah(r2)r1 2k-1 = rory - - ahk(r2),

Obviously also (apay)(r1) = 71, and so it follows that apar = apk. So Auty (W) is isomorphic
to the group of units of the ring of integers modulo m. Furthermore, it is easily verified that
apa = oy, this being the automorphism that takes the reflection along vy, to the reflection
along vpi1p for each k. So conjugation by «ap acts on the cyclic group of order m generated
by « by raising elements to the power h. Thus Aut(WV) is the holomorph of the cyclic group
of order m.

Note that o, 1 fixes rq and takes r9 to rory 272, = rirory; hence o, is conjugation
by r1. If 7 is the nontrivial graph automorphism then yo,,_; takes r,, =r to ro = r,, and
ro to roriry = ry,. Thus yay,,—1 = a. It follows that (o, am—1) = (7, am—1) is the group of
all automorphisms that are inner by graph.

If m is even then the graph automorphism ~ is outer, since it interchanges the two

classes of reflections. If m is odd then < is inner, being conjugation by wg. The following
proposition summarizes what we have shown.

2.13 Proposition Suppose that W is a group of type I;(m) and use the notation from
above. Then all automorphisms of W' preserve reflections, Aut(W) = Auty(W)(«) is the
holomorph of the cyclic group of order m and Auty (W) is isomorphic to the group of units
of the ring of integers modulo m.
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§2.7 Automorphisms of Infinite Coxeter Groups

In the finite case the subgroups of inner automorphisms and graph automorphisms are not
always disjoint. We have seen that in the cases A,, Dak41, I2(2k + 1) and Eg the non-trivial
graph automorphism is the same as conjugation by the longest element of W. This cannot
happen if W is an infinite irreducible Coxeter group; in fact we can say slightly more.
2.14 Lemma If W is any infinite Coxeter group with no finite irreducible components,
then the only graph automorphism that is inner is the identity.
Proof Suppose that conjugation by w € W is a graph automorphism. If W is not irreducible
then

W =W, x---xWrg_

where Il = L1{ULoU---ULj;. As the automorphism is inner it is clear that each component
is fixed and, by looking at the restriction to Wp,,, we may assume that II is connected. That
is, we now assume that W is irreducible. Now let

J={aell|lwa e d }.

If J = 0 then N(w) = (), whence I(w) = 0 by Corollary 1.10, giving w = 1. If J = II then
wdt = &~ and I(w) = |®T|. But this is impossible since @ is infinite, by Lemma 1.11. Thus
0 & J & II and hence both J and II\J are non-empty.

As conjugation by w is a graph automorphism, for each a € II there is an a’ € II such
that wroaw™' = rq. This gives wa = +a’. It follows that wJ = —K for some K C II and
w(II\J) = I\K. Now let a € J and b € II\J. Then —wa = o’ € K and wb = b € II\K,
and by the definition of the bilinear form it follows that a-b < 0 and o’ -’ < 0. But
a-b=wa-wb= —d -V, and so we conclude that a - b = 0. This result holds for all a € J
and b € I1\J, and the two sets are non-empty, contradicting the irreducibility of W. ]

Combined with Corollary 1.44 the following result has been proved.

2.15 Corollary If W is an infinite Coxeter group, as above, whose diagram is a forest
with no unusual labels and R(W) is the group of automorphisms of W that preserve Ref(W)
then

R(W) =Inn(W) x Gr(W).

The fact that Inn(W) = W/Z (W), where Z(W) is the centre of W, is well-known.

~Y

When W is irreducible, apart from the finite groups, the centre is trivial and so Inn(W) = W.
2.16 Lemma IfW is an infinite irreducible Coxeter group then Z(W) = {1}.

Proof Let w € Z(W). Then for all a € ® we have r,, = wr,w™! = r, and so wa = =+a.
Hence IT = LUK where

L={acll|wa=—a}

K={aelllwa=a}.
Now for all a € L and b € K we find that a-b = wa - wb = —a - b and hence a - b = 0. This
contradicts the irreducibility of W unless one of L or K is empty. If K = () then wa = —a for

all a € @, and so N(w) = &7, which is infinite by Lemma 1.11. However this contradicts
Corollary 1.8. So L = ¢, and hence w = 1. So we conclude that Z(W) = {1} as required. &

2.17 Corollary IfW is an infinite irreducible Coxeter group whose diagram is a tree with
no unusual labels and R(W) is the set of automorphisms of W that preserve Ref(W') then

R(W)=ZInn(W) x Gr(W) = W x Gr(W).
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Nearly Finite Coxeter Groups

3.1 Definition Given the Coxeter group W with set of simple reflections II indexed by
positive integers, if a; € II, then we let W; denote the standard parabolic subgroup W\ {4,} -
If W; is finite for some a;, then we denote by w; the longest element in W;.

3.2 Definition We shall call the infinite Coxeter group W nearly finite if there is a simple
root a; such that W; is finite.

§3.1 Automorphisms That Preserve Reflections

Before considering the nearly finite groups we need some linear algebra.

3.3 Definition The n x n matrix M is reducible if there are non-empty sets I and J
such that JUJ = {1,...n} and m;; = 0 for all i € I and j € J. Otherwise M is said to be
1rreducible.

3.4 Lemma Let M be the Gram matrix of the finite rank Coxeter group, W, then M is
irreducible if and only if W is irreducible.

Proof This is clear since m;; = a; - a; is zero if and only if vertices 7 and j are not connected
in the Coxeter diagram. ]

3.5 Lemma Suppose that M is a positive definite matrix such that m;; = 1 for all i and
m;; <0 foralli # j. Let C = M~!, then cij > 0 for all © and j. Further, if M is irreducible,

then c;; > 0 for all i and j.

Proof Let e; be the i*" standard basis vector, written as a column vector. The " entry

of C is equal to the ii*® cofactor of M divided by det(M). As M is positive definite the
principal minors are all positive and hence the ii*" entry of C is non-zero. Also v!Mv > 0
for all vectors v with equality if and only if v = 0.

Let C; = Y774 Aje; be the i*" column of C*, J = {j|A\; >0} and K = {k| X\ <0}.
Setting C" =" ; Aje; and C” = 3" - Agey, we have C; = C" + C”. Now C!M = e! and so

CiMe; = ele; >0
for all ¢ and j. Since A\, < 0 for k € K,

0 Z Z )\k(CfMek)
keK

=CtMC”
_ C/tMC// + C//tMC//
=Y Nl Mey +C" MC”

JEJ
keK

=" NAmy + C7MC”.

JEJ
keK

Since A\; > 0, A\, < and mj, < 0 each term A\jA\pm;y is non-negative. Hence

0> \Agmyp, +C""'MC" > C"'MC” > 0.
JK
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Thus C” = 0 and C; = C’ only has non-negative entries. Hence C' has non-negative entries.

Suppose that C has at least one entry equal to 0, say ¢, = 0. Let I = {j|¢,; >0}
and J = {j|c¢,; =0}; then JUJ = {1,...,n}, remembering that ¢;; > 0 for all i and j.
Now ¢, # 0 and so r € I, while k € J. Hence both I and J are nonempty. If j € J, then
j # r; thus

—ele. = (Ot .
0=ere; =CrMe;

= E cmefMej

iel
= Z CriTgj.
iel
We have ¢,; > 0 for ¢ € I, while m;; < 0 as i # j. Therefore m;; = 0 for all ¢ € I. Thus
m;; = 0 for all i € I and j € J and hence M is reducible. ]

3.6 Proposition Suppose that W is a finite Coxeter group with simple roots {ay, ..., an},
and let dy,...,d, be a set of non-negative real numbers. Let x =) d;a; be the solution of
the system of equations x - a; = d; for all i. Then §; > 0 for all i, and if some d; is nonzero
then 6; > 0 for all i and 0, > 0 for all a;, in the same connected component as a;.

In particular if W is irreducible and d; is non-zero for some j then é; > 0 for all .

Proof If M is the Gram matrix of the finite Coxeter group W, then M is positive definite,
by Lemma 1.1. For all i we have m;; = a; - a; = 1, whereas if ¢ # j, then

mi; = a4 5 = — C(ﬂmij) <0.
By Lemma 3.4 M is irreducible if and only if W is irreducible. Thus we may use Lemma 3.5.
Observe that the values of §; are given by

(6;) = M~ 1(d;).
The entries of M ~! are all non-negative, by Lemma 3.5, and hence the §; are non-negative
given that the d; are non-negative.

If W is reducible, then the vector space spanned by the a; is the orthogonal sum of
subspaces associated with the irreducible components and the Gram matrix M is the diagonal
sum of the Gram matrices for the components. Thus we may consider each component
separately and so suppose that W is irreducible. In that case the entries of M ~! are all
positive. Given (§;) = M~1(d;) if any one d; is positive while the rest are non-negative, then
each J; is the sum of non-negative terms including at least one positive term. Hence each ¢;
is positive. 1

3.7 Lemma Suppose W is a Coxeter group, r; and r; are simple reflections and « is an
automorphism of W such that «(r;) = 1, and a(r;) = 1 are also simple reflections. Then
a; - a; = ag - ag.

Proof Let a;-a; = —c(ms) and ai - a; = —c(m;). The order of r;r; is s which equals t the
order of rr; and hence a; - a; = ay, - a;. 1

3.8 Definition We say that a Coxeter diagram is of finite type if the corresponding
Coxeter group is finite.

A set of simple reflections in a Coxeter group is of finite type if the parabolic subgroup
they generate is finite.
3.9 Theorem Suppose that W is irreducible, non-degenerate and nearly finite. Suppose
that the diagram of W has no infinite bonds. Let A be the set of simple reflections and
suppose that there exist r1,r, € A (possibly equal) and an automorphism o : W — W such
that the following properties hold:

(1) Ay =A\{r1}and A, = A\{r, } are both of finite type, and a(A;) = A,,.

(2) aeR(W).
Then « is inner by graph.
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Proof Let Vi and V, be the subspaces of V' spanned by II\ {a; } and II\ {a, } respec-
tively, and let z; be the projection of —a; onto V; for i = 1 and y. We shall show that
Ty - Ty < @1 - x1. Since the same argument with r; and r, interchanged, a replaced by a~ !
and using Lemma 1.33 will show that =, - 1 <z, - xy, it follows that z1 - 21 =z, - zy.

Write {2,3,...,n} = JOUJPU--.UJ®) where the JU) correspond to the irreducible
components of IT\ {ay }. For each i € {2,3,...,n} let

a; a1 = —C(’/Tmil) = —C;
so that by the definition of x1,
Qi - L1 =G

forallie {2,3,...,n}. Write

Uy =21+ aq
so that u; spans the orthogonal complement of V7 in V. (As W is non-degenerate V; has
dimension n — 1, V- is one dimensional and a; ¢ V;.)

Let 21 = > , pia;. Note that

T = xgl) —|—x§2) +---+x§’“)

where acgj) is the projection of —a; onto the subspace spanned by {ai li e J) } Now for
all j €{1,2,...,k} and i € JU),

e a; = —ar-a; = ¢; > 0;

moreover, since W is irreducible there is at least one i € JU) such that ¢; > 0. Since

it follows from Proposition 3.6 that u; > 0 for all i.

Let x € &1 be such that a(ry) = r,, and let o be the permutation of {1,2,...,n}
such that a(r;) = 7, for i € {2,3,...,n}. (Thus 0l =y.) As ry;r, has the same order as
r;T1, namely m;;, we have

X Agi = C(jiﬂ-mil) =d;
for some j; coprime to m;;. Note that ¢; > |d;| for all i € {2,3,...,n}, and d; = 0 if and
only if ¢; = 0. Let 2o = Z?:Q AsiGg; be the projection of x onto V), so that x¢ - as; = d; for
each i, and
T =20+ wuy

for some scalar w, where u,, = x,+a, spans the orthogonal complement of V,, in V. Examining
the coefficient of a, in the above equation for z, and using Lemma 1.15, we see that w > 1.
Note also that

To = xél) + xéz) + 4+ xék)

where xéj) is the projection of x onto the space spanned by { agi |1 € JO) }

Since ¢; > |d;| for all i € JU) (where j € {1,2,...,k} is arbitrary), we have for all
= J(J')’

0<c¢—di=m1-a; — 20" s

= g wa - a; | — E Aollol * Qg

leJj@) leJg@)
= E wag - a; | — g Aol - G by Lemma 3.7
leJ@ 1eJ@

= > (= Aot) ar- a;.

leJl
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By Proposition 3.6 it follows that p; > A, for alll € J G ); moreover, if y; — Ay = 0 for some
1 € JY then we must have ¢; —d; = 0 for all i € JU). Similarly,

0<citdi= Y (m+Aot)a-a;
leJ@)

for all 7 € J(j); SO+ Aoy > 0foralll € J(j), equality occurring for some [ only if ¢; +d; = 0
for alli € JU). Note in particular that y; > [Ay| foralll € {1,2,...,n — 1}, and if p; = |\
then ¢; = |d;].
Each z € V can be written in the form z = zg + vu; with zg € V; and v € R, and if
uy - w1 > 0 this gives
-z =1z 20+ VU -y >0,

contrary to the fact that W is not of positive type. So u;-u; < 0, and, by the same reasoning
Uy * Uy < 0.
Since x € ®

L=z 2= (z0+wuy) - (zg +wuy) = 20 - To + wuy - uy

and we also have that

n n
Ty Ty = E AoiOgi * To = E Aoidi.-
i=2 i=2

Similarly,
1 =ay a1 = (—$1+U1)~ (—.’161 —|—’LL1) =121+ U UL
and also . .
T T = Zuiaz‘ ‘T = ZM:‘CZ‘-
i=2 i=2
Thus N .
UTRETISS Zuicz‘ = wuy - uy + Z)\m‘du

i=2 i=2

and so

n
Z(uici — Aoid;) = w2uy CUy — UL U
i=2
Since p; > |Aoi| and ¢; > |d;| for all i we see that > . ,(uic; — Apid;) > 0, and so
w2uy “Uy > up - up. But w? > 1, and since Uy - uy < 0 it follows that u, - u, > w2uy “ Uy, and
hence uy - uy > uy -uy. Since 1 = x1 - 21 + Uy - Uy (shown above) and 1 = Ty * Ty + Uy - Uy
similarly it follows that z, -z, < 21 - 21, as desired.

In view of our earlier remarks, we must have u,, - u, = u; - u1, and

0< Z(,uici — Aoidi) = (W = ug -uy <0
i—2

sincew > 1 and ug-u; < 0. Thus (w?—1)us-uy =0, givingw =1, and >, (ic;—Awid;) = 0,

giving MiC; = )\aidi = ’)\azdz‘ for all 7 € {2,3, oo, n }

Since 0 < (p — |Ao1|)ar < e — |Asi]|di| = 0 it follows that, for all [ € {2,3,...,n},
either ¢; = 0 or |Ay;| = py. For each j € {1,2,...,k} we may choose [ € JU) with ¢; > 0;
then either A\,; = p; and d; = ¢; for all @ € J(j), or else A\,; = —uy, and d; = —¢; for all
i € JU) . In the former case we have

(4)
Ty Qe =di = ¢ =y - ay
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for all i € JU), and it follows that x(()j ) = 5(:09 ) ), where & is the isomorphism V; — V), given
by a; — as;. In the latter case,

for all i € JW), giving xéj) = —&(:cgj)).
Let w be the product of the longest elements of the parabolic subgroups corresponding
to those sets o(JW)) for which :cgj ) = 5(ng ) ), let B be the inner automorphism of W given

by conjugation by w, and let o’ = Ba. Since  induces a graph automorphism on A\ {r, },
we see that o satisfies the same hypotheses as . Now o/ (1) = wryw ™! = ry,, and

WL = WTo + Uy

= w:cgl) + w:cE,Z) +o+ wxék) + uy.

where wx(()j ) is the projection of wx onto the span of {am lieJ @) } Applying to o’ the
arguments used for « enables us to deduce that for each j

wxéj) = :t&(xgj)) =4 Z iy
ieJ@)
(4)

But w was chosen so that wz’ is a negative linear combination of { agili € J (@) } for each

Jj, and so we conclude that wxéj) = —5(&09)). Thus
wr = =5(1") = 5(?) =+ = (1) +uy

= —5(961) + Uy

showing that wz - ag; = —¢; = a1 - a; for all ¢ € {2,3,...,n}. Lemma 3.7 together with
Theorem 1.44 shows that o’ is inner by graph. (Indeed we have shown that the positive roots
WET, Uy, Ux3, ---, Ggn form a base for the root system that is isomorphic to II. From this we
can conclude that wx = a, and that o' is in fact a graph automorphism.) ]

§3.2 Reflections and Components

3.10 Definitions If W is a Coxeter group and r € W, then we denote the conjugacy class
of rin W by C(r).
(1)  If r and 7’ are reflections in W then we say that C(r) and C(r’) are linked if we
can find r € C(r) and 75 € C(r’) such that r and ro do not commute.

