Ji Li
Macquarie University
Mon 24th Feb 2025, 11:00-12:00, Carslaw Room 829 (AGR)
Let \(u(x, t)\) be a harmonic function in \(\mathbb R^{n}\times (0,\infty )\). The non-tangential maximal function \(u^*(x)= \sup _{|x-y| The key objects in their proof are the following inequality \[\left |\left \{x\in \mathbb R^n\colon S(u)(x)>\lambda \right \}\right |\lesssim \left |\left \{x\in \mathbb R^n\colon u^*(x)>\lambda \right \}\right |+{1\over \lambda ^2}\int _0^\lambda s|\{x\in \mathbb R^n: u^*(x)>s\}|\,ds\] and the corresponding inequality of the same type but with \(u^*\) and \(S(u)\) interchanged. We establish such an inequality in certain multiparameter settings, including the Shilov boundaries of tensor product domains in \(\mathbb C^{2n}\), and the Heisenberg groups \(\mathbb H^n\) with flag structure. Our technique bypasses the use of Fourier or the dependence of group structure. Direct applications include the (global) weak type endpoint estimate for multi-parameter Calderón–Zygmund operators and maximal function characterisation of multi-parameter Hardy spaces. Ji Li, Fefferman–Stein type inequality, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2024.
For Seminar announcements you can subscribe to the Seminar RSS feed.Check also the PDE Seminar page.
Enquiries to Jiakun Liu.