(2)  If r and r’ are reflections in W then we say that there is a chain joining C(r)
and C(r'") if we can find reflections r¢, ..., r, such that ro = r, r,, = r’ and
C(r;) and C(r;4+1) are linked for i =0, ..., n — 1.

Recall from Lemma 1.17 that if r is any reflection in W then r lies in an irreducible

component of W. Clearly, conjugate reflections lie in the same irreducible component.

3.11 Lemma Suppose that W is a Coxeter group with r and r’ any two reflections, then
r and r' are in the same irreducible component of W if and only if there is a chain joining
C(r) and C(r").
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Proof By Lemma 1.1 each conjugacy class of reflections contains at least one simple reflec-
tion. If r and 7’ are in the same irreducible component then there are simple roots ag and
ag such that ro € C(r) and r{ € C(r"). Furthermore there is a path in the Coxeter diagram
joining ag and aj. If ag, a1, ..., a, = af is such a path then the C(r;) form a chain joining
C(r) and C(r").

Conversely, suppose that r and 7’ are in different components of W. If C(rg), C(r1),. ..
is a chain joining r and 7/, then we can find a j such that C(r;) and C(r;41) are in different
components. But this implies that each reflection in C(r;) commutes with every reflection
in C(rij41). This contradicts the fact that C(r;) is linked to C(r;41). Thus if » and 7" are in
different components then there is no chain joining them. ]

Note that a simple corollary of this is that there is a chain joining C(r) and C(r’) if
and only if there is a chain joining r and r’.

3.12 Lemma Suppose that W and W' are finite rank Coxeter groups. If a is an isomor-
phism such that o( Ref(W)) = Ref(W’), then a maps each irreducible component of W onto
an irreducible component of W'.

Proof Suppose the irreducible components of W are W;). If r and ' are any two reflections
in Ref(W;¢)) then by Lemma 3.11 there is a chain joining C(r) and C(r’). As « preserves
reflections and conjugacy classes there is a chain joining C(a(r)) and C(a(r’)). Hence a(r)
and «(r’) are in the same irreducible component of W’. Thus a(Wj) ) is contained in an
irreducible component of W’. Applying this to o~ finishes the proof. ]

3.13 Proposition Suppose that o : W — W’ is an isomorphism of finite Coxeter groups
that maps reflections to reflections. Then W and W' have the same type.

Proof By Lemma 3.12 we may concentrate upon irreducible Coxeter groups. If two finite
irreducible groups are isomorphic then they have the same order.

All finite Coxeter groups have even order and so if W is a finite irreducible Coxeter
group then we can find a group W' of type I3(m) such that |W| = |W’|. However exactly half
the elements of a group of type I5(m) are reflections, and this is a property not possessed by
any of the other types. So there is no reflection preserving isomorphism between a group of
type Is(m) and an irreducible group of any other type. The only other coincidences of order
for finite irreducible Coxeter groups occurs for types A4 and Hs, which both have order 120.
They are not isomorphic since, for example, A4 has trivial centre while H3 does not. ]

Suppose that W is a nearly finite Coxeter group of rank n > 4 such that W; is a finite
irreducible Coxeter group and let o be an automorphism of W. From Corollary 1.30 we know
that «(W;) is a maximal finite parabolic subgroup. Up to inner automorphisms we may
assume that «(W;) is a standard parabolic subgroup and therefore has rank at most n — 1.
If a(W;) is reducible then it follows that W; is isomorphic to a product of smaller Coxeter
groups, for which the sum of the ranks does not exceed the rank of W;. We proceed to show
that this cannot occur by examining all cases.

In the paper [Max98], Maxwell finds all the normal subgroups of the finite irreducible
Coxeter groups. In all cases W™ will denote the subgroup of elements of even length; other
normal subgroups will be given as the kernels of surjective homomorphisms to other Coxeter
groups. Maxwell’s list is as follows.

A, If Wis a group of type A,, then the normal subgroups of W are:
{1}, W and WT.

Clearly no group of type A, is reducible as W does not have two normal subgroups H and
K such that |H| x |K| = |W|.
B,: 1If W is a group of type B,, with diagram
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then the normal subgroups of W are:

No = {1}

N1 = <w0> = Z(W)
Ny =W+

N3 =W

Ny = ker(¢y) where ¢4 : W — (s1) type 43
Ga(r1) = 51, Pa(ri) =1
N5 = ker(¢s) where ¢5 : W — (s1) type 4;
¢5(r1) =1, ¢5(ri) = 51
Ng = ker(¢g) where ¢g : W — (s1) X (01) type A1 x Ay
P6(11) = 51, P6(ri) = 01
N7 = ker(¢7) where ¢7 : W — (s;) type Ap—_1
¢r(r1) =1, ¢7(ri) = s4
Ng = ker(¢s) where ¢g : W — (s;) X (071) type A,—1 X A;
Ps(r1) = 01, Ps(ri) = 84
Ny = ker(¢g) where ¢g : W — (s;) type A
Po(11) =1, ¢o(r2) = 81, Po(r3) = 52, Po(ra) = 51
Nyp = ker(¢10) where ¢19 : W — (s1) X (01) type As x A
Pg(11) = 01, P9(12) = 81, Po(r3) = 82, Po(r4) = 51

where the last two cases only occur when n = 4. A consideration of orders shows that the
only possible decompositions of W are as N1 X No, N1 X N4 or N1 X N5. Now wy is a product
of elements conjugate to ri; thus ¢5(wp) = 1 and hence wg € N5. Thus Ny N N5 # {1}. If
n is even then ¢4(wg) = r} = 1, whence wy € Ny, and I(wg) = n? is even, whence wy € No.
Hence W has no direct product decomposition if n is even. If n is odd then

W:N1><N2:N1><N4.

In fact Ny is a Coxeter group of type Dsyy1 and therefore a group of type Byt is isomorphic
to a group of type Ay X Doy 1. The Coxeter group of type Dak1 1 is not abstractly isomorphic
to any other indecomposable Coxeter groups, since the only one with the correct order is
I5(22=1(2k + 1)!), and this has non-trivial centre whereas Doy, has trivial centre. Thus
Ay x D, is the only decomposition as a product of groups abstractly isomorphic to Coxeter
groups. However, A; x D, has greater rank than B,,, and so cannot occur as a parabolic
subgroup of any Coxeter group that has a maximal parabolic subgroup of type B,,.

D,: If W is a group of type D,, with diagram

2

. o« s e .
1e 3 4 n—1 n

then the normal subgroups of W are:

No = {1}

Ny = (wg) (only for n even)
Ny =W+

N3 =W

Ny = ker(¢y) where ¢4 : W — (s;) type Ap—1
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Pa(r1) = s1, da(r2) = s1, Pa(ri) = si—1
N5 = ker(¢s) where ¢5 : W — (s1, s2) type Ay
¢5(r1) = ¢5(r2) = ¢5(r4) = 81, ¢5(r3) = 52
Ng = ker(¢g) where ¢g : W — (s1, s2) type Ao
P6(r1) = d6(r2) = ¢6(r3) = s1, P6(re) = s2
N7 = ker(¢r) where ¢7 : W — (s1, $2) type Ay
¢7(r2) = ¢7(r3) = ¢7(ra) = s1, d7(r1) = 52

where the last three cases only occur if n = 4. Looking at orders the only possible decompo-
sition is W = Ny x Ny. But [(wy) is even and so N3 C Na, whence W is indecomposable.

FEg: If W is a group of type Eg with diagram

then the normal subgroups of W are {1}, W+ and W. Hence W is indecomposable.
E7: If W is a group of type Er with diagram

then the normal subgroups of W are {1}, (wo), W and W. Since I(wy) is odd we see that
W = (wp) x WT. The only finite Coxeter group of order |W|/2 is of type I>(|W|/4), but a
group of type Ay x I5(|W|/4) has further normal subgroups and so cannot be isomorphic to
a group of type F;. Thus W does not decompose as a product of Coxeter groups.

FEg: If W is a group of type Eg with diagram

then the normal subgroups of W are {1}, W+ and W. Hence W is indecomposable.
Fy: If W is a group of type Fy with diagram

then the normal subgroups are:

No = {1}
Ny = (wo)
No =W+
Ny =W

Ny = ker(¢y) where ¢4 : W — (s1) type Ay

Ga(r1) =1, da(r2) =1, ¢ua(rs) = s1, ¢a(rs) = 1
N5 = ker(¢s) where ¢5: W — (s1) type 4;

¢5(11) = 81, @5(1r2) = 51, ¢5(r3) =1, ¢5(ra) =1
N = ker(¢s) where ¢g : W — (s1) % (01) type A1 x Ay

b6(11) = 51, d6(r2) = 51, ¢6(1r3) = 01, ¢6(ra) = 01
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N7 = ker(¢r) where ¢7 : W — (s1, $2) type Ao

d7(r1) =1, ¢7(r2) =1, ¢7(r3) = s1, d7(ra) = 52
Ng = ker(¢s) where ¢g : W — (s1, s2) type Ay

Ps(r1) = s1, ¢s(ra) = s2, ¢s(rs) =1, ¢sg(rs) =1
Ny = ker(¢y) where ¢g : W — (51, $2) X (01) type Az x Ay

Go(r1) = 81, Po(r2) = 82, Po(r3) = 01, Pg(rs) = 01
Nig = ker(¢1) where ¢19 : W — (s1,52) X (01) type A1 x Ay

(1510("”1) =01, ¢10("”2) =01, ¢10(7“3) = S1, ¢10(?”4) = S2
Ny = ker(gbn) where ¢11 W — <81,82> X <01,0'2> type A2 X A2

¢11(7”1) = 81, ¢11(7‘2) = 82, ¢11(7”3) =01, ¢11(7”4) =02

As before a consideration of orders suggests that the only possible decompositions are N1 X No,
Ny x N4 or Ny x N5s. However, wg is an element of each of Ny, Ny and N5 and so W is
indecomposable.

Hs: If W is a group of type Hs with diagram

. 5 . .

1 2 3
then the normal subgroups of W are {1}, (wg), W+ and W. As with type E7, W = (wo) x W+
but W is not a Coxeter group.

Hy: If Wis a group of type Hy with diagram

then the normal subgroups of W are {1}, W and W. Hence W is indecomposable.

Note that W; cannot have type Iy(m) since we have assumed that W has rank at
least 4, and hence W; has rank at least 3. Automorphisms of Coxeter groups of rank 3 are
dealt with in a separate chapter.

Therefore in all cases if W; is a finite irreducible Coxeter group, then a(W;) is a
parabolic subgroup of the same type. Hence we have proved the following theorem.
3.14 Theorem IfW is a nearly finite Coxeter group of rank n > 4 such that W; is a finite
irreducible Coxeter group, then any automorphism of W will map W; to a conjugate of a
maximal standard parabolic subgroup W; of the same type as W;.

§3.3 Graph Automorphisms and Unusual Labels

Suppose that W is an irreducible nearly finite Coxeter group. Renumbering if necessary we
may assume that Wy is finite. We shall consider the situation in which W; has a component
of type Hs, Hy or Iy(m) for m > 3 and there is an a; # a1 such that W; has the same type as
Wi. Renumbering again if necessary suppose that Wy and W5 have the same type. We shall
classify all such Coxeter groups. In particular, it turns out that in almost all cases there is a
graph automorphism that interchanges a; and as.

For convenience in the following identify a; with the vertex it corresponds to in the
Coxeter diagram, I', of W. Let 'y denote the graph obtained by deleting vertex aj from T,
and write deg,, for deg(ay). Since Wi and W» have the same type, 3, , deg;, = >_; ., degy,
and so it follows that deg; = deg,.

First suppose that W, and W5 are irreducible. If we have a graph where ajas is not
an edge, then we can obtain a new graph by including this edge. This new graph will still
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have the property that W7 and W5 have the same type. Therefore we will look for graphs
where ajas is an edge and obtain the remaining possibilities by deleting this edge. We will
deal with type Hj in detail and then state the possibilities for Hy and I3(m).

Suppose that W; and Wy have type Hs. Then deg, in I'y is either 1 or 2. Thus
2<degy =deg; <3inT.

Case (a): deg; = degy = 2. As ajay is an edge in I we can see that as has degree 1 in I'y.
There are four possibilities:

.5. . .5. . .5. . .5

2 2 2 .2
q q q q
1. 7 . 7 7 7

As Wy also has type Hs the remaining label can be determined, and we have the following
possibilities.

2 2 2
e 5 .5. 5 * .5.
q . . q . .« q
o5 . . . . .
1 15 1 192

Deleting the edge ajas gives four further possibilities.

Case (b): deg, = deg, = 3. This time ay has degree 2 in I'; and there is only one possibility.
As deg; = 3 there is an edge from a; to each vertex in I';.

Again W5 has type H3 and the labels can be determined. There are two possibilities.

52 52
L0 P
5. q. . .
1 15

Deleting the edge ajas gives the following possibilities.

5 2 252
5
1 152

Thus there are the following 12 possibilities for I'.

52 52
5. q. 5. .
1

5 2 252
P .0

15 152
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Note that in each case there is a graph automorphism that interchanges a; and as.

Similar arguments to the above, lead to the following 14 possibilities if W7 and Ws
have type Hy.

2 2
5 e 5
qe .
5 ¢ 5
1 1
2 2
5 e . 5
q
5 ¢ . 5
1 1
2 2
5 ° 5
qe
1 1
2 2
5 q 5
1 1
2 2
« 5 5
q .
*5 5
1 1
25
q 1-5 . 52
15"
2 2
5 ° 5
q
1 1

m

In every case there is a graph automorphism that interchanges a; and as.

Secondly, suppose that Wy is reducible. Then I'; contains at least two components.
Thus deg, > 2 as a; is joined to each component of I'.

Case (a): ag is not contained in the given component of I'y of type Hs, Hy or I3(m). Then I'y
contains a component of type Hs, Hy or Iy(m) with at least one edge added (the edge joining
ay to this component). This does not give a diagram of finite type if the original component
had type Hy or I;(m) for m > 5. So the original component is Hs, I5(4) or I5(5).
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If I’y has a component of type Hs and as is not in this component, then deg; < 3 in
I', for otherwise I'y would contain a component with an edge labelled with 5 and a vertex
of degree at least 3, contradicting the fact that I's is of finite type. If deg; = 3 or if ay and
ap are not adjacent, then I's contains a component with at least two edges added to a graph
of type Hs and again such a component is not of finite type. Thus deg; = 2, I'; has two
components and as is adjacent to a;. Thus I's has a component of type Hy and so Wy and
Wy are of type Hz x Hy. Thus I' is the following.

Again there is a graph automorphism that interchanges a; and as.

If T'; has a component of type I5(5) and ag is not in this component, then again
deg; < 3. In the case deg; = 2, I'; has 2 components and hence I's has two components. The
component containing ay is of type Hs or Hy, and so W; and Wy are of type I5(5) x Hs or
I5(5) x Hy. There are two possibilities.

In each case there is a graph automorphism that interchanges a; and as.
If deg; = deg, = 3 then we have the following partial diagram:

Thus in I'; two edges have been added to I3(5) and so W contains a component of type Hy
and we have the following.

In I'y the vertex as has degree 1 and so degs = 1 or 2 in I'. If degy = 1 then I'; has
components Ay, I5(5) and Hy and T is the following.

There is a graph automorphism swapping a1 and aq. If degg = 2 in I', then aqag is an edge
in Iy and W5 has two components. Thus W7 and Wy have type I2(5) x Hy and I is the
following.

5 5
1q2

Again there is a graph automorphism swapping a; and as.

If T’y has a component of type I3(4) and as is not in this component, then yet again
deg; < 3. If deg; = 2 then I'; has two components, of types I5(4) and By for some k. Thus
I' is the following
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and there is a graph automorphism swapping a; and aq. If deg; = 3, then a; and ay must
be adjacent as in the I5(5) case. Then I'y contains a component of type By, as well as one of
type I2(4). Thus we have

4 2
R
DRI
where there may or may not be edges between the parts of the graph labelled X and Y.

X
Y

If X and Y are joined then I'y and I'y have 2 components and must have type I2(4) x B;.
As B; does not have a vertex of degree more than 2, any vertex other than a; and as having
degree 3 in I' must be adjacent to both a; and as. There is at most one such vertex, and so
there are two possibilities.

4 1
There is a graph automorphism swapping a; and as in each case.
Finally suppose that X and Y are not joined. Then I'; has 3 components, and since
the component of Iy corresponding to Y is of type Ay for some k, we see that I'y and I'y
have type I5(4) x A x B;. Hence I is the following,

4 2
q
Lt i

Ay
Ay

and there is a graph automorphism swapping a; and as. This completes the case where ag
is not in the given component of type Hs, Hy or I5(m).
Case (b): as is in the given component of type Hs, Hy or Is(m) for m > 3.

Suppose that I'; contains a component of type Hs and as is in this component. Thus
degy, <2inI'y and so 2 < deg; =deg, <3 in I

Suppose deg; = deg, = 3. The vertices a; and ay are joined, and there may or may
not be edges joining a; to the other vertices of the Hs component of I';. Since a; has degree 3
the possibilities for I' are as follows.

52 52 52
q q q

X % Ty X ?
1 1 1

In the first case I's has 3 components, two of which are of type A;, while in the second
and third cases I's has two components, one of which is of type A;. In all three cases the
remaining component of I'y must be of type Hs.

In the first case the only possibility is as follows,

52
N
i
and there is a graph automorphism swapping a; and as. In the second case we have two
possibilities, as follows.
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In the first of these cases there is a graph automorphism swapping a; and as, while the other
is the first of our exceptions.

In the third case we also have two possibilities, as follows.

52 52
q . q .
. . . 05
51 1

Again there is a graph automorphism swapping a; and as in the first case. The other case is
isomorphic to the exceptional case above.

Now suppose that deg; = deg, = 2, still in the case where I'; has a component of type
Hj that contains as. Only one of the two edges from a; connects to the given H3 component
of I'1, otherwise I'; is irreducible, a case that has already been dealt with. There are four
possibilities.

IfIis

i)

?
2

then I'; has a component of type As, and so I'y and I'y have type As x H3. So we have the
following diagram,
25
q
1e o
5
and there is a graph automorphism swapping a; and as.
IfIis

then I'y has a component of type A;, and so I'y and I's have type Ay x H3z. So we have the
following possible diagrams.

2 2

5 e . 5 e

. 3

5. . . .
1 15

In the first case there is a graph automorphism swapping a, and ao, while the other is the
final exceptional case. In fact it is the same as the previous exceptional case but with ¢ = 2.
Furthermore, in this case I's is also of finite type and is the unique subgraph of type As x I5(5).

IfI'is
25

?

1- ?
?

then again we find that I'y and I's are of type A; x Hz. We have the following possible
diagrams.

25

15
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25
3e

5 e
1

In the first case there is a graph automorphism swapping a; and as, while the other is
isomorphic to the exception just considered.

IfI''is
2 5
q

.« 7
1?.

then I'; and I'y are of type I5(5) x Hs. We have the following diagram.

There is a graph automorphism swapping a; and as. This completes the case where I' has a
component of type Hs.

Now suppose that I'; contains a component of type H4 and as is a vertex in this
component. As in the equivalent Hs case this means that 2 < deg; = deg, < 3.

If deg; = deg, = 3, again a; and as must be adjacent. So we have the following eight
possibilities.

52 52 5 2 5 2
q q q q

X Y ? Yy X ? X ?
1 1 1 1

5 2 5 2 5 2 5 2

q q q q

X Y X ? ? % ? %
1 1 1 1

(i) In the first diagram of the above cases it is clear that I'y and I'y must be of type
Ay x A x Hy. We obtain the diagram.

5 2
q
Tyt
and there is a graph automorphism swapping a; and as.

(ii) In the second diagram it is clear that I'; and 'y must be of type Ay x Hy. We obtain
the diagram.

5 e
1

and there is a graph automorphism swapping a; and as.

(iii) In the third diagram it is clear that I'y and I's must be of type A; x Hy. We obtain
the diagram.

5 2
q .
.51

and there is a graph automorphism swapping a; and as.
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(iv)

(vi)

(vii)

(viii)

In the fourth diagram it is clear that I'; and I'y must be of type A; x Ay x Hy. We
obtain the diagram.

5 2
U
i
and there is a graph automorphism swapping a; and as.
In the fifth diagram it is clear that I'y and I's must be of type A; x I5(5) x Hy. We
obtain the diagram.

5 2
q
57 1

and there is a graph automorphism swapping a; and as.

In the sixth diagram it is clear that I'; and I'y must be of type I2(5) x Hy. We obtain
the diagram.

5 2
q .
.5.1

and there is a graph automorphism swapping a; and as.

In the seventh diagram it is clear that I'; and I'ys must be of type A; x Hy. We obtain
the diagram.

2
5 g
T

and there is a graph automorphism swapping a; and as.

In the final diagram it is clear that I'y and 'y must be of type A; x Hy. We obtain
the diagram.

2
5 -

. . q
1

and there is a graph automorphism swapping a; and as.

Suppose finally that deg; = deg, = 2. As we are assuming that I'; is reducible, a; is

joined to the given H4 component by exactly one edge. We have the following possibilities.

25 5 2 5 2

q
. ? . ? ?
1 1 1
5 2 25
? ?
1 1

2 5 2 5 25
q
. ? . ? ?
1 1 1

In the first diagram I'y and I'y are of type A3z x H, and we have

25
q
15
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and there is a graph automorphism swapping a; and as. This can be repeated for each
diagram; the results are summarized below.

I"y and I's have type Ay x Hy 5

Iy and I's have type Ay x Hy

5
I'1 and I'y have type A; x Hy ot
1
25
I'y and I's have type A; x Hy .
15
s 20
I'y and I's have type Hs x Hy
5 2 ) ! 5
I’y and I'; have type I5(5) x Hy
5 2 Ly

I'y and I's have type A; x Hy

In each case there is a graph automorphism swapping a; and as.

It remains to consider the case that I'; contains a component of type Iy(m) for m > 3
and as is a vertex in this component. Since as has degree 1 in I'y it has degree 2 in I'. Thus
deg, = deg, = 2, and since I'7 is reducible if follows that one of the edges from a; connects
to the given I5(m) and the other does not. Therefore I'y and I's both have type A; x Iy(m).
The only possibility is as follows

and there is a graph automorphism swapping a; and as. This completes the proof of the
following result.

3.15 Proposition Suppose that W is a Coxeter group and there are two simple roots
a; # aj such that W; and W; are finite Coxeter groups of the same type. If W; and W;
contain at least one component of type Hs, Hy or I;(m) for m > 3, then there is a graph
automorphism of W that interchanges W; and W;, or else W corresponds to one of the
following diagrams.

In the second of these cases there is simple root ay such that Wy is the unique maximal
standard parabolic subgroup of type As x I5(5).
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§3.4 Nearly Finite Coxeter Groups

3.16 Theorem If W is an irreducible non-degenerate nearly finite Coxeter group with
finite labels, then any automorphism of W that preserves reflections is inner by graph.

Proof Renumbering if necessary we may suppose that Wi is finite. Let o € R(W) be any
automorphism that preserves reflections. Up to inner automorphisms we may assume that
a(W7) is a standard parabolic subgroup. By Proposition 3.13 and the fact that «|y, preserves
reflections W7 and «(W;) have the same type and hence the same rank. Thus a(W7) = W;
for some ¢ possibly equal to 1.

Suppose that W; does not contain any component of type Hs, Hy or I(m) for m > 3.
Then I'y is a forest with no unusual labels. As Wiy and W; have the same type there is
a permutation o of the simple roots such that ¢ : W; — Wj given by 6(r;) = ry; is an
isomorphism. Then ¢ is a reflection preserving automorphism of a Coxeter group whose
diagram is a forest with no unusual labels. By Proposition 1.44 a6 is inner by graph. Thus,
up to inner automorphisms of W;, we may assume that a¢ is a graph automorphism of W;
and hence that a maps r; to a simple root for each j € {2,3,...,n}. The result follows from
Theorem 3.9.

So suppose that Wi contains at least one component of type Hs, Hy or Is(m) with
m > 3. By Proposition 3.15 there are two possibilities: either W has a graph automorphism
interchanging W; and W5, so that up to automorphisms that are inner by graph we may
assume that a(W7) = Wy, or else W has one or other of the following two diagrams.

J J
5 . 5
q ke
15 15

The first of these requires special treatment, which we defer. The second may be dealt with
by relabelling ax to be aq, since then W; becomes the unique maximal standard parabolic
subgroup of type As x I3(5). Modifying o by an inner automorphism then permits us to
assume that a(Wy) = Wy.

Proceeding under the assumption that a(W;) = Wy, by Lemma 1.34 we may define ¢,
so that

$a(ai) - ¢ala;) <0
for all 4, j > 2 with ¢ # j. As in Corollary 1.35 it follows that

Palai) - dala;) = a; - a; (3.17)

unless m;; = 5 or m;; > 7. Furthermore, these values for m;; can only occur if a; and a; lie
in an irreducible component of W; of type Hs, Hy or I3(m), and then only for one pair of
simple roots in the component.

If Eq. 3.17 does hold for all 4, j > 2 then by Theorem 1.39 there exists w € W; such
that ¢4 (wa;) € 11\ {ay} for all i > 2, and hence conjugation by w followed by « permutes
the simple reflections of W;. Theorem 3.9 then applies, and it follows that « is inner by graph.
It remains to deal with those cases in which W7 has at least one irreducible component of
type Hs, Hy or Is(m) (where m =5 or m > 7) for which Eq. 3.17 does not hold. We do this
by adapting the argument used in the proof of Theorem 3.9 to the present situation.

Suppose that a; and a; are simple roots of W; for which Eq. 3.17 fails, and let m = m,;.
Thus a; - a; = —c(my,), and ¢q(a;) - pal(aj) = —c(jmy,) for some j coprime to m. Since
ba(a;) - ¢ala;) < 0 we have that 1 < j < m/2. Note that for types H3 and H, we have
m =5, and j = 2 is the only possibility.

We assume now that Eq. 3.17 fails for some ¢ and j. We shall show that this leads to
a contradiction.
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Let V4 be the subspace of V spanned by II'\ {a1}, and let M be the Gram matrix of
the restriction of our bilinear form to V; computed relative to the above basis. Let M’ be
the Gram matrix for the same form computed relative to the basis ¢, (I \ {a;1}). We assume
that the simple roots are ordered so that M is a diagonal sum of matrices corresponding to
the various irreducible components of Wi. Since ¢q(a;) - ¢o(a;) = 0 whenever a; - a; = 0, we
see that M’ is also a diagonal sum, with blocks of the same sizes as those of M.

The blocks of M corresponding to components of types Hs, Hy and I3(m) are as follows
(assuming the ordering is chosen appropriately).

M1 —c(ms) 0
M3 = | —c(ms) 1 -1/2
0 -1/2 1
r 1 —c(ms) 0 0
| —c(ms) 1 -1/2 0
My = 0 ~1/2 1 —1/2
| o 0 -1/2 1
_ 1 —c(mm)
My = |:—c(7rm) 1 :|

Letting T, = M ! be the corresponding inverses we find:

943V5 442V 245
T3 = | 4+2v5 6+2V5 3+V5
24v5  34vE S

[28+12v5  33+15v5 224105 11+5V5
T, 33+15v5 424185 28+12v/5 14465

224+10v5  28+12v5  20+8v5  104+4V5
| 1145v5 14465  10+4vV5  6+2V5

1/ 8% (mm) dnmvSﬂnm>}

c(mm)/ s*(mm) 1/5%(mm)

T =

If ¢, does not preserve the form on such a component then the corresponding blocks of M’
are as follows.

i 1 —c(27s) 0
M = | —c(2ms) 1 -1/2
| o —1/2 1
1 —c(27s) 0 0
! —C(27l’5) 1 —1/2 0
M, = 0 —1/2 1 —1/2
| o 0 —1/2 1
! 1 —c(jmm)
Mr=1 —egimn 1 }

. —1 . .
Letting T! = M’, " be the corresponding inverses we find:

938 4425 245
Ty = | —4+2v5 6-2v5 3-5
—24v5  3-vF 555

[ 28—12v/5  —33+15v5 —22410v/5 —1145V5

T — —33+15v5  42—-18V5 28—12V5 14—65
4 —22410v5  28—12V5 20—8v/5 10—4v5
| —114+5V5 14—65 10—45 6—2v5
T/ _ 1/52(j7rm) C(jWM)/SQ(jﬂm)
=

_C(jﬂ'm)/s2(j7r7H) 1/52(j7r7H)

53



54

Nearly Finite Coxeter Groups

Note that each entry tgj of T} is positive but strictly less that the corresponding entry ¢;;
of T. (Recall that % > j > 1 so that, 7/2 > jm,, > 7, and hence s(jm,,) > s(m,,) and
C(j'”m) < C("Tm)')

Hence if T = (tij) = M~" and T" = (tj;) = M'~', then we have t;; > t;; for all
i,j€{2,3,...,n}. Since there is a component for which the form is not preserved, there is
a block on which t;; > t;j for all ¢ and j corresponding to roots in that block.

As in the proof of Theorem 3.9 we suppose that a(r;) = r, where x € ®*, and let zg
be the projection of x onto V;. Let x; be the projection of —a; onto V. Then u; = 1 + a1
spans the orthogonal complement of V; in V', and u; - u; < 0 since W is non-degenerate and
infinite. Finally z = z¢ 4+ wuy for some scalar w, and by Lemma 1.15 we have w > 1.

For each i € {2,3,...,n} let
a; - a1 = —C(’/Tmil) = —C;.

. n .
Write 21 =), 5 ptia;. Now z1 -a; = —a1 - a; = ¢;, for i > 2 and so

n
Mty = Z tijcj-
j=2

For each ¢ > 2 there is an integer j; such that
Zo - ¢a(ai) =T- ¢a(ai) = C(jiﬂmu) = d;,

where |d;| < ¢; and d; = 0 if and only if ¢; = 0. Writing zg = Y .- A\i¢a(a;), we have

A\ = it;jdj
j=2

forie€ {2,3,...,n}. Now observe the following.

o - xo—Z)\xg da(a;) ZAd —Zthdd

1=2 j=2
and
a; = Zﬂiai cay = —Zuicz‘ = _Zztijcicj-
=2 =2 i=2 j=2
Since cicj > |did;| > didj and t;; > t;; > 0 for all 4,5 € {2,3,...,n}

Z Z tijcicj Z Z Z t;jdidj.
7 J 7 J

But there is an irreducible component of W; for which ¢;; > t;j. As W is irreducible there is
an edge joining a; to this component, and hence there is an a; in this component for which
¢ > 0. Then tkkci > tkkdz > t;kdi,and SO

a] = Zztijcicj > Zztgjdzdj = X" Xg.

Therefore 1 +x1 - a7 <1 —x¢ - x9. Now

ul-ulz(:c1+a1)-u1
=a1-a1+ay-T;

=14ay-21.
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Thus u1 - uq1 < 1—xg- 2o and since uq - u; <0,

l—29-x
1>-—0 "0
Uy - Uy
Since x € @
l=x-x
= (xo +wu) - (xo + wuq)
= Xg - Xo —|—w2u1'u1.
Hence
1—29-x
w?= 070
Ul - Uy

But w > 1 and we have obtained the desired contradiction.

It only remains to deal with groups that have Coxeter diagram

(for which we cannot assume that o(W;) = Wy). These are considered in detail in the next
section. ]

3.5 Some Examples

To complete the proof of Theorem 3.16 and to foreshadow the arguments used in the next
chapter we look at two examples. We find Aut(WW) for the nearly finite Coxeter group with
diagram

2 4
5 e o

3¢ q
155

where ¢ > 2. After this example we consider nearly finite groups with W irreducible of type
An—q for n # 6, Dory1, Eg or Er7. First some preliminary results.

3.18 Lemma Let W be a Coxeter group with a;, a; two simple roots. If the edge joining
the nodes corresponding to a; and a; is labelled with an odd number, then r; and r; are
conjugate.

Proof Suppose the edge joining the nodes is labelled 2k + 1. Then (r;r;)?**1 =1 and so
ry = (ryra)Pri(riry)* = (ryr)fri(riry) "

whence r; and r; are conjugate. ]

3.19 Lemma Let W be a Coxeter group with 11 the set of simple roots. If we can find

subsets I and J of II such that II = IU.J and any edge joining a vertex in I to a vertex in J
has an even label (or is co), then no reflection in W7 is conjugate to a reflection in W;.
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Proof For each simple reflection r; define f(r;) € {1,—1} as follows: if a; € I, then f(r;) =1
while if a; € J, then f(r;) = —1. If a; € I and a; € J then m;; = 2k for some k, and hence

(FOra)f(r)™ = (=1)* = 1.

(If m;; = oo there is no relation.) For other values of i and j the equation holds trivially.
Thus f defines a homomorphism from W to an abelian group. If r; € Wi and r; € W, then
f(r;) # f(r;) and therefore r; and r; cannot be conjugate. ]

Using these last two results it is possible to write down representatives of the conjugacy
classes of reflections. Choosing a simple reflection r;, any other simple reflection connected
to 7; by a path whose labels are all odd is in the conjugacy class of ;. No other simple
reflection is in this conjugacy class. Consider, for example, the following diagram:

There are three conjugacy classes of reflections with representatives rq, r3 and r¢.
Suppose now that W is a Coxeter group with diagram

2 4
5. .
3¢ g

155

Then every simple reflection is connected to r; by a path on which every edge has an odd
label. By Lemma 3.18 this implies that all simple reflections are conjugate to 71, and hence
that W has a single conjugacy class of reflections.

As we know, W; and Wy are maximal finite standard parabolic subgroups of type
Ay xHy. If ¢ > 5, then Wy, o, is also a maximal finite subgroup. Thus (r2) = WiNWyg, q,1
and by Lemma 1.32 every automorphism of W maps 75 to a reflection. There is only one
class of reflections and hence all automorphisms preserve reflections. Similarly, if ¢ < 5 then
Wiai,a0,a. } 18 @ maximal finite subgroup, and since

(ra) = Wi N Wa VWiayam.00)

we see that again automorphisms of W preserve reflections. Thus Aut(W) = R(W).

Let o € Aut(W). Since o must map the maximal finite subgroup W; to another
maximal finite subgroup, up to inner automorphisms we may assume that a(W7y) is Wy or Ws.
If (W) = W7 then the argument used in Theorem 3.16 shows that « is inner by graph. So
suppose that a(W7) = Ws.

The simple reflection 75 is central in W7 ; therefore
a(rs) € Z(Ws) = (rq, wa),

where wso is the longest element in W5. As a(rs) is a reflection and r4 is the only reflection
in Z(W3) we can see that a(rs) = r4. By Lemma 1.17 Ref(W1) = Ref(W{ 4, a5,0,1)U {75 }
while Ref(W2) = Ref(Wy 4, 05,05 3)U{74 }. As ar5) = 4 we can see that the reflections in
Wi as,a5,a0 y @are mapped to reflections in Wy, 4, 451 by @, and thus

O‘(W{ az,a3,a4 }) = W{ a1,as,as }+

Let o be the permutation (12)(345). Then & : Wia, as,a51 — W{as,a4,a5} given by o(r;) = ro;
is an isomorphism. Thus a¢ is an automorphism of Wy, 4,451, @ Coxeter group of type
Hs. Using Proposition 2.11 a6 is either inner or we may follow ag by an inner automor-
phism and obtain the automorphism &. Hence, following o by conjugation by an element of
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Wi ay,a3,a5 } We may assume that a(W1) = Wa, a(rs) = ry and either alw, = or else

aj,ag,ap }
a( {ra,r3,74,75 }) = {ry,r3,r4,75 }. In the second case « is inner by graph by Theorem 3.9.

Suppose, for a contradiction, that a\w{ aLagag) = &. Then we have

where af = —2la; —laz — (1+1)as, | = (1++/5)/2. Note that a%-a; = (1—+/5)/4, ak-a3 =0
and af - ag = 0. As rz7q; and 173 both have order 3, we can see that x - af = +1/2. Given
that r, = r_, we may replace x with —z, if necessary to ensure that = - af = —1/2. Similar
arguments show that = - a; = c(jm,) for some j coprime to ¢, z-a3 = 0 and = - ay = —c(kms)
for some k coprime to 5. As usual note that c(m,) > |c(jm,)| and c(75) > | c(kms)|.

Let 2o = <1+2\/5> ar + (#) az — c(kms)ay + (—3+2(1_\f)c(ﬁrq)> a

To-ayp =

1+v5 1{1++5
2 2 4

1+5
4

fo- (3+2<1—2¢5>c<j7rq>>

(4+4v5—-1-v5-3-3V5
—2(1+V5)(1 - V5) c(jm))

=c(jmy) =x - a1

| =

x0~a3:—% (1+2\/5>+1+4\/5+0+0
=0==x-a3
{lfo'a4:0—|—0—C(k‘7T5)+0
=T a4

= (55 (5
Lo Q5 = 5 ai - as + 1 as - as
— c(kms)ay - al + (3 +2(1 —2\/5) C(jﬂ'q)> as -l
1+v5)\ [1-+5
_< : )( . >+0+0
<3+2(1—2\/5)c(jﬂq)> <(1+\/5)1+4\/3+0_3+2\/5>

34+2(1—V5)c(my) \ (3+V5 3+V5
+ 2 2 2

+

N —

_ _ !/
=——=2z- a5

N | —

Thus z is the projection of x onto V3, the space spanned by { a1, as, a4, a5 }.
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Let

22 = (2+ V5 +2(3+ V5)c(ny))ar + 3(5 +3V5+ 43+ V5) c(my))as

+ %M + i(? +3vV5 +8(2 + V5) c(my) ) as.

Then
To-a; =2+ V5 + 23+ V5)c(m,) — %(5+3¢5+4(3+¢5)c(7rq))

1++5

16
=c(my) = —az - aq
(2+ V5 +2(3+V5)c(n,))
1

L0— (7+3v5 +8(2 + V5) c(m,))

1
2
+
+

To - a3 —

(5+3V5+4(3+V5)c(my)) +0+0

e |

1
= 1 :—c(7r5):—a2-a3

S

902'@4:5:—@2'04

x2'a5——1+4\/5(2+\/5+2(3+\/5)C(7rq))+0+0

+ i(7+ 3v5 +8(2 + V5) c(m,))
=0= —ag - as.

Thus x5 is the projection of —as onto V5. As before this tells us that us = x5 + ag is
orthogonal to V5.

Ug - Uy = (Ta+ag) - Uy =ag - Uy =as - ra + 1

——1+\/3(2+\/5+2(3+\/5)C(7Tq))

4
- (“;6\/5) (5+3\/5+4(3+\/5)C(7Tq))—1+0+1
1+

4
— 2‘/5 — 202+ VB) e(ry) — 2(3 + V5) ¢(m,) < 0,

as c(my) > 0. Together with that fact that Ws is positive definite, this implies that W is
non-degenerate.

We find that

v s (1+4\/5> <1+2\/5> +0+0+3+2(1—2\/5)c(j7rq)

1
= 13— Vh+4(1 = V5)e(jmy))
and hence it follows that

1++5 1+5
B ay - o+ 4

. <3+2<1 - ﬁ)c(im)) .

To Ty —

) as - xo — c(kms)ay - g

2

9-—3v5
8

= ?(kms) + +2(2 = V5) c(jmg) + 2(3 — V5) ¢ (jimy).
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Note that c¢?(75) = (3 ++/5)/8. Now

9—-3v5

S5 — 22— VB)elimy) — 208 - VB) (i)

1—$O'$0—UQ'UQ:1—C2(I€7T5)—

12¢5+%2+¢5cw@+2@+vﬁm%%)

3+5
)

= (¢*(ms) — *(kms)) + (2(2 + V5) c(my) — 2(2 — V/5) c(jimy))
+ (2(3 + \/g) C2(7Tq) —2(3 - \/g) C2(j77q))'

+

+ C2(7I'5)

We claim that this last expression is strictly positive. First observe that ¢?(ms5) —c?(kms) > 0.
Next we have

203+ V5) ¢*(my) > 2(3 — V5) P (my) > 2(3 — V5) ¢ (jmy).
Finally, since c(jm,) > —c¢(m,) and 2 — /5 < 0,
22 — VB) e(jmg) < 2V5 — 2)clmy) < 2(2 + V) clry).
Thus

2(2 +V5) c(my) — 2(2 — VB)e(jmy) >0 and  (2(3 +V5)c*(my) — 2(3 — V5) 2 (jmy)) > 0

establishing our claim. Therefore 1;;“;1;”0 <1,as us-us <0.
Following the proof of Theorem 3.16, if we write x = xg + wus then either w > 1 (if

r€®)orw< —1 (if x € ®7), and hence w? > 1. We know that z is a root, thus

l=x 2= (xg+wuz) (xg+ wus)
:xo-xo—l-wng-uQ

and hence
1—29-x
w?= 0
U2 - U2
which is a contradiction. So this case cannot arise and we conclude that all automorphisms
are inner by graph. This completes the proof of Theorem 3.16.

If there are many maximal finite standard parabolic subgroups then, as the above
example illustrates, there is a chance that all automorphisms preserve reflections. At the
other extreme the following result looks at some nearly finite Coxeter groups where it is only
assumed that one standard parabolic subgroup is finite.

3.20 Corollary Suppose W is a non-degenerate nearly finite Coxeter group such that W;
is of type A, 1 for n # 6, Doy11, Fg or Er. If there is an | # i such that m;; is odd, then all
automorphisms of W are inner by graph.

Proof If my is odd then in the Coxeter diagram of W there is an edge with an odd label
incident with the vertex corresponding to ;. By assumption, all the edges in the diagram of
W; have odd labels. Thus, by Lemma 3.18, W has only one conjugacy class of reflections.

Let o € Aut(WW) be any automorphism of W. Up to inner automorphisms we may
assume that a(W;) = W; where W; has the same type as W;, by Theorem 3.14. Thus there
is a permutation o € Sym,, such that  : W; — W, given by &(r;) = rs is an isomorphism.
Then ad is an automorphism of a group of type A, 1 for n # 6, Dox11, Fg or E7. By
Propositions 2.4, 2.8 and 2.9 this automorphism is inner. In particular this implies that «
maps the reflections in W; to reflections in W;. But W only has one class of reflections and
hence « preserves reflections and the result follows by Theorem 3.16. 1
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Chapter 4

Affine Weyl Groups, Hyperbolic Groups and
Other Infinite Coxeter Groups

In the last chapter we showed that if W is a nearly finite Coxeter group, then any reflection-
preserving automorphism is inner by graph. The question remains whether the reflection
preserving hypothesis is necessary. In this chapter it will be shown that all automorphisms
of hyperbolic Coxeter groups and affine Weyl groups are inner by graph. The proofs in
this chapter will follow the same plan. First it will be shown that any automorphism must
preserve Ref (W), the set of reflections. In cases where the diagram of the group is a forest
with no unusual labels this will finish the proof, by Corollary 1.44. In all but four of the
remaining cases the group is a non-degenerate nearly finite group, and the result follows by
Theorem 3.16. The last four cases are dealt with by separate arguments.

§4.1 Preliminaries

4.1 Proposition Suppose that W is a Coxeter group, with Il = {ay,...,a, } the set of
simple roots. Suppose that « is an automorphism of W and

a(ri) =re,

for all r; € II. Let M and N be the n x n matrices whose (i,j) entries are (respectively)
a; - a; and b; - bj, then M and N have the same signature.

Proof Identify elements of V' with their coordinate vectors (written as column vectors)
relative to the basis II, and let X = (by]---|b,) be the matrix with the b; as columns. We
have N = X!MX. If X is nonsingular we see that N and M have the same signature.

If X is singular then {b1,...,b,} span a proper subspace U of V. However, if
g =Ty, Ty, ... Ty, for some r,, € ®, and if v € V is arbitrary, then

l

gu — v = Z(rvi)(rvi+1 C Ty, (v))

i=2
is in the space spanned by v1,vs,...,v;. Since 7p,,7h,,. .., 7, generate W it follows that U
contains gv — v for all g € W and v € V. In particular, U contains r;(a;) — a; = 2a; for all 1,
contradicting the fact that U is a proper subspace of V. ]

4.2 Corollary Let o : W — W be a homomorphism, with «a(r;) = rp, for all i. If the
matrices (a; - aj) and (b; - b;) have different signatures, then « is not an automorphism.

4.3 Lemma If a reflection is conjugate to a simple reflection r; with the property that
(r;) can be written as an intersection of maximal finite subgroups, then all automorphisms
of W map that reflection to a reflection.

Proof Using Lemma 1.32 we know that r; is mapped to a reflection by all automorphisms
and the rest is clear. ]

4.4 Lemma IfW isa Coxeter group such that W; is finite for all i, then any automorphism
of W maps reflections to reflections.
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Proof If r; is any simple root, then (r;) = [, W; is the intersection of a collection of
maximal finite standard parabolic subgroups. By Corollary 1.31, if « is any automorphism
of W, then «a(r;) is a parabolic subgroup of order 2. Thus (r;) is conjugate to a parabolic
subgroup of the form (ry) for some simple reflection 7. Hence «(r;) is conjugate to r; and
so is a reflection. ]

This lemma applies exactly to the compact hyperbolic Coxeter groups and the affine
Weyl groups.

§4.2  Affine Weyl Groups

In the Chapter 2 the automorphisms of the finite irreducible Coxeter groups were classified.
It was mentioned, in Lemma 1.1, that a Coxeter group is finite if and only if it is positive
definite. The obvious next class to consider is the class of positive semi-definite Coxeter
groups; it is well-known that these are isomorphic to the affine Weyl groups.

The following is a list of the positive semi-definite Coxeter groups.

! §f>l }:
8

wal}
I\
I
[\
o~
~

s
3
IS

R

3

o
3

By convention the fln, Bn, C’n and Bn diagrams have n + 1 vertices. Note that if W is a
Coxeter group of one of the above types then W, is finite for all <. Thus, by Lemma 4.4, if
a is any automorphism of a group W of one of the above types, then « preserves Ref(W).
Therefore except possibly for A; and A,,, a is inner by graph, by Corollary 1.44.

A,: Let W be a Coxeter group of type A,,, where n > 1, with diagram

First observe that a; + ag + -+ - + a,41 is orthogonal to a; for all ¢ and so B is degenerate.
Letting a(r;) = rp, where b; € ® we may define ¢, : V. — V by ¢, (a;) = b;. Noting that there
are two choices for b; and replacing b;11 with —b;11 at need we may ensure b; -b; 11 = a; - a;41
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fortc=1ton—-1. If b,

by =

an - a1 then ¢, is orthogonal and « is inner by graph by
Theorem 1.44. If ¢4 (an) - ¢a(a1) = —ay, - a1 = 1/2 instead of —1/2 then

o1 —1/2 0 0 1/2 7
—-1/2 1 —1/2 0 0
0 -1/2 1 0 0 1
det(bl . b]) = det : . . : : = on—2 75 0.
0 0 0 1 —1/2
L1/2 0 0 -1/2 1 |

This means that the matrices (a; - a;) and (b; - b;) have different signatures and hence, by
Proposition 4.1, this case cannot arise. Hence Aut(W) = Inn(W) x Gr(W) =2 W x Iz(n),
using Lemma 2.16.

Ay: Let W be a Coxeter group of type A; with diagram

Modulo inner by graph automorphisms we may assume that «(r1) = r;. Now riry generates
an infinite cyclic subgroup that is characteristic (being the unique cyclic subgroup of index 2).
So a(ryry) is r1r9 or rory, whence «(rs) is 79 or r17r9ry, and so « is the identity or conjugation
by r1. Thus we have proved the following.

4.5 Proposition If W is a Coxeter group with B positive semi-definite, then all auto-
morphisms of W are inner by graph, and hence

Aut(W) =W x Gr(W).

§4.3 Hyperbolic Coxeter Groups

In this section we follow the terminology of Humphrey’s book [Hum90]. The following defi-
nitions are taken almost directly from §6.8 of [Hum90].

4.6 Definition Denote by wy, s € II, the basis dual to the basis a4, s € 11, relative to B.
The cone C' is defined as follows.

C={ eV | B()\,as)>0f0ralls€H}:{chws \ cs>0}.

In particular, all wg lie in the closure D of C, which is a fundamental domain for the
action of W on (J, .y w(C), a subset of the dual space.

4.7 Definition Define the irreducible Coxeter group W, with simple roots II, to be
hyperbolic if B has signature (n — 1,1) and B(A,A) < 0 for all A € C.

Humphreys’ definition, while being common, is not universally used. In §6.9 of [Hum90)]
Humphreys provides a list of the hyperbolic Coxeter groups. The only infinite classes of
hyperbolic Coxeter groups are the rank three cases. If we exclude infinite bonds it is clear
that if W is an infinite rank three non-degenerate Coxeter group then W; is finite for all ¢
and so W is nearly finite. Thus by Lemma 4.4 and Theorem 3.16 all automorphisms of W are
inner by graph. The degenerate cases are dealt with by Proposition 4.5, while rank 3 Coxeter
groups with infinite bonds are dealt with in Chapter 5.

We now concentrate on the rank > 4 case. See Table I on page 70 for a complete list
of the groups mentioned in Humphreys. Immediately following Table I on page 74 is a full
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explanation of how to read this table. For later reference we have numbered the hyperbolic
Coxeter groups listed in [Hum90]. Table I gives this numbering, which roughly follows the
ordering of the diagrams by size in [Hum90] but is otherwise arbitrary.

It should be noted at this stage that not all hyperbolic groups are nearly finite. For
example, a group W of type Hi7 is hyperbolic but no parabolic subgroup of the form W;
is finite. Note that all non-degenerate nearly finite groups have signature (n — 1,1) and so
satisfy part of the definition of hyperbolic Coxeter groups.

In view of Corollary 1.44 and Theorem 3.16 there are several ways of showing that all
automorphisms of W are inner by graph. First we show that all automorphisms preserve
reflections. If the Coxeter diagram of W is a forest with no unusual labels, then we are
finished. Similarly if W is nearly finite. In other cases a different argument is used.

In some cases all reflections are conjugate to a simple reflection with the property
mentioned in Lemma 4.3 and so all automorphisms preserve Ref(W). For example, if W is a
Coxeter group of type Hszo on Humphreys’ list with diagram

the maximal finite standard parabolic subgroups of W are Wa, W3 and Wy, 4,3 Now
(r2) = Wias,as) N W3 and (r3) = Wya, 451 N Wo. Furthermore 71 = rory7o7r172 is conjugate to
ro and similarly r4 is conjugate to r3. Any reflection in W is conjugate to a simple reflection
and so by Lemma 4.3 all automorphisms of W map reflections to reflections.

4.8 Notation If W is a Coxeter group with II the set of simple roots, then the parabolic
subgroup Win {4, a,,,...} Will be denoted by W;

1%2...*

Ho1: Let W be a Coxeter group of type Hg; with diagram

It is easily checked that the maximal finite standard parabolic subgroups are: Wi of type
Hs, W5 of type Ay x I5(5), W3 of type I2(4) x A; and Wy of type Bs. It is easy to see that

<T1>:W2ﬂW3ﬂW4

and so, by Lemma 1.32, r; is mapped to a reflection by all automorphisms. A similar argument
can be used for the remaining reflections. A similar argument can be used for the groups:
Ho1—H14 (the compact hyperbolic groups), Hiz, Ho1, Hss, Hz7r and Hss. Except for the
compact groups the arguments are summarized in Table II on page 74. The first 14 groups
listed there are the compact hyperbolic groups and we may use Lemma 4.4 to show that
Ref (W) is preserved.

His: Let W be a Coxeter group of type His with diagram

The maximal finite standard parabolic subgroups are: W3 = W, of type A3z and Wi of type
IQ (6) Now
<T3> =WiaNWy

and all simple reflections are conjugate to r3. So, by Lemma 4.3, all simple reflections are
mapped to reflections by any automorphism. Hence the set of reflections is preserved by all
automorphisms.

A similar argument can be used for the groups: Hig — Hao, Haz, Hos, Hos, Hag, Haz,
H34) H427 H447 H45) H487 H50) H52 - H547 H56 - H587 HGO) H61) H63 - HGG) HGS - H70 and
Hr72. These arguments are summarized in Table IIT on page 75.

63



64

Hyperbolic Coxeter Groups

His: Let W be a Coxeter group of type His with diagram

1 °2
4
4 *3
4
The maximal finite standard parabolic subgroups are: W; = W3 of type Bs and Wy of type
Ag. Now
<7“2> = W1 N W3 N W4

and so 19 is always mapped to a reflection. Using the argument from Hig we can see that
r1 and rg are conjugate to ro and so are also always mapped to reflections. Now look at
W1 of type Bs. Suppose that « is an automorphism of W. Then a(W7) is a maximal finite
subgroup of W of order 48. Thus (W) is a conjugate of either Wy or W3, and so, up to inner
automorphisms, we may assume that o(W7) = Wy or W3. Now there is a graph automorphism
which interchanges W; and W3 and hence, up to inner by graph automorphisms, we can
assume that « fixes Wy. Thus aw, is an automorphism of a group of type Bs, and so ry4 is
mapped to a reflection, by Proposition 2.8. As inner by graph automorphisms preserve the set
of reflections the original automorphism must also map reflections to reflections. (Note that
it is conceivable that the image of a parabolic subgroup of type Bay11 could be a parabolic
subgroup of type Ay X Dayk11, but for this diagram there are no parabolics of type Ay x Ds.)

A similar argument can be used for the groups: His, Hss, Hs1, Hee and Hyi. The
Table IV on page 76 summarizes the arguments.

Hso: Let W be a Coxeter group of type Hszp with diagram

The maximal finite standard parabolic subgroups are: Wy of type Ay x I2(6), W3 of type
I;(5) x Ay and Wy of type Hs. The simple reflections 71, o and r3 can be dealt with by
noting that they are all conjugate and

<T1>:WQQW3QW4.

Suppose that « is an automorphism and look at a(W3) which must be conjugate to a maximal
finite standard parabolic subgroup. A consideration of the orders shows that, up to inner
automorphisms, we may assume that « fixes W3 setwise. Now the centre of W3 is (r4) and
so «(ry4) is the non-identity element in

Z(a(Ws3)) = Z(W3) = (r4)

and so a(ry) = r4. Thus all automorphisms preserve the set of reflections.

In some cases this argument must be applied to a parabolic subgroup which is the
intersection of several maximal finite standard parabolic subgroups. For example consider
the argument for a group W of type Hsg with diagram

There are two classes of reflections with r; and ry as representatives. The maximal finite
standard parabolics are Wy, W3, Wy and W5 and it is easy to deal with r; as

<T1>:WQQW3QW4QW5.

Now observe that (ry) is the centre of the parabolic subgroup W5 N W5 which is of type
A1 x Ag. If « is any automorphism, then by Corollary 1.31 a(W3 N W5) is a parabolic
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subgroup of order 12. Hence, up to inner automorphisms, we may assume that a(Ws N Wj)
is a standard parabolic subgroup. There are only two types of Coxeter group with order 12,
namely A; x Ay and I5(6), but W does not have a standard parabolic subgroup of type I5(6)
and so a(W5NW5) is a standard parabolic subgroup of type A; x As. In any case the centre
of such a subgroup has the form (r;) for some simple reflection r; and hence r4 is mapped to
a reflection.

Similar arguments can be used for the groups: Hszo, Ha1, Hzs — Ha1, Hasz, Has, Har,
Hag, Hs9 and Hg7. Table V on page 76, summarizes the arguments.

Hos: Let W be a Coxeter group of type Hog with diagram

The maximal finite standard parabolic subgroups are: Wy = W3 of type Ay x I3(4) and finally
W14 of type I»(4). The simple reflections 7o and 73 are easily dealt with as (ro) = W3 N Wiy
and similarly for r3. Suppose that a(ry) is not a reflection. Modifying a by inner by graph
automorphisms if necessary, we may assume that o(Ws3) = Ws. Now

<7“1> = Z(Wg) M W3
and so

(a(ry)) = oz(Z(Wg)) N a(Ws)
= Z(Wz) N C!(Wg)

Now Wy N a(W3) = a(Wy N W3) is a parabolic subgroup of Wy of type A; x A, and hence
equals w(ry,r;)w~"! for some w € Wy and i = 3 or 4. So

Z(Wg) N Oé(Wg) = w('rl,ri>w_1 N Z(Wg)
=w((ri,r) N Z(Wa))w™"

= (wriw™ ).

Hence a(ry) = wriw™?!, a reflection. A symmetrical argument shows that a(ry) is also a
reflection.

A similar argument can be used for the groups: Hos, Hog and Hss.

The remaining arguments apply to only one group on the list.
His: Let W be a Coxeter group of type Hig with diagram

1 2

4 4

4e 3
4

The maximal finite standard parabolic subgroups are: W3 = W, of type B3 and W15 of type
I5(4). It is easily shown that r3 and 4 map to reflections. Now

<’I”1,’I”2> = W3 N W4

is of type Az and so a(ry,r2) is, up to inner automorphisms, a standard parabolic subgroup
of order 6. Hence we may assume

alry,ra) = (r1,ra2).

But all the automorphisms of Ao fix the set of reflections, and so r; and ry are mapped to
reflections.
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Hoy: Let W be a Coxeter group of type Hay with diagram

4 *3
1s
The maximal finite standard parabolic subgroups are: W3 = W, of type Bs and W5 of type
A X Ay. For r note that (r1) = Wo N W3 N Wy. Up to inner automorphisms, a(Ws N Wy)
is a standard parabolic subgroup of order 8 and so we may assume

O[(WQ M Wg) = W2 N Wg.

As 7y is a non-central involution in Wy N W3, a(r2) must also be a non-central involution in
this subgroup. Hence a(r2) is a reflection, and the remaining simple reflections are conjugate
to 7o.

Ho7z: Let W be a Coxeter group of type Hor with diagram

The maximal finite standard parabolic subgroups are: W; of type Bz, W5 of type A; x As
and W3 of type I5(4) x A;. The reflections r3 and r4 are conjugate and

<’I”4> :WlﬂWQHW;g.

Up to inner automorphisms W7, of type Bs, is fixed since it is the unique standard parabolic
subgroup of type A1 x Ay. Therefore, by Proposition 2.8, r5 is mapped to a reflection. Finally

(r1) = Z(Wz)

and up to inner automorphisms we may assume W5 is fixed and therefore r; is also fixed; in
particular, it is mapped to a reflection.

644 Automorphisms

We have just seen that if W is a hyperbolic Coxeter group, then any automorphism of W
preserves reflections. Thus if the Coxeter diagram of W is a forest with no unusual labels
or if W is nearly finite, then all automorphisms of W are inner by graph. These arguments
cover all but 4 of the types listed in Table I. The exceptions are Hy7, Hao1, Hs7 and Hsy. In
the first three cases a simple argument involving the signature of the form can be used; the
final case is a little more complicated.

Hi7: Let W be a Coxeter group of type Hi7 with diagram
4
1e 2
4 4
4e o3
4
Suppose we have an automorphism «. As shown in the previous section o maps reflections
to reflections. Choose b; € ® with a(r;) = rp,, noting that there are two choices for each b;,
one positive the other negative. Replacing b; with —b;, if necessary, we may choose b; such
that by - by = aq - a4. Now choose the sign of by so that b - by = a1 - a9, and finally choose the

sign of b3 so that by - b3 = ao - a3. We are now left with 2 possible values for b3 - by, namely
by - by = 2 /2. In the following discussion these choices will be denoted as follows

4

N
. .
WA

b3-b4:a3-a4

[
.
N}

g b3 by = V2/2 = —az - a4

w
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In the first of these two cases ¢, preserves the bilinear form, and so by Corollary 1.44 it
follows that « is inner by graph. The second case is impossible since the matrix (b; - b;) turns
out to be singular, contradicting Lemma 4.1. Virtually identical arguments to this apply for
the groups Ho1 and Hs7: in both cases ¢, must preserve the form since the alternative Gram
matrix turns out to be singular.

Finally the exceptional case: let W be a Coxeter group of type Hz; with diagram

1. .3

To save time label an edge with a minus sign if b; - b; = —a; - a;. If a vertex has two incident
edges labelled with a minus sign then changing the choice of b; corresponding to that vertex
removes two minus signs and adds one. If all three edges are labelled with minuses then
this removes them all. Thus we may reduce the number of minus signs until each vertex
is incident with at most one minus. Hence we can have at most two minus signs and they
cannot be incident. The case where there are two minus signs contradicts Lemma 4.1, since
(b; - b;) turns out to be singular.

We are left with the possibility that there is exactly one minus. The standard parabolic
subgroup Wig, 4.} is a maximal finite subgroup and so, up to inner by graph automorphisms,
we may assume that it is fixed elementwise. Now suppose that a(r3) =z and a(ry) = y. We

may assume that

1
al-x:ag-x:al'y:ag-y:—§ (4.9)

while - y = 1/2. It is worthwhile noting at this point that as r;a; = a; + a; for all 4, j the
roots are all integral linear combinations of the simple roots, and hence x and y must also be
integer combinations of the a;. In view of the equations 4.9 it follows that x and y both lie
in the set {v, s |r, s € Z} where

Ups = (—1+7r+s)ay + (=1 + 7+ s)az + raz + say

Now
Vps*Ups =1—3rs
and so if v, ¢ is a root we must have 1 — 3rs = 1 where r = 0 or s = 0. Thus

x=(=14+r)a; + (=1+7r)az +ras
y= (=14 s)ay + (=1 + s)as + say,

for some integers r, s. This gives -y =1 —3rs/2. But -y = 1/2, and so

1
rs= -
3

which implies that » and s are not both integers. Hence there is no such automorphism.
Thus we have proved the following theorem.

4.10 Theorem If W is a hyperbolic Coxeter group (in the sense of [Hum90]), then all
automorphisms of W are inner by graph and hence

Aut(W) = Inn(W) x Gr(W).
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§4.5 Other Simple Diagrams

The results developed so far can clearly be used on a wide variety of Coxeter groups. For
example, consider the following obvious generalizations of types, F/, F', G and H.

En: . N . . o« e . 71210
1 2 3 5 6 n—1 n

F,s: e e e e WAL Lo 2<s<t,s+t>6
1 2 s—1 s s+1 s+2 s+t

Grs: L 1<s<t, s+t>4
1 2 s—1 s s+1 s+2 s+t

H,: . e . 5 ; 2<s<tors=1andt>4.

. . . . .
1 2 s—1 s s4+1 s+42 s+t

Some of these types have already been covered: Types Fig = Hro, F33 = Hag, Fi2 = Huar,
Hi 4 =Hi1, Hao = Ho2, G1,3 = H3z1 and G2 = Hzy correspond to hyperbolic groups.
4.11 Lemma Suppose that the Coxeter group W is the direct product of two nontrivial
irreducible parabolic subgroups Wi and W of types A, and A, respectively. If N is a
normal subgroup of W then one or other of the following two alternatives must hold:

(1) N=W;nN)W;NN),

(2) N={weW|l(w)iseven } =WT.
Proof Suppose that alternative (1) does not hold, and let w € N with w ¢ (W;NN)(W,;NN).
Write w = xy with x € Wi and y € Wy, and observe that neither « nor y is in N. Since N is
normal, conjugating by elements of W; shows that 2’y € N whenever z and 2’ are conjugate
in Wy, and hence x~ 2’ = (zy)~!(2'y) € N. So modulo W; NN the element x of W is equal
to all its conjugates; that is, it is central in W;/(W;N N). Similarly, y(W; N N) is central in
in W;/(W; N N). But all symmetric groups have the property that the only quotient with
nontrivial centre is the abelianized group, which has order 2. So W; N N and W; N N are,
respectively, the derived groups W and W/, of W and W;. Now N must be one of the three
subgroups of W containing W;W/. But N cannot be W; W/ or W;W, since in both these
cases we would obtain N = (W; N N)(W; N N). So N ={we W |I(w)is even }. 1

4.12 Corollary Suppose that the Coxeter group W is the direct product of two nontrivial
standard parabolic subgroups W; and Wy of type A, and A,, respectively. Then the only
direct product decompositions of W are as follows.

(1) W =Wr xWjy.

(2) W2XW;xWHtif|I|=1.

(3) WxW,;xWtif|J|=1.
Proof Suppose W = GH with G, H < W and GN H = {1}. Suppose that neither G nor H
is WT. By Lemma 4.11 G = AB and H = CD where A,C <« W; and B, D < Wy, and it fol-
lows that W; = AC and W; = BD; moreover, these are direct product decomposition of Wy
and W;. But no symmetric group has a nontrivial direct product decomposition; so we de-
duce that either A = D = {1} or B = C' = {1}, and hence that {G,H } = {W;, W, }.
Then H # W™, and so we may write H = CD as above. Every proper normal sub-
group of a symmetric group is contained in the alternating group; so if C' # W; then
C=WrNnC <WtrnCD = {1}. If D # Wy then D < W*tND = {1}, f C =W,
and D = W; then W+ < W = CD and contradiction. So either C' = Wy and D = {1} or
D =Wj and C = {1}. As W7 has index 2 in W the result follows. 1

Now consider the type E,, (n > 10). The hypotheses of Corollary 3.20 are satisfied:
Wy is of type A,,_1, where n — 1 # 5, and mys3 is odd. So it follows immediately that all
automorphisms are inner (as there are no graph automorphisms).

For Hy,-1 (n > 5) we see that W5 is finite and is the unique maximal standard
parabolic subgroup of type A; X A,,_o, and 71 is the unique nonidentity central element
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of Wy. It follows that any automorphism must map r; to a conjugate of itself, and since all
reflections are conjugate we deduce that all automorphisms are reflection preserving. Hence
by Theorem 3.16 it follows that all automorphisms are inner (since again there are no graph
automorphisms).

For G1,,—1 (n > 4) there are two classes of reflections, representatives of which are r4
and ry. The argument used for H; ,,—; applies to show that each automorphism maps r; to
a conjugate of itself. Now W7 is finite and is the unique standard parabolic subgroup of type
A,_1. Note that all the reflections in W7 are conjugate to ro. If n # 6 then all automorphisms
of A, _1 preserve reflections, and it follows that in this case all automorphisms preserve the
class of reflections conjugate to r. If n = 6 we consider instead W3, which is the unique
maximal standard parabolic subgroup of type G x A3z. Without loss of generality we may
assume that « is an automorphism of W satisfying a(W3) = W3. Thus a(rire)® = (rir2)3,
since (ri72)? is the unique nonidentity element of Z(W3). The only conjugates of r; in W3
are 11, rorire and r17ror17Tor1 and so o must permute these. It follows that

alry) = 06(7"1?”2?”1?”27"1)06(7"1?”2)3 = 8(7“17“2)3

where s is 71, roriry or rirerirery. In all these cases we find that a(rg) is conjugate to 7o,
and so in this case also the class of reflections conjugate to 7o is preserved. It follows from
Theorem 3.16 that all automorphisms are inner (there being no graph automorphisms).

Now consider the cases Fs;, Gs and Hg; (2 < s < t). Observe that Wy and W4
are the only standard parabolic subgroups of types As_1 X A; and Ay x A;_q. If « is an
automorphism of W then, modulo graph automorphisms if s = ¢, we conclude that a(W) is
conjugate to Wy and a(Wsy1) is conjugate to Wy 1. If s = 2 then rq is the unique nonidentity
central element of Wy, and so «(r1) is conjugate to r1. If s > 2 then, by Corollary 4.12, each
automorphism of a group of type As_; x A; preserves the factors (since s — 1 < t). If
s —1 # 5 then all automorphisms of A;_; preserve reflections, and so it follows that a(ry) is
a reflection. If s —1 =5 we use Wy instead of W,. By Corollary 4.12 any automorphism of
a group of type Ag X A;_1 preserves or interchanges the factors, and since all automorphisms
of a group of type A, preserves reflections we again conclude that a(ry) is a reflection.

If t = 2 then s = 2 and by symmetry we deduce that a(rsy¢) is a reflection. If ¢ > 2
then Wy, has type As x A;_1, and if ¢t — 1 # 5 then any automorphism of such a group
maps the reflections of the A;_; factor to reflections. In particular, a(rs4) is a reflection.

If t—1 =5 and s > 2 then by considering W (of type As_1 x A;) the same argument
again proves that a(rsy¢) is a reflection.

Finally suppose that s = 2 and t = 6. Without loss of generality we may suppose that
a(Ws3) = W3 (of type Ag x As). If a(rg) is not a reflection then o must induce a nontrivial
outer automorphism on the As factor; but we can still conclude that a(rg) has odd length.
So a(rg) ¢ WT. Now consider Wy = (r1) x W, where J = {a;|3 <j <8}. Since a(W>)
is conjugate to Wo we deduce that wa(W;)w™?! is a direct factor of W for some w € W.
Since wa(Wj)w™r € W+ we deduce from Corollary 4.12 that wa(W;)w™! = W, and since
automorphisms of groups of type Ag preserve reflections, we deduce that in fact a(rg) must
be a reflection. Thus in any case all automorphisms preserve reflections. Theorem 3.16 then
completes the proof that all automorphisms are inner by graph.

Note that this argument applies for Coxeter groups with the following diagram.

1 2 s—1 s s4+1 s+4+2 s+t
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Table I: Automorphisms of Hyperbolic Coxeter Groups

The Compact Hyperbolic Coxeter Groups

Hoa AL Uo W1 is finite of type Hs
1 2 3 4
Hoz R W7 is finite of type Hj
1 2 3 4
Hos Lo Lo W7 is finite of type Hj
1 2 3 4
Hoa Lo W, is finite of type As
12 .y
1e o2
Hos 4e o3 W1 is finite of type B3
4
le 4 2
Hoe 4e o3 W1 is finite of type B3
4
1e 5 .2
Hoz 4o s W, is finite of type Bs
4
1e o2
Hos 4 s W, is finite of type Hs
5
5
10 7 w2
Hoog 4 s W, is finite of type Hs
5
Hio AL Lo, W is finite of type Hy
1 2 3 4 5
Hiz A I W1 is finite of type Hy
1 2 3 4 5
Hia O Lo, W1 is finite of type Hy
1 2 3 4 5
His R W1 is finite of type Dy
1 2 3 .5
1 2 3
Hia T W1 is finite of type By



H15

Hlﬁ

Hi7

HlS

Hio

Hao

Hor
Haz
Has
Haa
Has
Hae
Haz
Has
Hag
Hso
Ha1
Hso
Hss
Haa
Hss

HSG
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The Non-Compact Hyperbolic Coxeter Groups

[N

NN

NN

. .
[SRNGIN]

. .
[SENNIN)

H15

p- 65

HOl

HlS

Hig

His

Hox
His
His
p- 66
His
His
p- 66
Has
Has
Hso
Hao
His
Has
His
His

HOl

W

Wy

Wi

Wi

Wy
Wy

Wy

Wy

is finite of type B3

is finite of type B3

p. 66

is finite of type As

is finite of type Bs

is finite of type Hj

p. 67
is finite of type As
is finite of type As
is finite of type B3

is finite of type H3

W5 is finite of type A; x As

Wy

I" is a forest
I" is a forest
I" is a forest
is finite of type Hj
I" is a forest
I" is a forest
I" is a forest
I" is a forest
I" is a forest

I is a forest
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Har

HSS
HSQ

Hao

Har
Hao

Has

H44

Has

Has

Haz
Has

Hao

Hso

Hs1

H52

H53

Hsa

H55

The Non-Compact Hyperbolic Coxeter Groups

HOl

HSO
HSO

Hazo

Hso
His

Hazo

Hig

HlS

Hazo

Hazo
Hisg

HSO

His

His

HlS

HlS

His

HOl

p. 67

I is a forest
I is a forest

T is a forest

I' is a forest
W3 is finite of type Ay

W3 is finite of type By

T is a forest

Wy is finite of type Dy

W is finite of type F}

T is a forest
I is a forest

I is a forest

I is a forest

T is a forest

I is a forest

I is a forest

I is a forest

I is a forest

—



Hro

Hn

Hro
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The Non-Compact Hyperbolic Coxeter Groups

N O e

*4

*4

*5

HlS

HlS

His

HSO

His

His

H15

Hig

His

HlS

His

Hazo

HlS

HlS

His

H15

HlS

W1 is finite of type B

p- 67

W is finite of type As

I is a forest

I is a forest

W3 is finite of type Ag

I is a forest

I is a forest

I is a forest

W3 is finite of type Az

I is a forest

I is a forest

I is a forest

W3 is finite of type Ag

I is a forest

I is a forest

I is a forest

73



74

Other Groups

Reading Table I The first column lists the name we will use, the second column gives the
Coxeter Diagram. In the compact hyperbolic case all maximal parabolic subgroups are finite
and all automorphisms preserve reflections. The final column gives the type of the parabolic
subgroup Wj.

With the non-compact hyperbolic Coxeter groups some work must be done to show
that all automorphism preserve reflections. In those cases the third column lists the argument
used. For example, the group Hag has an Hig in the third column; this indicates that the
style of argument used for H;g in the text applies to this group. Other arguments are referred
to by a page number. For example, the p. 66 listed against Ha; indicates that the proof that
all automorphisms of a Coxeter group of type Har preserve reflections is on p. 66. For ease
of reference the standard arguments and the pages on which they appear are as follows.

Ho1 p. 63
His p. 63
H1s p. 64
Hso p. 64
Hoas p. 65

The final column either specifies a finite maximal standard parabolic subgroup, in the
cases where W is nearly finite, or indicates that the diagram is a forest (with no unusual
labels), or again lists the page on which the proof is given.

Table 11

The first column names the group being dealt with. The second column lists the
simple reflections in the order in which they are dealt with in subsequent columns. The third
column lists the maximal finite standard parabolics. The final column shows the intersections
of maximal finite subgroups which give subgroups of the form (r;) for r; from the list of class
representatives, in the order in which they are listed.

Group|Reflections |Maximal finite subgroups (ri) =

Hiz  |r1,7r2,13,78 |(Wia, Wi, Wia, Was, Wog, W3g | Waz N Wy, Wiz N Wy, Wia N Wiy,
Wia N Was

Ho1 (11,172,173, 74 |Wia, Wiz, Wig, Waz, Woy, Was|Waz N Wiy, Wiz N Wiy, Wia N Wiy,
Wia N Was

Hze |r1,72,73,74 [Wo, W13, Wia, Wiy Wo N Wiy, Wiz N Wig, Wo N Wiy,

Hazr  |r1,72,73,74 |Wia, Wiz, Wig, Waz, Woy, Wiy | Waz N Wiy, Wiz N Wiy, Wia N Wiy,
Wia N Was

Hss 11,712,173, 74,|Wa, Wi, i # J, 4,5 #2 Wo N W3y N Wse, Wiz N Was N Wye,

75,76 Wo N Wiy N Wse, Wo N Wiz N Wi,

Wo N Wiz N Wayg, Wo N Wiz N Wys




The columns are the same as those in the previous table except that the second column
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Table III

only lists representatives of the classes of reflections.

Group|Classes |Maximal finite subgroups |(r;) =

His |3 W3, Wy, Wi Wia N Wy

Hig 71,72 Wi, Wa, Wy Wo N Wiy, Wi N Wiy

Hao |11 Wy, Wa, Wy Wa N Wiy

Hao |12 Wa, Wy, Wi Wiz N Wy

Has |1 Wo, W3, Wy WonW3nN W,

Hos |71 Wo, W3, Wy Won W3 N W,

Hag  |r1,72 Wa, Wiz, Wiy, Wiy Wa N Wiy, Wiz N Wiy

Hso 12,73 Wa, W3, Wiy W3 N Wiy, Wo N Wiy

Hsq  |ri,m2 [Wi, Wa, Wiy Wao N Wiy, Wi N Wiy

Hao |71 Wo, W3, Wy, W Won W3 N Wy N Ws

Hyg 71,72 Wi, Wa, Wiy, Was, Wys Wao N Wiy N W35, W1 N W3y N Ws

Hys |11 Wa, Wy, Wi, Wis, Was WanWyn Wis

Has  |r3,ra  |Wo, W3, Wy, W5, Wig WonNWynNWs N Wig, Wo N W3 N W5 N Wig

Hso |r2,73 Wa, W3, Wy, Wis, W3 N Wyn Wis N Wi,
Wie, Wse Won Wy Wis N Wig

Hso  |r1,74,76|Wa, W3, Wy, Wiy, Wo N W3 N Wy N Wyg, Wo N W3 N W5 N Wig
Wie, Wag WonN W3 N Ws N Wiy

Hss |1 Wo, W3, Wy, Wy, Wg Won W3 N W, N Ws N Wg

Hsq 71,72 Wa, W3, Wiy, Wis, Wi, Wao N W3 N Wys N W,
Was, Wae, Wse W3 N Wigs N Wi

Hse |71 Wi, Wy, Wy, We, Was WanWs N We N Wag

Hsz |11 Wij, 1 #j Waz N Wys N Wise

Hss  |r1 Wo, W3, Wy, Wy, W Wo N W3 N Wy N Wy N Weg

Heo |77 Wi, Wy, W3, Wy, W5, W WinWyn---NWs

Her |m1 Wo, W3, Wy, Wy, We, Wy WonWsn---NWy

Hes |rs Wi, Wo, W3, Wy, W5, We, Wr W1 N Won---NWy

Hes |71 Wo, W3, Wy, Wy, We, W, We|[Wo N W3 N --- N Wy

Hes |71 Wo, W3, Wy, Wy, We, W, We|[Wo N W3 N --- N Wy

Hes |71 Wo, W3, Wy, Wi, WonWsn---NWy
We, Wr, Ws, Wy

Hes |79 Wi, Wa, W3, Wy, WinWyn---N Wy
Wy, We, Wr, Wy

Heo |r1 Wo, W3, Wy, W, WonWin---NWy
We, Wr, Ws, Wy

Hzwo 710 Wi, Wo, W3, Wy, W, WinWyn---NWy
We, Wz, Wg, Wy

Hro  |r1 Wo, Wy, Wy, We, Wr, Wy, WonWan---NWeNWs 1
Wy, Wiz, Wi 10, W3,10
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As well as the columns used in the previous tables the fifth column lists the simple
reflection which corresponds to ‘r;’ in a parabolic subgroup of type Bagy1. The final column

Table IV

lists that standard parabolic subgroup of type Bajy1.

Group|Classes |Maximal fin. sbgps. [(r;) = ‘r1’ | Bak+1

His  |ro,ra  |Wi, W3, Wy WiNnWsn Wy ry |Wh

Hss  |r1,7r3,ra|Wo, W3, Wy WoenN W3 N Wy r3,74|Wa, W3 (resp.)
Hs1  |r1,re | Wa, Wa, Wy, W5, We|Wo - N W re |Wy

Hea |71,78 Wao,...,Wsg Wao N Wy T8 Wy

Hzo |ro,ri0 [Wo, oot ,Wo, Wi1o |[Wsn---NWoNWiio|r10 |Wa

Table V

In addition to the usual first four columns there is a column which shows the centre
of a parabolic subgroup written as the intersection of maximal finite standard parabolic
subgroups.

Group|Classes |Maximal fin. sbgps. |(r;) = Centre
Hzo |r1,7m4  |[Wo, W3, Wy WenWsn Wy (ra) = Z(W3)
Hs1  |ri,ma |[Wo, W3, Wy WanWsn W, (ra) = Z(W3)
Hss  |r1,74,75|Wa, W3, Wy, Ws WoNWsNWynWs |(ra) = Z(Ws N W),
(r5) = Z(Ws N Wy)
Hszg |r1,74 Wy, W3, Wy, Wi WonNWsNWynNWs |(ry) = Z(W3 N Ws)
Ha |71,72 Wy, W3, Wy, Wi WonNWsNWynNWs |(ry) = Z(W3 N Ws)
Hyr  |ra,7r4, 71| Wo, Wa, Wy, Wis W3 N Wy N Wi, (r1) = Z(Wo N Wy)
Wo N W3 N Wis
Hyz  |7ro,71 Wy, Ws, Ws, Wiy W3 NWs N Wiy (r1) = Z(Wy N Wjs)
Hae |ro,ra  |[Wi, W3, Wy, W5 WinNWsnNWynWs |(ra) = Z(Ws N Ws)
Haz 16,71 (Wi, Wo, W3, Wy, W5 (W10 - N W (r1) = Z(Wa N W3 N Wy)
Hag |72,73,76|Wa, W3, Wy, W5, Wi| W3 N Wy N W5 N Wi, |(re) = Z(Ws N Wy N W)
WoNWyeNWs N Wig
Hso |r1,7m7  |Wa, W3, Wy, Wi, Wen---nWy (re) =Z(W3n---NWe)
We, Wr
Her |r1,m9  |Wa, W3, Wy, W, Wen---NWy (ro) = Z(W3 N ---NWg)
We, Wz, Wg, Wy




Chapter 5
Rank 3 Coxeter Groups

§5.1 Groups with Finite Bonds

As mentioned in the last chapter if W is an infinite rank 3 Coxeter group with finite labels
then all automorphisms of W are inner by graph. It is clear that W is nearly finite and that
all automorphisms preserve reflections (by Lemma 4.4) and the result follows by Theorem 3.16
if W is non-degenerate. If W is degenerate then the result is part of Proposition 4.5. The
rank 3 finite Coxeter groups are dealt with in Chapter 2.

§5.2  Groups With Infinite Bonds

The bulk of this chapter we deal with the rank three Coxeter groups with one or more edges
labelled with an infinity. If W is a Coxeter group with r; and r; reflections corresponding
to vertices in the diagram joined by an edge labelled with an infinity, then r;r; has infinite
order and we set a; - a; = —1. Looking at rank three irreducible Coxeter groups with at least
one infinite bond there are five cases to consider:

2 2 2
. . .
[e%e) o) m o) m n
oo 00 and m oo
1e 3 1e 3 1e 3 . . . . . .
o] o] o] 1 2 3 1 2 3

where m,n > 3. We will call these 77, Zs, 73, 7, and Z5 respectively.

The automorphism group of a Coxeter group where o(r;r;) € {2,00} for all i and
j has been found by Mihlherr in [Mii98], where he completes the work started by James,
[Jam88], and Tits, [Tit88]. These papers could be used to find the automorphisms of groups
of type Z; or Zy; instead we present an alternative approach. We will use the relations given
in [M98] to describe the structure of Aut(WW) when W is of type Z;.
5.1 Definition Let W be a Coxeter group with II the set of simple roots. If a; € Il and
K CTI, then denote by o; k the function { r;|la; € Il } — W defined by

(r;) = rirsr;  if a; € K and
Ti,K\Tj) = T otherwise.

In circumstances where o; i extends to an endomorphism of W we also use o; x to denote
that endomorphism. If K = {a;} or {a;,a; } then we write o, ; or o; ji, respectively, for
0i K-

Z1: Let W be a Coxeter group of type Z; with diagram

2
.
o0 [o.¢]
1e o3
oo

Observe that W = gp(ry,re,r3|7? = 73 = r3 = 1) is the free product of three groups of

order 2. Every element of W has a unique reduced expression and an expression is reduced if
and only if no two consecutive terms are equal. Taking any reduced expression and replacing
each r;, for some fixed ¢, by a reduced expression starting and ending with r; results in a
longer reduced expression.
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5.2 Lemma Ifi # j, then o; ; is an automorphism of W.

Proof As we have seen the group W has the presentation
W =gp(ri,ro,r3|ri =713 =ri=1).

For all k it is clear that o; ;(7) is an involution and so o; ; is an endomorphism of W. The
observation that 01-27 x = 1 for all ¢ and K completes the proof. ]

The maximal finite standard parabolic subgroups are (r;) for i = 1, 2 and 3, therefore
all automorphisms of W preserve reflections. Let o be an automorphism of W. Then «(r)
is a conjugate of r; for some ¢ and up to graph automorphisms we may assume that ¢ = 1.
Similarly we can ensure that for all j, a(r;) is a conjugate of r;. The following lemma helps
classify those elements that are conjugates of the r; and together generate W.

5.3 Lemma Let W be a Coxeter group of type Z;.

(1)  Suppose that x5 = rgwgrgwg_lrg is a reduced expression in W. Then
T3 ¢ <?”1,7“2,903>-

(2)  Suppose that xo = rngrng_lrj and x3 = Tk’ll)g’l”g’ll)g_lTk are reduced expressions

in W where {j,k} ={2,3}. Then
r3 & (r1,22,73).

(3) Suppose that x1 = riwlfrlwl—lm, Ty = 'rngfrgw;lrj and 3 = ’I”k’ll)3’l”3w3_1’l”k are
reduced expressions in W where { 4,5,k } = {1,2,3}. Then

T3 & (71, 72,73 ).
Proof For part (1) observe that since x3 has order 2 there is an epimorphism
fiW — H={(r;,r2,x3) <W

given by 71 + 71, 79 +— 79 and r3 — x3. For each w € W the element f(w) is computed
by replacing each r3 in the reduced expression for w by x3. Since the reduced expression for
x3 begins and ends with rs, the resulting expression for f(w) must also be reduced: no two
consecutive factors can be equal. So f is an isomorphism.

If the expression for w involves at least one r3 then I(f(w)) > l(x3) > 3, and so
f(w) # r3. If w does not involve r3 then f(w) =w # r3. Sors ¢ H.

The proofs for (2) and (3) are essentially the same as for (1). ]

5.4 Proposition Let W be a Coxeter group of type Z; with diagram

then

Aut(W) = <0172’Gr(W)>
= (Inn(W) % (01,2,02,3,03.1)) % Gr(W).
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Proof If p € Symj let v, be the corresponding graph automorphism. If ¢ # j then
Oij = p(li)(gj)al,gp(_li)(zj). Furthermore if {¢,j,k } = {1,2,3} then o0, jo; r = 0, ji is conju-
gation by r; and hence is inner. Let

A= <01,2,GI'(W)> = <IDH(W),01,3,02,3,0'371, GI’(W)>

and suppose that « is an automorphism of W with o ¢ A. Replacing « by a suitable element
of a Gr(IWW) C aA, we may assume

afry) = zrz!

a(ry) = yray ™"
afrs) = zrzzt

where each of these expressions is reduced. Assume that « is chosen such that I(z)+1(y)+1(z)
is minimal. Since o # 1 at least one of x, y, z is nontrivial and without loss of generality we
may assume that z # 1. Let z = rpz’ where I(2") < I(z). If I(rry) < l(y) then following « by
conjugation by 7 yields the automorphism o’ where

Now I(rgz) + U(rry) +1(2") < l(x)+1+4+1(y) —1+1(z) =1 <l(z) +1(y) +(z) and so ¢/ € A
contradicting the assumption that o ¢ A. Thus I(rry) > l(y) and similarly I(rix) > I(z).
Suppose that x =y = 1. If £k = 1 then we find that

Qo3 T T
T2 = T2
r3 = ar17r371)
=ri(zrsz Hr;

! /
=2'r3z

The total length has again been reduced and we are led to a contradiction as before, since
o013 € A. A similar argument applies for & = 2 and hence k¥ = 3. But then we have
W = (ry,ra, T3Z,T3Z,_17"3> contradicting Lemma 5.3, and this case cannot occur.

Now suppose that z = 1 but that y # 1; say y = r;y’, where I[(y') < l(y). Observe
that j # k as [(rpy) > (y). If j =1 or k = 1 then considering either ao; ; or ao; i leads to a
contradiction. Thus {j,k} ={2,3}, and W = (7“1,'rjy’rgy’_lrj,rkz’rgz’_lrk> contradicting
Lemma 5.3. Similarly x # 1 and y = 1 is impossible.

Finally suppose that = # 1 and y # 1. Let x = 2’ and y = r;y’ where [(z') < [(x)
and (y") < I(y). If any two of r;, rj, r are equal then following a by conjugation by this
element yields a contradiction while the case {i,j,k} = {1,2,3} contradicts Lemma 5.3.
Hence there is no such a and we have Aut(W) = A.

Following [M98] let Spe(W) = (Inn(W), 01,2,02,3,03,1). Then Spe(W) is the group
of automorphisms of W that preserve the conjugacy classes of reflections. Thus

Aut(W) = Spe(W) x Gr(W).

The proof to this point has shown that Spe(WV) is generated by the automorphisms of the
form o; ; and o; j. The theorem in [Mii98] shows that a presentation of Spe(WW) on these

79



80

Infinite Bonds

generators is given by the relations

2 _
Olo= 1
2 _
01,23 = 1
01,202,3 = 01,23
01,202,13 = 01,2302,1301,2301,2
01,203,12 = 03,1201,2

01,201,23 = 01,2301,2

together with the relations found by applying any permutation in Syms, to the above.
Modifying our notation, let us write i; = 0 23, 12 = 02,13 and i3 = 03 12; these in fact
correspond to the inner automorphisms of W given by ry, 73, r3. Written in terms of the
generators oy 2, 023, 03,1, 91, i2, 43 the defining relations become
2 2
01,20 =023 =031~ L,

2 _ 2 .2
1] =15 =153 = 1,

[\

01,21201,2 = 110211, 02313023 = I2i3l2, 03111031 = 131113,
01203012 =13, 02311023 =11, 0371120371 = i3,

01,29101,2 = 11, 02312023 =13, 03193031 = 13.

Thus i1, 4, i3 generate a normal subgroup W isomorphic to W, and the action of the subgroup
S generated by 01,2, 023, and 031 on W corresponds to the action of 01,2, 02,3, and 031 on
W. Since the only further relations between oy 2, 023, and o3 are 0%72 = 0373 = 0371 =1
we see that S is the free product of three groups of order 2, and Spe(WV) is isomorphic to the
semidirect product W x S. Thus

Aut(W) (IDH(W) X <01,2,0'273,03,1>) X GI‘(W)
= (W % 8) x Gr(W)

(W x W) x Syms .

I

Zs: Let W be a Coxeter group of type Zs with diagram

2

m ° 0

1e o*3
where m > 3. Observe that W is the free product of a group of order 2 with a group of
type Iz(m). The maximal finite subgroups are W5 and (r3) and so any automorphism of W
maps r3 to a conjugate of itself. Up to inner automorphisms we may assume that if « is any
automorphism, then a(W3) = W5. Thus alw, is an automorphism of a group of type I2(m)
with m > 3, and hence preserves reflections. So « preserves Ref(WW'), by Proposition 2.13.

5.5 Definition Let ¢ : W3 — W3 be any automorphism of W3 and define a¢ from
{rila; €1} to W by

ac(r1) = ¢(r1)
ac¢(ra) = ((ra)
ac(rs) =rs.

The next lemma shows that a¢ extends to an automorphism of W. We also use a¢ to denote
that automorphism.
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5.6 Lemma For all ¢ the function o is an automorphism of W. If ¢ # 1 then « is not
an inner automorphism of W .

Proof It is clear that a¢ is an endomorphism of W and that acac-1 = 1. If a¢ were
conjugation by w € W then w would centralize rs. If we recall that W is the free product of
(rs) and a dihedral group it is clear that Cy(r3) = {1,73}. As { # 1 we must have w = r3.
But conjugation by r3 does not fix W3 setwise; hence a is not inner. ]

Let o be the automorphism of W3 which is conjugation by r1, and let o be the auto-
morphism of W which is conjugation by ;. Then

aoy,(ry) =n

aay(re) = a(rirary) =2

aay,(rs) = a(rs) = rirsry.
Thus aq), = 01,3. Similarly if v is the automorphism of W3 which is conjugation by 7, and
B is the automorphism of W which is conjugation by ry then fBa, = 09 3.
5.7 Lemma Suppose that W is a Coxeter group of type Zs or Z, with diagram

2
.
m = oo
0o 0o
1e o3 or R
oo 13 2

L js a reduced expression, where w € W, then

<T17T2,$3> =W

If £3 = wrsw™

if and only if w € (ry,re).
Proof Let p; = (r3r2)'r3. Then as w € W we can find a unique expression for w of the form

W = PoPigP1Piy " PnPi, Pn+1

where po, pry1 € (r1,72) and p1,...p, € (r1,72)\(r2). Note that the case n = —1 corresponds
to w € (ry,r). Since we have assumed that wrzw™! is reduced, it follows that p,, 1 # 1
(unless w = 1). If n > 0 then

_ -1
<7‘1,7‘2,U)7“31U 1> = (7”1,7”2,7”3111/7”3111/ 7”3>

(for some w’ such that rzw'rsw’ e s reduced) and no term including an r3 can have
length 1. Thus if (rq,ry,x3) = W then n = —1, and so w € (ry,rs). ]

5.8 Proposition Let W be a Coxeter group of type Zo with diagram

2
.
m [e.e]
1le *3
oo

then Aut(W) = Inn(W) x (a¢ | ¢ € Aut(W3) ).
Proof Let a be an automorphism of W, a Coxeter group of type Z5, and suppose, for a
contradiction, that o ¢ Inn(W)(a¢|¢ € Aut(Ws3)). Replacing o by a suitable element of
(Inn(W))o we may assume that a(W3) = Ws. If (7! = afw, then aqc is an automorphism
of W fixing r; and 5. Thus we may assume that « fixes r; and 75 and (since « preserves
the conjugacy class of 73) that a(r3) = wrsw™'. By Lemma 5.7, as « is an automorphism,
we must have w € W3, If

W="TiyTiy .- Tq,
where i; € {1,2} then

a=0;,304,_ 13 ""°04;3€C <IHH(W), (078 ‘ C S Aut(W?,) >,
a contradiction. Since Lemma 5.6 gives Inn(W)N (¢ | ¢ € Aut(W3)) = {1} the result follows.
|
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Z3: Let W be a Coxeter group of type Z3 with diagram

2
.
m n
1le *3
oo

where m,n > 3. The maximal finite subgroups are Wy and W3. Thus (ro) = Wi N W3 and
hence any automorphism of W maps r5 to a reflection. Up to inner automorphisms alyy, is
an automorphism of a group of type Io(m) with m > 3 and hence 7 is always mapped to a
reflection, similarly for rs.

Let w; be the longest element of W; and let ¢; = w;re, for i = 1,3. If m is even then
c3 = r, where a = m(al +c(mpy, )ag) is the unique root in @?al,az} that is orthogonal to as.
Similarly, if n is even then ¢; = r, where b = ﬁ(ag + c¢(m,)az). It follows from Theorem B
of [BH99] that

(ra) if m and n are odd,

(ro) X (rq) if m is even and n is odd,
Cw(rz) = (ra) X (rp) if m is odd and n is even,

(ro) X (rg,rp) if m and n are even.

where Cyy (r2) is the centralizer of 7o in W. (See also [Bri96].) If m and n are both even then

—(1+ c(mm) c(mn))

b= S(m) 5(70n)

< -1,

and it follows that { a,b} is a root basis in the sense of Definition 1.38. Thus r, and r, are
simple reflections for the reflection subgroup of W they generate. The root system of this
reflection subgroup is the set {z € ®|x-az =0}.

5.9 Definition Let p be an automorphism of W3 which fixes ro and v an automorphism
of Wi which fixes r,. Define o, , : W — W to be the endomorphism satisfying

ap(r) = p(r)
@, (r2)

a#vV(TS) = V(T3)7

T2

provided such an endomorphism exists.
In fact oy, exists in all cases. Clearly o, ,(r;) is an involution for all i. Now

Quw(rire) = oy (r1)oy, (r2) = p(r)re = p(rira)

and hence (au,y(rl)au,y(m))m = 1. Similarly (auvu(rg)ozuv,,(rg))n = 1, and thus the required
relations hold. and similarly for the rest. Thus «,,, defines an endomorphism of W. It is
clear that if pu, p’ € Aut(W3) and v, v’ € Aut(W7) all fix ry then

QupQu’ v = Qup/ vu'-
Furthermore, «,,, = 1 if and only if 4 =1 and v = 1. Thus
A={oy,,|peAut(Ws), v € Aut(Wy) and p(re) =v(re) =ra }

is a subgroup of Aut(W') isomorphic to the direct product of the stabilizers of ro in Aut(Ws)
and Aut(W7).

5.10 Lemma With pu,v as above, if oy, ,, is an inner automorphism then p1 and v are both
identity automorphisms or both conjugation by r.
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Proof If a,,, is an inner automorphism, say o, , () = wzw™!, then we have

wrzw_l =17
—1
wriw” " € (ry,T2)

wrsw™ ! € (ro,T3).

_ st ()

S(Tm) sty @2 for some A and

Thus we have way = +ay and, using 1.12, wa,

_ s((k=D)mn) s ()
— S(ﬂ‘n)ﬂ- ay + s(7n)
relative to {ay,as,as },

was as for some k. Identifying elements of W with their matrices

s((h—D)mp)/s(mm) 0 0
w = s(hmm) +1 s ((k—1)m,)/s(m)
0 0 s(kmn)/ s(mn)

As w can be written as a product of reflections det(w) = +1. Hence

s((h—=Dmm)  s(kmy,)

S X S(mn) = =£1.

Each of the two factors on the left of this equation is 0 or is at least 1 in absolute value; thus
we must have

s((h—1Dmy) = £s(mm)
s(km,) = £s(my).

Looking at each possibility we find that wa; is £aq or £r2(a1) and was is +ag or ra(ag).
Thus

wrlw_lzfrl or 7ToriTy

wrgw_l =1

’ng’w_lz’l”g or T9raTa.

If w # 1 or 1o, then renumbering (swapping 1 and 7o if necessary) gives

wfrlw_l =1r

wfrgw_l =Ty

wfrgw_l = ToT3T2.
But then

-1 = ai - as
= +(ay - roa3)
= :|:(CL1 . (CL3 + 2C(7Tm)a2))
=+(—1-2c(my)c(m)).

But this forces c(m,,) ¢(m,) = 0 or | c(m,,) c(m,)| = 1 contradicting 3 < m,n < oo. Therefore
«,,,, is inner only when p and v are both the identity or both conjugation by 7. ]
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We shall prove that Aut(W) is generated by inner automorphisms, graph automor-
phisms (if m = n) and the automorphisms «,, described above. Let a be an arbitrary
element of Aut(W). Up to graph automorphisms we may assume that a(W3) is conjugate to
W3 and «(W7) is conjugate to Wy; so up to inner and graph automorphisms we may assume
that a(W3) = W3 and o(W;) = uWiu~! for some u € W. At the expense of modifying «
by a further inner automorphism, we may assume that v is the minimal length element in
W3UW1. Now

a((r2)) = a(Ws) Na(Wy) = Wy nuWiu™",

and by Corollary 1.28 we deduce that a(rs) = r; = urju~! forsomei € {1,2} and j € {2,3}.
Furthermore a; = u(a;), since u(az) and u(as) are both positive.

If m and n are both odd then the only w € W with w(as) = as is w = 1, and it
follows that the equation u(a;) = a; determines w uniquely (since aq, as, az all lie in the

(if i« = 1). However, both of these contradict the fact that u has minimal length in WsuW;.
Similarly, j = 2 and ¢ = 1 leads to u = rory -7, which again contradicts the minimality of
u. Soi = j=2and u=1. This gives a(W3) = W3, a(W;1) = W; and «a(rz) = ro, and it
follows that a = v, ., where p1 = alw, and v = o|w, .

If n is odd and m even then r; is not conjugate to either ro or r3, and so we must
have i = 2. There are two elements w € W with w(az) = ag, namely 1 and ryry 77! . So
if 5 = 2 then either uw = 1 or u = ryry "7, and if j = 3 then either u = rgry.*~!. or
u = (ryrg "4 )(rgrg . *71. ). Again, only the case u = 1 is consistent with the fact that w is
minimal length in WyuWs3, and as above we deduce that o = o, .

If m is odd and n is even then 73 is not conjugate to either ro or ri, and so we must

have j = 2. The only elements of W with w(az) = az are w = 1 and w = rgre.*7!.. We
deduce that if ¢ = 2 then either u = 1 or u = r37r.%7+., and if i = 1 then either u = ryry .77
or u = (ryrg 71 )(rgre -t ). Only u =1 is possible, and again o = o, .

We are left with the case in which m and n are both even. For the next calculation we
allow n = 2 as we shall refer to this calculation again in case Zs. Since r1, 72, 73 lie in separate
conjugacy classes we deduce that i = j = 2, and w lies in the subgroup {w |w(az) = as }. As
explained above, this group is generated by the reflections r, = r179 7" and ry, = r3ry "7,
and so u is an alternating product of r,’s and 7,’s. Note that if the expression for u ends
with 7, then u(b) is negative, and since b is in the root system of W; this contradicts the
minimality of v in W3uWj. Similarly, 4 cannot begin with r,. So

U= ('rb'ra)k

for some £.
Thus we have W = (a(r), a(r2), a(r3)) = (r1,72,72), where x = (ry74)*az. Now
)

= (
(rbra)k ( s(m)b — C(T('n)ag)
s(mp) (17 )kb — C(?Tn)(Tb’l"a)kag

(
S(”n)(rbra) - C("Tn)GQ

since a and b are orthogonal to as. But {a,b} forms a root basis where

—(1 + c(mm) C(T('n))
S(7m ) s(m)

= — cosh(t)

for some ¢ (since a-b < —1). The elements of the (infinite dihedral) root system generated by
a and b can be found by calculations analogous to those used to establish 1.12 and 1.13(the
finite case). We find that

sinh ((k + 1)t) sinh(kt)
sinh(¢) sinh(t) “

(1474 )"b =
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We are given a; - as = —c(m,,) and as (174)*az = as we have
_ ko _ k ko _ _
ag - T = ag - (rprg)~ag = (1pr4) as - (1prq) az = ag - az = —c(mwy,).
Finally
inh ((k+ 1)t
RPN L (G L) P
sinh(t)
sinh(kt)
+ S(T('n)ma ©aq =+ C(T{'m) C(’ﬂ'n)
sinh ((k + 1)t) (— 1 — c(mp) c(mn))
= s(m,) -
sinh(t) s(mp)
inh
+ s(ﬂn)% $(m) + ¢(mn) ()
_sinh ((k+1)t) sinh(kt)

(0 (—1—c(mm)e(m)) +

- sinh ((k 4+ 1)t)  sinh(kt)
~ sinh(¢) sinh(t)

+e(mp) () < 1

If z-a; > —1 then it follows that the restriction of our bilinear form to the space V'’ spanned
by a1 and z is positive definite. By the main theorem of [Deo89], or alternatively Theorem 3.3
of [Dye90], the reflection subgroup W’ = (ry,r,) is a Coxeter group on V’. This implies, by
Lemma 1.1, that W' is finite, a contradiction as .71 = a(rsry) is infinite, and so |z -a1| > 1.
Hence x - a; < —1. Thus {ay,as,x } is a root basis for (ri,re,7,) = W. Hence every root
in ®T can be expressed as a positive linear combination of a;, as and z. But it is clearly

impossible to express a3 as a positive linear combination of a1, as and x unless the coefficient
s(my,) sinh(kt)
s(7m ) sinh(t) ?
gives * = ag and so « is the identity. Thus we have proved the following.

of a1 in z is zero. This coefficient is which is zero if and only if £ = 0. This

5.11 Proposition Let W be a Coxeter group of type I3 with diagram

and A= {a,,|p e Aut(Ws),v € Aut(W) and p(re) = v(re) =12 }. Then

Aut(W) = Inn(W)A (if m # n)

Aut(W) = Inn(W)AGr(W) (if m=n)

where in the latter case we have | Gr(W)| = 2. Further Inn(WW) N A has order 2, generated
by conjugation by rs.

Zy: Let W be a Coxeter group of type Z, with diagram

[ olie o]
. . .

1 2 3

The maximal finite standard parabolic subgroups are W5 and (r9). Thus any automorphism
of W maps 72 to a conjugate of itself. The finite standard parabolics include the two just men-
tioned together with (r1) and (r3). So, by Proposition 2.3, representatives of the conjugacy
classes of involutions are rq, r9, r3 and rir3.
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5.12 Definitions Define v : W — W by

Y(r1) =m

P(rz) =r2

Y(rs) = rirs.
Let v be the obvious graph automorphism of W.

5.13 Lemma The function v is an automorphism of W which does not preserve reflec-
tions.

Proof The observations that r1, r9 and ri73 are involutions and that

Y(r)v(rs) =rs =1p(rs)i(r1)
show that 1 is an endomorphism of W which does not preserve reflections. Noting that
1?2 =1 completes the proof. ]

Let aw € Aut(W). If v does not preserve reflections then either a(ry) or «(rs) belongs
to the class of r173. Up to graph automorphisms we may assume that a(rs) is in the class of
rirs. If ary) is conjugate to 71, then 1o preserves reflections, and if a(rq) is conjugate to r3
then ¥y« preserves reflections. So we may suppose that o preserves reflections. Furthermore,
up to inner automorphisms a(Ws) = Wy and hence up to inner by graph automorphisms we
may assume

a(ry) =m
a(rs) =rs.
We know that a(ry) = wrew ™! and (by Lemma 5.7) as « is surjective we must have w € Ws.
Hence « is inner, being conjugation by w. We have therefore proved most of the following.
5.14 Proposition IfW is a Coxeter group of type Z, with diagram
. o0 . o0 .
1 2 3
then Aut(W) = Inn(W) x (1,7).
Proof It only remains to show that none of the automorphisms in (¢,~) are inner. As
(1,7v) = Symg we check the five non-identity automorphisms. Since

?/)(7”3) =Tir3
y(r1) =rs
Yy(r3) =1

’W)’Y(Tl) =Trirs3
Yyy(ry) = r3

none of the non-identity automorphisms preserve the conjugacy classes of reflections. So they
cannot be inner. ]

Zs: Let W be a Coxeter group of type Zs with diagram

. m . o0 .

1 2 3
The maximal finite standard parabolics are Wy and W3. Given that (r1) = Wy N W3 we
know that any automorphism of W maps r; to a reflection. If a(r;) is conjugate to 7o but
not r; then m must be even; however, in this case ro is not conjugate to the reflections in
Ws, whereas «(ry) is in subgroups from both conjugacy classes of maximal finite parabolics.
Thus «a(r1) is a conjugate of r;.

Representatives of the classes of involutions are r1, ro, r3, r173 and the longest element
of Wjs; this last only occurs if m is even and if m is odd then r; and r, are conjugate. Now
r3 is not conjugate to any element in a parabolic subgroup of order 2m and so cannot be
mapped to an element in W3 by any automorphism. Thus, if & € Aut(W) then «(rs) is
conjugate to rs or ri73.



Chapter 5 Rank 3 Coxeter Groups

5.15 Definitions Let ¢ : W — W be the automorphism given by

P(ry) =, Y(re) =12 and P(rs) =rirs,

and for any automorphism ¢ of W3 such that {(r1) = r1 let a¢ : W — W be the automorphism
given by
ac(ry) =1, ac(re) = ¢(r2) and ac(rs) =rs.

(Thus «a¢ is analogous to oy 1 for the Z3 case.) Let
B = gp(¥,{ a¢ | ¢ € Aut(Ws) such that ((r1) =1 }).

Notice that a1 = Yo for all (. Notice also that if ( € Aut(W3) is conjugation by 7
then o is conjugation by r; on W. It is not hard to see that this is the only nontrivial inner
automorphism in the group B. For suppose that w € W induces an inner automorphism that
lies in B. Since all elements of B map r3 to 73 or rirs, it follows that wrsw™! = r3, since
rirs is not a reflection. Furthermore, wriw ™! = r1, and wrow ™! = r, for some z in the root
system of Ws5. So w(az) is in the root system of W3, and since w(as)-w(a1) = as-a; it follows
that w(ag) is either as or r1(az). The former possibility gives the identity automorphism and
the latter gives conjugation by 7.

Now let a be any automorphism of W. Then up to the automorphism v we may assume
that « preserves reflections. Up to inner automorphisms we may assume that a(W3) = W3
and a(r1) = r1. Then p = a|w, is an automorphism of W3 that fixes r1, and so replacing o
with -1 we get an automorphism of W that fixes both r; and ro. As a(rs) is a conjugate
of r3 the methods used for Z3 finish the proof of the following.

5.16 Proposition IfW is a Coxeter group of type Zs with diagram
. m . 0 .
1 2 3

then Aut(W) = Inn(W)B and | Inn(W) N B| = 2.

Note that if ¢ is conjugation by 71 then a is inner, being conjugation by r;. All other
¢ give rise to outer automorphisms.

There is one case still outstanding: A; x A;. Let W be a Coxeter group of type Ay x A;
with diagram

le *3
oo

The finite standard parabolic subgroups are (r1), (ra2), (rs), (r1,72) and (ro,r3). It is clear
that (ro) = Z(W) thus we have a(rg) = ry for all automorphisms « of W.

5.17 Definition Define a5 : W — W by

0412(?”1) =Trire
0412(7”2) =T2

0412(7”3) =T3.

It is easily seen that ayo is an automorphism of W. Let v denote the obvious graph auto-
morphism.

Let a be any automorphism of W. Following o with an inner by graph automorphism
if necessary we may assume that a(W3) = W3. Now «(ry) = 2 and so either a(r1) = r; or
a(ry) = rire. If a(ry) = rire, then ajaa(ry) = aga(riry) = rirere = r1. Thus, replacing
a with ajsa we may assume that «(rq) is conjugate to r;. Then «a(rs) is conjugate to
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r3 or rors. If a(rs) = w'rersw' ' then yajeya(ry) = r; and yaieya(rs) = wrzw—!, where
w = yagzy(w’). So we may assume up to inner, v and aq29, that

a(ry) =m
a(ry) =1y

afrs) = wrsw™?.

As 7y is central we may assume that w € W, and hence alw, is an automorphism of a
Coxeter group of type Ay with r; — r;. Thus a|w, is inner, by Proposition 4.5, and therefore
« is inner.

5.18 Proposition If W is a Coxeter group of type Ay x A, with diagram

then Aut(W) = Inn(W) x (a12,7).
Proof It is easily checked that (a12,7v) is a group of type I2(4) and that none of the non-
identity automorphisms in this group preserves the classes of reflections. Thus

Inn(W) N {aqa,7) ={1}.
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Gr(W), 5

Hj, 11
automorphisms, 32
diagram, 11
longest element, 11
normal subgroups, 43

Hy, 11
automorphisms, 32
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longest element, 11
normal subgroups, 43

Hnp
see Table I, 70

H,, 68

T
automorphisms, 78
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linked, 39
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maximal finite subgroup, 11
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nearly finite, 35

negative root, 1
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92 Errata

Errata

Page 56 line 14. Replace the diagram

2 4
5 e e
3¢ ¢

155

with the diagram

2 4
5o e
3+ ¢

15 5

Page 56, line 21. Replace ‘¢ < 5" with ‘¢ = 5.

Page 56, line 24. Replace the sentence ‘Thus Aut(W) = R(W).” with: Thus Aut(W) = R(W)
if ¢ > 5. If ¢ = 3 or 4 then W3 is the unique maximal finite standard parabolic subgroup of its
type. The general argument in the proof of Theorem 3.16 then shows that all automorphisms
are inner by graph if ¢ = 3 or 4. We now concentrate on the ¢ > 5 case.





